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Established techniques for generating an instance of a multivariate NonHomogeneous Poisson Process
(NHPP) such as thinning can become highly inefficient as the dimensionality of the process is increased,
particularly if the defining intensity (or rate) function has a pronounced peak. To overcome this ineffi-
ciency, we propose an alternative approach where one first generates a projection of the NHPP onto a lower-
dimensional space, and then extends the generated points to points in the original space by generating from
appropriate conditional distributions. One version of this algorithm replaces a high-dimensional problem
with a series of one-dimensional problems. Several examples are presented.
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1. INTRODUCTION

A multivariate (or multidimensional) nonhomogeneous Poisson process is a useful
model for systems in which points occur over multiple dimensions at a varying rate.
For example, the multivariate NHPP can be used to model how the rate of warranty
claims for an item varies over both the item’s age and time in use [Murthy et al. 1995].
Other application areas of the multivariate NHPP include queuing theory [Disney and
Konig 1985; Jennings et al. 1996], health care [De Angelis and Gilks 1994; Henderson
and Mason 2004; Lindsey 1996], labor economics [Bissinger 1981], risk management
[Cooil 1991], and reliability [Agustin and Pena 1999; Arjas et al. 1991].
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15:2 E. A. Saltzman et al.

Following Resnick [1992] we can define a multivariate NHPP as a random point
process as follows. (Resnick gives a more general definition but the following will
suffice for our purposes.) Let (X (i) : i ≥ 0) be a countable collection of random points
in the d-dimensional rectangle V = (a1, b1] × (a2, b2] × · · · × (ad, bd], and let N(A) be
the (random) number of points that fall in the set A ⊆ V. Then N is said to be a point
process on V. (Technically, we should restrict attention to measurable subsets A but
we suppress measurability requirements in what follows.)

Definition 1.1. An NHPP with intensity function λ(·) ≥ 0 on V with
∫

V λ(x) dx < ∞
is a point process N on V that has the following properties.

(1) For all A ⊆ V, N(A) is Poisson distributed with mean μ(A), where μ(A) =∫
A λ(x) dx.

(2) If A1, A2, . . . , Ak are disjoint subsets of V, then the random variables
N(A1), N(A2), . . . , N(Ak) are independent.

Hence, the number of points in a region of V is Poisson distributed, and the number
of points in disjoint regions are independent of one another.

Resnick’s definition allows the NHPP to be defined on unbounded domains, but we
restrict attention to the bounded region V. The intensity function λ(·) determines the
intensity with which points occur in V, with more points tending to arise in areas
where λ(·) is large. Associated with the intensity function λ is the mean measure μ
that gives the expected number of points in a set.

We consider the problem of generating a realization of the NHPP. Several methods
have previously been proposed for this problem. One such method is an extension
of the “order-statistic property” of Poisson processes in one dimension. This method
first generates a Poisson random variable M with mean μ(V) =

∫
V λ(x) dx, and then

generates M independent and identically distributed (i.i.d.) points in V with density
λ(·)/μ(V); see, for example, page 341 of Resnick [1992]. To implement this method
one needs μ(V) in closed form and the ability to generate from the density λ(·)/μ(V).
Another algorithm is an extension of the widely-used thinning technique [Lewis and
Shedler 1979]. Thinning requires determining a majorizing function λ∗(x) such that
λ∗(x) ≥ λ(x) for all x ∈ V. Typically, simulation practitioners assume a constant ma-
jorizing function such that λ∗ ≥ supx∈V λ(x). Each point x ∈ V of the Homogeneous
Poisson Process (HPP) N∗ with constant rate λ∗ is retained, independent of all other
points, with probability λ(x)/λ∗ or “thinned” with probability 1 − λ(x)/λ∗ to form the
NHPP N with intensity function λ(·). Although this form of thinning algorithm can
be applied for any bounded intensity function, it is particularly inefficient if λ∗ � λ(x)
over much of V, which occurs when, for example, the intensity function has a high
peak. This inefficiency becomes more pronounced as the dimensionality of the mul-
tivariate NHPP is increased because the rejection probability typically increases. A
different algorithm for bivariate homogeneous Poisson process generation, proposed
by Ross [2003], employs a “fanning out” procedure. Ross’s algorithm for homogeneous
Poisson processes is closely related to the one we present here for nonhomogeneous
Poisson processes, and one could view the present algorithm as an extension of that in
Ross [2003]. Other studies by Merzbach and Nualart [1986], Nair [1990], and Schoen-
berg [1999] have considered using time rescaling methods for process generation of
more general multivariate point processes.

