Chapter 2

R as a Calculator

R can be used as a calculator. This chapter (a) outlines rules associated with the order in which R executes basic arithmetic operations, (b) introduces a function that controls the number of digits that R uses to display the results of a calculation, (c) shows how R handles an extreme calculation like 1/0, and (d) introduces the integer-divide and modulo operators.

In the examples given throughout this text, R commands that you type will be set in monospace font following the > prompt. The response from R will be given on the next line or lines, also set in monospace font. This is exactly what you will see in an R session.

2.1 Order of operations

We begin with simple arithmetic operations. The order in which arithmetic operations are performed is consistent with the PEMDAS convention. This convention implies that parentheses get highest priority, followed by exponentiation, followed by multiplication and division, followed by addition and subtraction. The first example of using R as a calculator is given below.

```r
> 2 + 9 * 4 # PEMDAS convention; spaces around operators
[1] 38
```

No equal sign is necessary; pressing the return key serves that role. The response from R is [1] 38, which means that R performed the multiplication before the addition per the PEMDAS convention, giving a result of 38. The [1] that appears before the 38 indicates that the result is a vector of length one. More details concerning vectors will be given in Chapter 4. The [1] can be ignored for now.

The text after the # is a comment and has been added to highlight the concept being presented. It is good programming practice to surround the operators with a single space for readability. This is not necessary, however, and it is perfectly acceptable to key in the R command as

```r
> 2+9*4 # no spaces around operators; it still works
[1] 38
```

But you could imagine how difficult this R command would be to read if it was 30 or 40 characters long. Surrounding operators with spaces and placing a space after a comma as you key in R commands is a good habit to develop.

The exponentiation operator is the caret symbol, \(^\wedge\), as illustrated by
> 4 + 3 / 10 ^ 2 # exponentiation first, then division, then addition
[1] 4.03

The slashes on the zeros are to distinguish between a zero and an uppercase O. Parentheses can be used to alter the order of operations.

> 4 + (3 / 10) ^ 2 # division first, then exponentiation, then addition
[1] 4.09
> (4 + 3) / 10 ^ 2 # addition first, then exponentiation, then division
[1] 0.07
> (4 + 3 / 10) ^ 2 # division first, then addition, then exponentiation
[1] 18.49
> ((4 + 3) / 10) ^ 2 # addition first, then division, then exponentiation
[1] 0.49

If you press the return key prior to completing a command, the usual greater than prompt will be replaced by a + prompt, which is R asking you to continue the command.

> 2 - 3 * # + prompt for more input
+ 7 # completed command 2 - 3 * 7
[1] -19

An R command that traverses several lines in this fashion is appropriate for a particularly-long calculation. Now consider computing 1/4.

> 1 / 4 # the display suppresses trailing zeros
[1] 0.25

R calculates one-fourth and displays it as the decimal equivalent 0.25, suppressing the trailing zeros. Now consider computing 1/3.

> 1 / 3 # default seven rounded digits displayed
[1] 0.3333333

R must make a decision on how many digits to display. The default in R is to display seven digits. This can be altered, however, as will be shown in the next section.

Notice that R does not include commas to separate groups of three digits when displaying the result of a calculation.

> 8 * 10 ^ 4 # exponentiation first
[1] 80000

The same is true for large numbers in an R command. Consider the calculation of a large number.

> 1111111 * 1111111 # the result is displayed in scientific notation
[1] 1.234568e+12

The result of this calculation is expressed in scientific notation: $1.234568 \cdot 10^{12}$. With only seven digits displayed, it is not possible to know the exact value of the product. Large and small numbers can be keyed into R in the same fashion in which they are displayed. Avogadro’s number from chemistry, $6.02214 \cdot 10^{23}$, named after Italian chemist Amedeo Avogadro (1776–1856), for example, is keyed into R as

> 6.02214e+23 # Avogadro’s number in scientific notation
[1] 6.02214e+23