Theorem [UNDER CONSTRUCTION!] The limiting distribution of the generalized gamma(α, β, γ) distribution is the log normal(μ, σ) distribution, as $\beta \to \infty$, $\alpha \to \infty$, $\gamma \to 0$, $\gamma^2 \beta \to 1/\sigma^2$, and $\alpha \beta^{(1/\gamma)} \to \mu$.

Proof [UNDER CONSTRUCTION!] Let the random variable X have the generalized gamma(α, β, γ) distribution with probability density function

$$f(x) = \frac{\gamma x^{\gamma \beta - 1} e^{-(x/\alpha)^\gamma}}{\alpha^{\gamma \beta} \Gamma(\beta)} \quad x > 0.$$

Taking the limit as $\beta \to \infty$ yields

$$\lim_{\beta \to \infty} \frac{\gamma x^{\gamma \beta - 1} e^{-(x/\alpha)^\gamma}}{\alpha^{\gamma \beta} \Gamma(\beta)} =$$