As an alternative strategy, we first generate a realization of an NHPP that arises
as the projection of the points of the target NHPP onto a lower-dimensional space. We
use the projection that maps a point in R

d into the p-dimensional point consisting of
the first p < d coordinates of the point. (For clarity we state and prove results only for
p = 1, but the proofs go through with only notational changes for p > 1.) Proposition 1
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proves that the projected points are those of an NHPP which we subsequently call the
marginal NHPP. Then we extend the p-dimensional points of the marginal NHPP back
to d dimensions by generating the remaining coordinates from an appropriate condi-
tional distribution given the first p coordinates. If p = 1, then the marginal NHPP is
one-dimensional so any standard method for generating one-dimensional NHPPs can
be employed, including inversion, thinning, composition, or other techniques. Like-
wise, any convenient method can be employed to generate the remaining coordinates
of the points. Determining what projection to use, that is, which coordinates to gen-
erate in the marginal NHPP, and which methods to use to generate the remaining
coordinates, depends on the functional form of the intensity function. Our approach
can, in many cases, reduce the dimensionality of the process generation problem, and
therefore offers a potentially more efficient method for simulation of multivariate NH-
PPs in those cases than more standard techniques like thinning.

The primary contribution of this article is the algorithm defined in the next section
and the proof that the algorithm indeed generates an NHPP with the desired rate
function, that is, that the algorithm is correct. A secondary contribution of the article
is to demonstrate the benefits of using point-process theory in analyzing Poisson pro-
cesses, as in Resnick [1992]. Indeed, this makes it straightforward to state and prove
the key results.

The remainder of this article is organized as follows. Section 2 presents the algo-
rithm for our process generation approach, proves that it is correct, and provides some
specializations of the algorithm. Section 3 provides some examples. Implications and
extensions are discussed in Section 4.

2. THE ALGORITHM

Suppose that N is an NHPP on V as defined in Section 1, with points {X (1),
X (2), . . . , X (M)}, where M is Poisson distributed with mean μ(V) =

∫
V λ(x) dx.

Our algorithm is based on two observations. First, roughly speaking, the set
{X1(1), X1(2), . . . , X1(M)} of first coordinates of the points is an NHPP on the inter-
val (a1, b1]. Second, given the initial coordinate of a point, the remaining coordinates
of the point can be obtained by sampling from an appropriate conditional distribution.
We first define a few necessary quantities, then state the algorithm, and finally prove
that it is correct, that is, establish that the stochastic process that is generated by the
algorithm is an NHPP with the desired rate function.

For z ∈ (a1, b1], let V(z) be the slice through the hyperrectangle V where all points
on the slice have first coordinate z, that is, V(z) = {(z, y) = (z, y1, y2, . . . , yd−1) : ai+1 <
yi ≤ bi+1, i = 1, 2, . . . , d− 1}. Then V(z) is a (d− 1)-dimensional hyperrectangle for each
z. Define m(z) to be the ((d−1)-dimensional) integral of the intensity function λ(·) over
V(z), that is,

m(z) =
∫

y∈(a2,b2]×···×(ad,bd]
λ(z, y) dy.

Finally, given z ∈ (a1, b1], define the conditional density f (·; z) of the remaining
d − 1 coordinates given that the first coordinate of a point is z as f (y; z) =
λ(z, y1, y2, . . . , yd−1)/m(z) for y ∈ (a2, b2] × (a3, b3] × · · · × (ad, bd]. In the points of
an NHPP with rate function λ, first coordinates z for which m(z) = 0 arise with prob-
ability 0, but to be precise in the case where m(z) = 0, define f (·; z) arbitrarily as that
of a uniform distribution on (a2, b2] × (a3, b3] × · · · × (ad, bd]. Our algorithm is then as
follows.

