Theorem The distribution of the difference of two independent exponential random variables, with population means α_1 and α_2 respectively, has a Laplace distribution with parameters α_1 and α_2 .

Proof Let X_1 and X_2 be independent exponential random variables with population means α_1 and α_2 respectively. Define $Y = X_1 - X_2$. The goal is to find the distribution of Y by the cumulative distribution function technique. First, we know that

$$f_{X_1}(x_1) = \frac{1}{\alpha_1} e^{-x_1/\alpha_1} \qquad x_1 > 0$$

and

$$f_{X_2}(x_2) = \frac{1}{\alpha_2} e^{-x_2/\alpha_2} \qquad x_2 > 0$$

By independence, it follows that the joint probability density function of X_1 and X_2 is

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{\alpha_1 \alpha_2} e^{-x_1/\alpha_1} e^{-x_2/\alpha_2} \qquad x_1 > 0, x_2 > 0.$$

We want $F_Y(y) = P(Y \le y)$ where $-\infty < y < \infty$. Looking at the support of $f_{X_1,X_2}(x_1,x_2)$ given above, we see that the resulting cumulative distribution function for Y will be piecewise, where the pieces are separated at y = 0. So we first consider the case where $y \le 0$. The double integral giving us the cumulative distribution function $F_Y(y)$ of Y for $y \le 0$ is

$$F_{Y}(y) = P(Y \le y)$$

= $P(X_{1} - X_{2} \le y)$
= $P(X_{2} \ge X_{1} - y)$
= $\int_{0}^{\infty} \int_{x_{1} - y}^{\infty} f_{X_{1}, X_{2}}(x_{1}, x_{2}) dx_{2} dx_{1}$
= $\int_{0}^{\infty} \int_{x_{1} - y}^{\infty} \frac{1}{\alpha_{1} \alpha_{2}} e^{-x_{1}/\alpha_{1}} e^{-x_{2}/\alpha_{2}} dx_{2} dx_{1}$
= $\frac{\alpha_{2}}{\alpha_{1} + \alpha_{2}} e^{y/\alpha_{2}} \qquad y \le 0.$

For y > 0, the cumulative distribution function of Y is

J

$$F_{Y}(y) = P(Y \le y)$$

= 1 - P(Y > y)
= 1 - P(X_{1} - X_{2} > y)
= 1 - P(X_{2} \ge X_{1} - y)
= 1 - \int_{y}^{\infty} \int_{0}^{x_{1} - y} f_{X_{1}, X_{2}}(x_{1}, x_{2}) dx_{2} dx_{1}
= 1 - $\int_{y}^{\infty} \int_{0}^{x_{1} - y} \frac{1}{\alpha_{1} \alpha_{2}} e^{-x_{1}/\alpha_{1}} e^{-x_{2}/\alpha_{2}} dx_{2} dx_{1}$
= 1 - $\frac{\alpha_{1}}{\alpha_{1} + \alpha_{2}} e^{-y/\alpha_{1}}$ $y > 0.$

Differentiating with respect to y gives

$$f_Y(y) = \begin{cases} \frac{e^{y/\alpha_2}}{\alpha_1 + \alpha_2} & y \le 0, \\ \frac{e^{-y/\alpha_1}}{\alpha_1 + \alpha_2} & y > 0, \end{cases}$$

which is the probability density function of a Laplace random variable with parameters α_1 and α_2 .

APPL verification: The APPL LaPlaceRV function operates on the assumption that the independent exponential parameters are equal, i.e. that $\alpha_1 = \alpha_2$. So, APPL was not able to verify the general result. However, the APPL statements

```
assume(alpha1 > 0);
assume(alpha2 > 0);
X1 := [[x -> exp(-x / alpha1) / alpha1], [0, infinity], ["Continuous", "PDF"]];
X2 := [[x -> exp(-x / alpha2) / alpha2], [0, infinity], ["Continuous", "PDF"]];
Difference(X1, X2);
```

verify the probability density function of $Y = X_1 - X_2$ found above.