Theorem The beta(b, b) distribution converges to the normal distribution when b — oc.

Proof (by Professor Robin Ryder in the CEREMADE at Université Paris Dauphine) Let
the random variable X have the beta(b, b) distribution with probability density function
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where b is a real, positive parameter. The mean of X is E[X] = 1/2 and the variance of

X is V[X] = 1/4(2b+ 1). Substract the mean and divide by the standard deviation before
taking the limit. So consider the transformation Y = g(X) = 2v/2b+ 1(X — 1/2), which is
a one-to-one transformation from A = {z[0 <z <1} to B={y| —v2b+1 <y < v2b+ 1}
with inverse X = ¢~ '(Y) = X/2v/2b+ 1 + 1/2 and Jacobian
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Then the probability density function of Y is
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We now apply Stirling’s formula I'(z) = \/27/2(2/e)*(1 + O(1/2)) and get
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= \/12_7Texp<—y;) (1+O(%)) V2 +1<y<V2+1.

Thus, in the limit b — oo, fy(y) converges pointwise to the probability density function of a
standard normal random variable. By Scheffé’s theorem, Y converges in distribution to the
standard normal distribution.