(1) Generate a realization of an NHPP on the interval (a1, b1] with intensity function
(m(z) : a1 < z ≤ b1), yielding the points Z (1), Z (2), . . . , Z (M) ∈ (a1, b1], where M is
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Poisson distributed with mean
∫

(a1,b1] m(x) dx =
∫

V λ(x) dx = μ(V). These points give
the first coordinates of all points in V.

(2) For each i (i = 1, 2, . . . , M), generate the remaining coordinates (Y1(i),
Y2(i), . . . , Yd−1(i)) according to the density f (·; Z (i)) conditional on Z (i), and set the
ith point X (i) equal to (Z (i), Y1(i), Y2(i), . . . , Yd−1(i)).

NOTE: In step 2 given before, we generate the remaining candidates according to
the (multivariate) conditional density f (·; Z (i)). This can be achieved through a variety
of algorithms depending on the form of f . For example, one might use acceptance-
rejection to generate the remaining (d − 1) components simultaneously, or one might
first generate Y1(i) conditional on Z (i), then Y2(i) conditional on (Z (i), Y1(i)) and so
forth until all remaining components are generated.

To prove that this algorithm is correct, we state and prove two propositions that rely
on standard results in Poisson-process theory. See Chapter 4 of Resnick [1992] for an
excellent introduction to this area.

Our first result proves that step 1 of the algorithm is correct, in the sense that the
set of one-dimensional points obtained by projecting the points of the target NHPP onto
their first coordinate are those of an NHPP with the rate function (m(z) : z ∈ (a1, b1]).
Hence we can generate these coordinates via step 1 of the algorithm, and then generate
the remaining coordinates from their conditional distribution.

PROPOSITION 1. Let {X1(1), X1(2), . . . , X1(M)} be the first coordinates of the points
of the NHPP defined in Section 1 earlier. Then these are the points of an NHPP defined
on the interval (a1, b1] with rate function (m(z) : z ∈ (a1, b1]).

PROOF. Let {X (1), X (2), . . . , X (M)} be the points of the NHPP defined in Sec-
tion 1 before. Let us call this NHPP the target NHPP. Define the mapping g(x) =
g(x1, x2, . . . , xd) = x1 that returns the first coordinate of the point x. Then, from Propo-
sition 4.3.1 of Resnick [1992], the first coordinates

{X1(i), i = 1, 2, . . . , M} = {g(X (1)), g(X (2)), . . . , g(X (M))}
are the points of a new NHPP on (a1, b1] where the expected number of points in
A ⊆ (a1, b1], given by μ1(A), is the expected number of points μ(Ã) of the target NHPP
in

Ã = A × (a2, b2] × (a3, b3] × · · · × (ad, bd],

since μ1 = μ ◦ g−1. But μ(Ã) is given by∫
Ã

λ(x) dx =
∫

A

[∫
(a2,b2]×···×(ad,bd]

λ(x1, x2, . . . , xd)dx2 · · · dxd

]
dx1 =

∫
A

m(x1) dx1,

where we apply Tonelli’s theorem. Hence we have established that the intensity of the
transformed points is (m(z) : a1 < z ≤ b1) as required.

We now complete the proof of correctness with the following result. The key to this
result is Proposition 4.10.1 of Resnick [1992] which, roughly speaking, states that if
one attaches conditionally independent “marks” (extra dimensions) to the points of an
NHPP, then one obtains a new NHPP on an enlarged space.

PROPOSITION 2. The points generated in our algorithm are those of an NHPP with
intensity function λ(·) in V.

PROOF. Let X (1), X (2), . . . , X (M) be the points generated by the algorithm. Step 1
of the algorithm constructs the first coordinates of these points to be those of an NHPP
defined on the interval (a1, b1] with rate function (m(z) : z ∈ (a1, b1]). Step 2 of the
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algorithm “marks” each first-coordinate z with a (d − 1)-dimensional random vector
with density f (·; z). Hence, from Part (b) of Proposition 4.10.1 of Resnick [1992], the
resulting set of points are those of an NHPP on V with intensity ν on V, where

ν(x) = ν(x1, x2, . . . , xd)
= m(x1) f (x2, x3, . . . , xd; x1).

