Theorem The binomial(n, p) distribution is the limit of the hypergeometric(ny, ng, n3)
distribution with p = ny/ng, as n3 — co.

Proof Let the random variable X have the hypergeometric(ny, ng, n3) distribution. The
probability mass function of X is
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forz =0,1, 2, ..., ny. It must be the case that ny — oo because n; = pns and n3 — oo.
We expect that ng — ny < ng — ny and ns could be ignored as ny,n3 go to infinity. Set
q=1/p =nsz/ny then
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which is the probability mass function for the binomial(ng, p) distribution.