If m(x1) > 0, then

m(x1) f (x2, x3, . . . , xd; x1) = m(x1)
λ(x1, x2, . . . , xd)

m(x1)
= λ(x),

while if m(x1) = 0, then ν(x) = 0. Thus ν(x) = λ(x) except potentially on the set {x ∈ V :
m(x1) = 0}. The intensities ν and λ therefore agree except on a set of μ measure 0, and
this completes the proof.

In the algorithm as presented earlier we generate the first coordinates of each point
via a one-dimensional NHPP generator, and then fill in the remaining coordinates from
the appropriate conditional distribution. One could instead generate a subset of the
coordinates of the points (not necessarily just a single coordinate, and not necessarily
including the first coordinate) as an NHPP, and fill in the remaining coordinates of the
generated points by sampling from the appropriate conditional distribution. Of course,
one would need to be able to sample from the appropriate NHPP and conditional
distributions.

3. ALGORITHMS AND EXAMPLES

In this section, we provide a more explicit implementation of our projection algorithm
using inversion, several illustrative examples, and an extension based on composition.

3.1. Inversion Algorithm

We provide a specialized version of our projection algorithm for generating bivariate
NHPPs based on inversion. We specialize to bivariate NHPPs for clarity, and because
of their ubiquity in applications. We use inversion to generate both the points of the
marginal NHPP and the second coordinates of the points conditional on the first. For
z ∈ (a1, b1], define

�1(z) =
∫

(a1,z]
m(v) dv =

∫
(a1,z]

∫
(a2,b2]

λ(v, y) dy dv

to be the cumulative intensity function of the marginal NHPP. Also, define

F(y; z) =
∫

(a2,y]
f (w; z) dw =

∫
(a2,y] λ(z, w) dw∫

(a2,b2] λ(z, w) dw
(1)

to be the conditional cumulative distribution function of the second coordinate condi-
tional on the first. If the integral in the denominator of (1) is 0, then we arbitrarily
define F(y; z) to be that of a uniform distribution on (a2, b2].

This inversion algorithm can be extended to generate higher-dimensional NHPPs.
One simply replaces the generation of the second coordinate from its conditional dis-
tribution given the first with the successive generation of the jth coordinate given the
first j− 1 coordinates, for j = 2, 3, . . . , d. This assumes, of course, that inversion can be
used with these conditional distributions, which is not always the case.

Using an implementation of the inversion algorithm in S-Plus, we provide two ex-
amples of generating random points of a bivariate NHPP in Figure 1. Figure 1(a)

ACM Transactions on Modeling and Computer Simulation, Vol. 22, No. 3, Article 15, Publication date: August 2012.



15:6 E. A. Saltzman et al.

ALGORITHM 1: Inversion Algorithm in Bivariate Case
s1 ← 0 # initialize variables
k ← 0
repeat {

u1 ← Random(0, 1) # generate first coordinate
s1 ← s1 − ln(u1)
if (s1 ≤ �1(b1)) {

k ← k + 1
X1(k) ← �−1

1 (s1)
u2 ← Random(0, 1) # generate second coordinate
X2(k) ← F−1(u2; X1(k))

}
} until(s1 > �1(b1))
return X (1), X (2), . . . , X (k)

shows a contour plot of the intensity function λ(x1, x2) = 6x2
1x2 of a bivariate NHPP de-

fined on (0, 2]× (0, 2], with darker shading corresponding to higher intensity. Applying
the inversion algorithm, we generate a realization of random points and plot them in
Figure 1(b). Note how points occur more often as the values of x1 and x2 increase, as
predicted in Figure 1(a). Moreover, the theoretical expected number of points in the
region (0, 2] × (0, 2], given by μ(V) = 32, is close to the 35 points generated in this
realization. A series of Monte Carlo simulations yields results that are consistent with
the expected number of points being 32. For one such simulation of n = 10, 000 real-
izations, the sample mean m̂ = 31.98 and the sample variance s2

M = 31.84. Note that
m̂ ≈ s2

M as expected since the number of points m generated in a realization is Poisson
distributed (and hence the theoretical mean and variance are equal). The standard
error of the mean is given by sM/

√
n = 0.0564.

A second example of a bivariate NHPP with intensity function λ(x1, x2) =
10x2/(x1 + 1) is shown in Figures 1(c) and 1(d). From Figure 1(c), we observe that
the intensity decreases with x1, but increases with x2. As shown in Figure 1(d), the
realization generated by inversion reflects this theoretical prediction. Furthermore,
the expected number of points in the region (0, 2] × (0, 2], given by μ(V) = 20 ln 3 ≈ 22,
is close to the 21 points generated in this realization. Once again, a battery of Monte
Carlo simulations yields results that are consistent with the theoretical mean for the
number of points in the region (0, 2]× (0, 2]. For one such simulation of n = 10000 real-
izations, the sample mean m̂ = 21.97 and the sample variance s2

M = 22.00. Once again
m̂ ≈ s2

M, as expected. The standard error of the mean is given by sM/
√

n = 0.0469.
If a constant majorizing function λ∗(x1, x2) = λ(2, 2) = 48 associated with a bivariate

thinning algorithm were used for the first bivariate NHPP, the probability of accepting
a particular pair of observations generated is given by

Pr[accept] =
μ(V)
4 · 48

=
32

192
=

1
6

.

Discarding five out of every six pairs generated might be unacceptable in terms of
execution time. This inefficiency is exacerbated in the case of a higher peak or higher
dimensions.

Now we compare the required computation time of the Inversion Algorithm and
bivariate thinning using a constant majorizing function, that is, λ∗ = sup{λ(x1, x2) :
(x1, x2) ∈ V}, to generate 10,000 realizations in the two-dimensional space U = (1, 3] ×
(1, 3] for a family of intensity functions. In particular, we consider a bivariate extension
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Fig. 1. Generating a realization of a bivariate NHPP using inversion.

of the Weibull distribution proposed by Hougaard [1986]. The Weibull distribution
is widely used in applications of Poisson processes in reliability engineering [Leemis
1995]. Following Hougaard [1986], let the survivor function of the bivariate Weibull
distribution be given by

S(x1, x2) = exp
{− [

(x1/θ1)β1 + (x2/θ2)β2
]}

,

where θ1, θ2, β1, β2, x1, x2 > 0. For simplicity, we will assume that θ1 = θ2 = 1 and
consider only variations in the parameters β1 and β2. Given these restrictions on the
parameter space, the associated intensity function for x1, x2 > 0 is given by (note that
the power law process uses the parametric form of the hazard function for the Weibull
distribution for a nonrepairable item in one dimension with the intensity function for
a repairable item)

λ(x1, x2) = β1β2xβ1−1
1 xβ2−1

2 .

Observe that if β1 = β2 = 1, the bivariate Weibull (power law) intensity function is
constant and hence defines a bivariate HPP with constant intensity λ = λ(x1, x2) = 1.
The bivariate Weibull intensity function is increasing (decreasing) in xi if βi > 0 (βi < 0)
for i = 1, 2. It is important to note that for βi < 0, the bivariate Weibull intensity
function is not defined for xi = 0, i = 1, 2. Hence, we restrict our attention to the
two-dimensional space U.

In Table I, we summarize the computation time required to generate 10,000 realiza-
tions for the two algorithms for several specifications of the bivariate Weibull intensity
function. The relative performance of the algorithms is influenced by two key factors:
the expected number of points generated in U and the peakedness of the intensity
function. In general, the expected number of points generated in U, denoted E[X U],
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Table I. Comparing the Computation Time of the Inversion Algorithm and Bivariate
Thinning (10,000 Realizations in the Space U = (1, 3] × (1, 3])

(β1, β2) E
[
X U]

Pr[A] Inv. (sec.) Thinning (sec.) Reduction
(3, 3) 676 0.23 461.03 1871.92 75.4%
(3, 2) 208 0.32 138.73 345.53 59.9%
(2, 2) 64 0.44 42.08 75.11 44.0%
(3, 1) 52 0.48 34.01 55.2 38.4%

(2, 0.25) 2.53 0.42 2.49 3.67 32.2%

(1.5, 1.5) 17.61 0.65 12.25 14.46 15.3%
(2, 1) 16 0.67 10.80 12.70 15.0%

(1.5, 0.5) 3.07 0.59 2.78 3.15 11.7%

(0.75, 0.75) 1.64 0.73 1.63 1.81 9.9%

(0.5, 0.5) 0.54 0.54 1.14 1.20 5.0%
(1, 1) 4 1 2.82 2.67 −5.6%

(0.5, 0.25) 0.23 0.46 0.91 0.83 −9.6%

(0.25, 0.25) 0.10 0.40 0.80 0.63 −27.0%

increases with both β1 and β2, as shown in the second column of Table I. The main loop
of the Inversion Algorithm will execute, on average, E[X U] times. By contrast, the
main loop of the bivariate thinning algorithm will execute, on average, E[X U]/ Pr[A]
times, where A is the event that a point generated in the bivariate HPP with rate λ∗
is accepted. Since Pr[A] ≤ 1, the main loop of the thinning algorithm must execute at
least as many times as the main loop of the Inversion Algorithm. As opposed to the
expected number of points generated in U, the peakedness of the intensity function
decreases as β1 and β2 approach 1 and then increases as β1 and β2 exceed 1. To give a
practical measure of the peakedness of the intensity function, we display Pr[A] in the
third column of Table I.

As Table I indicates, the performance of the Inversion Algorithm is far superior if the
number of points generated in U is large and the intensity function is highly peaked.
For β1 = β2 = 3, the Inversion Algorithm achieves a computation time reduction of over
75%. As β1 and β2 are decreased towards 1, the advantage of the Inversion Algorithm
is gradually reduced. Once β1 and β2 begin to decrease below 1, the advantage of the
Inversion Algorithm begins to widen again as Pr[A] decreases. However, as β1 and β2
get closer to 0, thinning becomes slightly more efficient than the Inversion Algorithm.
Each loop of the Inversion Algorithm requires a few more computations than bivariate
thinning. Hence, thinning may be faster if E

[
X U

]
is very small, as is the case for the

last two (β1, β2)-pairs in Table I.
We end this subsection with generating a trivariate NHPP, which extends the bi-

variate notation developed thus far. Such a situation might arise in the following
settings. The points in the process are landfalls of hurricanes of category 3 or higher.
The first dimension corresponds to the time of landfall (hence a1 and b1 denote the be-
ginning and ending times of hurricane season). The second dimension corresponds to
the position on the coastline where landfall occurs (stretched in a linear fashion from
the furthest possible landfall position south a2 to the furthest possible landfall position
north b2). The third dimension is the maximum windspeed at landfall (hence a3 is the
lowest possible windspeed for a category 3 hurricane and b3 is ∞). As a second exam-
ple, x1 might be the time of a 911 emergency call, and x2 and x3 might be the longitude
and latitude of the location of the call. An example illustrating the generation of a
realization of a trivariate process follows.
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Table II. Constant Values

j a1 j a2 j

0 1062882 1210000
1 157464 105600
2 7776 2304
3 128 •

Consider the intensity function with d = 3 given by

λ(x1, x2, x3) = x1 + 2x2
2 + 3x3

3

defined on the rectangular region (0, 1] × (0, 2] × (0, 3]. The cumulative intensity func-
tion is

�(x1, x2, x3) =
∫ x1

0

∫ x2

0

∫ x3

0

(
t1 + 2t22 + 3t33

)
dt3dt2dt1

=
1
2

x2
1x2x3 +

2
3

x1x3
2x3 +

3
4

x1x2x4
3,

so the expected number of points is μ(V) = �(1, 2, 3) = 281/2. The cumulative intensity
function of the marginal NHPP of the first coordinate is

�1(z) =
∫ z

0

∫ 2

0

∫ 3

0

(
t1 + 2t22 + 3t33

)
dt3dt2dt1 = 3z2 +

275
2

z

for 0 < z < 1. The inverse cumulative intensity function of the marginal NHPP is

�−1
1 (s1) =

−275 +
√

75625 + 48s1

12

for 0 < s1 < 281/2. This function will be used to generate the first coordinate
of the process. In order to generate the second and third coordinates of the pro-
cess, it is necessary to find the associated conditional distributions. The conditional
cumulative distribution function of the second coordinate conditioned on the first
coordinate is

F2|1(y; z) =

∫
(a3,b3]

∫
(a2,y] λ(z, t2, t3)dt2dt3∫

(a3,b3]

∫
(a2,b2] λ(z, t2, t3)dt2dt3

=

∫ 3
0

∫ y
0 λ(z, t2, t3)dt2dt3∫ 3

0

∫ 2
0 λ(z, t2, t3)dt2dt3

=
3yz + 2y3 + 243y/4

6z + 275/2

for 0 < y < 2, which has inverse

F−1
2|1(u2; z) =

c1/3

4
− 2z + 81/2

c1/3 ,

where c = 2200u2 + 96u2z + 2
[(∑3

j=0 a1 jz j
)

+ u2
2

(∑2
j=0 a2 jz j

)]1/2
for 0 < u2 < 1, and the

a1 j and a2 j values are given in Table II. Finally, the conditional cumulative distribution
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function of the third coordinate conditioned on the values of the first and second coor-
dinates is

F3|1,2(x; z, y) =

∫
(a3,x] λ(z, y, t3)dt3∫

(a3,b3] λ(z, y, t3)dt3

=

∫ x
0 λ(z, y, t3)dt3∫ 3
0 λ(z, y, t3)dt3

=
x(4z + 8y2 + 3x3)
3(4z + 8y2 + 81)

for 0 < x < 3. When this function is equated to u3 in order to find the conditional
inverse cumulative distribution function, the resulting equation is the quartic

3x4 + (4z + 8y2)x − 3u3(4z + 8y2 + 81) = 0.

This can be solved exactly using Ferrari’s method resulting in

F−1
3|1,2(u3; z, y) =

√
2

2

√
4z + 8y2

18c1/3
1 − 6u3

(
4z + 8y2 + 81

)
/c1/3

1

− y

−1
6

√
18c1/3

1 − 6u3
(
4z + 8y2 + 81

)
/c1/3

1

for 0 < u3 < 1, where

c1 =
(
4z + 8y2)2

/144 +
(
z4 + 8z3y2 + 24z2y4 + 32zy6 + 16y8 + 192u3

3z3+

1152u3
3z2y2 + 11664u3

3z2 + 2304u3
3zy4 + 46656u3

3zy2 + 236196u3
3z +

1536u3
3y6 + 46656u3

3y4 + 472392u3
3y2 + 1594323u3

3

)1/2
.

The speed of evaluating these expressions should be weighed against numerically
inverting the conditional cumulative distribution function. Using these functions, the
inversion algorithm is easily modified as shown next.

ALGORITHM 2: Inversion Algorithm in Trivariate Case
s1 ← 0 # initialize variables
k ← 0
repeat {

u1 ← Random(0, 1) # generate first coordinate
s1 ← s1 − ln(u1)
if (s1 ≤ �1(b1)) {

k ← k + 1
X1(k) ← �−1

1 (s1)
u2 ← Random(0, 1) # generate second coordinate
X2(k) ← F−1

2|1(u2; X1(k))
u3 ← Random(0, 1) # generate third coordinate
X3(k) ← F−1

3|1,2(u3; X1(k), X2(k))
}

} until(s1 > �1(b1))
return X (1), X (2), . . . , X (k)
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If the cumulative marginal intensity function and the conditional cumulative distri-
bution functions do not have closed-form inverses, then using the inversion algorithm
may be problematic. For these cases, composition or one-dimensional thinning could
be used to generate the marginal NHPP while composition or the acceptance-rejection
method could be applied to generate the other coordinate. Another alternative is to
use composition at the level of the multivariate NHPP, an approach that we discuss
next.

3.2. Composition Algorithm

In some instances, composition may offer a solution to the “invertibility problem” by
employing a divide-and-conquer strategy. Sometimes an intensity function λ(·) can be
written as the sum of intensity functions

∑k
j=1 λ j(·). For instance, in reliability appli-

cations, there are often competing independent risks that contribute to the occurrence
of part failures or system failures [Leemis 1995]. Instead of applying inversion to an
NHPP N with intensity function λ(·), the composition algorithm generates indepen-
dent realizations for the k individual NHPPs Nj with intensity function λ j(·) and then
superimposes them to form a realization for N. (A formal definition of independent
NHPPs can be obtained via the theory in Section 4.7 of Resnick [1992], but would rep-
resent something of a distraction. Suffice it to say that independent NHPPs are those
that arise when generated from independent streams of random numbers.) The (mul-
tivariate) composition algorithm is analogous to the univariate composition algorithm
described in Devroye [1986] and is simply employed to independently generate points
from each NHPP in turn and then returns the union of the points generated. Superpo-
sition for multivariate NHPPs is possible due to the following well-known result; see,
for example, Exercise 4.44 on page 363 of Resnick [1992]. We provide a proof for clar-
ity, and to further demonstrate the elegance of the point-process definition of a Poisson
process that we have adopted.

THEOREM 3.1. Let N1, N2, . . . , Nk be independent multivariate NHPPs with inten-
sity functions λ1(·), λ2(·), . . . , λk(·) respectively. Then their superposition N =

∑k
i=1 Ni is

also a multivariate NHPP with intensity function
∑k

i=1 λi(·).
PROOF. For any set A, N(A) =

∑k
i=1 Ni(A) is Poisson distributed with mean μ(A) =∑d

i=1 μi(A), where μi(A) =
∫

A λi(x) dx, because the sum of independent Poisson random
variables is also Poisson distributed. The second property (independence in disjoint
regions) is immediate.

Figure 2 demonstrates the use of the composition algorithm for the bivariate NHPP
N defined on [0, 2] × [0, 2] with intensity function λ(x1, x2) = 6x2

1x2 + 10x2/(x1 + 1). The
appropriate cumulative intensity and distribution functions do not have closed-form
inverses, so inversion is ill-suited for this problem. Random points can be generated
in a straightforward fashion, however, using the composition algorithm by associating
N1 with intensity function λ1(x1, x2) = 6x2

1x2 and N2 with intensity function λ2(x1, x2) =
10x2/(x1 + 1). A realization of the composition algorithm is shown in Figure 2(b). The
theoretical expected number of points, given by μ(V) = 32 + 20 ln 3 ≈ 54, is close to the
57 points generated in the region (0, 2] × (0, 2]. In addition, the clustering of points in
the realization accords closely with the intensity function contour plot in Figure 2(a).

As our example has demonstrated, the composition algorithm applies the inversion
algorithm to m = 2 (in this case) individual bivariate NHPPs N1, N2 that are super-
imposed to generate a realization of the bivariate NHPP N1 + N2. Consequently, the
“invertibility problem” associated with the inversion algorithm can be overcome in this
example in a straightforward manner.
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Fig. 2. Generating a realization of a bivariate NHPP using composition.

4. DISCUSSION

This article has presented a potentially efficient approach for generating realizations
of a multivariate NHPP. The multivariate extension of the thinning algorithm for
generating a realization of points of a multivariate NHPP can become highly ineffi-
cient as the dimensionality of the problem is increased, particularly if the intensity
function is highly peaked. To overcome this difficulty, we transform the complex mul-
tivariate process generation problem to a sequence of smaller and relatively simple
one-dimensional process generation problems. First, one generates the first coordi-
nate of each point of the multivariate NHPP using the marginal NHPP of that coor-
dinate. The techniques of inversion, composition, or one-dimensional thinning can be
employed. By conditioning on the first coordinate generated, one can then simultane-
ously or successively generate the remaining coordinates using their conditional distri-
butions. Inversion, composition, or acceptance-rejection techniques may all be used in
this process. We also discussed the possibility of applying composition at the level of the
multivariate NHPP.

We restricted attention to a hyperrectangle, but one can generalize this approach
to regions with other shapes, either by enclosing other shapes in a hyperrectangle,
defining the intensity to be 0 outside the region of interest and employing the algo-
rithm herein, or by breaking down complex regions into simpler regions and employing
composition.

We restricted attention to projections along the coordinate axes, but mappings other
than projections could also be used. For example, if the intensity function has elliptical
contours, then one can first generate a one-dimensional NHPP, the points of which
represent the contours that contain points, and then conditional on those contours
generate a single point on each contour that is uniformly distributed along the contour.
In this sense, the algorithm outlined herein is really a large family of algorithms that
can be tailored to particular problem instances.
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