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Abstract: For various parameter combinations, the logistic–exponential survival distribution belongs to four common classes of
survival distributions: increasing failure rate, decreasing failure rate, bathtub-shaped failure rate, and upside-down bathtub-shaped
failure rate. Graphical comparison of this new distribution with other common survival distributions is seen in a plot of the skewness
versus the coefficient of variation. The distribution can be used as a survival model or as a device to determine the distribution
class from which a particular data set is drawn. As the three-parameter version is less mathematically tractable, our major results
concern the two-parameter version. Boundaries for the maximum likelihood estimators of the parameters are derived in this article.
Also, a fixed-point method to find the maximum likelihood estimators for complete and censored data sets has been developed.
The two-parameter and the three-parameter versions of the logistic–exponential distribution are applied to two real-life data sets.
© 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 252–264, 2008
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1. INTRODUCTION

A unifying survival model that encompasses the four
classes of IFR (Increasing Failure Rate), DFR (Decreas-
ing Failure Rate), BT (Bathtub-Shaped Failure Rate), and
UBT (Upside-Down Bathtub-Shaped Failure Rate) in a sin-
gle model would be useful in survival analysis. Such a
model would provide considerable flexibility for fitting a
wide variety of lifetime data sets. Such a model might also
be used to determine the distribution class from which the
data is drawn, by establishing confidence regions over its
parameters. The distribution presented here, known as the
logistic–exponential distribution, satisfies these criteria.

There are several approaches for developing flexible sur-
vival models. First, one can create systems of distributions,
such as the Burr, Johnson, and Pearson systems. These sys-
tems are described in Johnson et al. [11, pp. 15–63], along
with references to original and subsequent incremental work.
Second, competing risks models (David and Moeschberger
[7], Crowder [5], Pintlie [16]) can be used to combine popular
parametric models by assuming that the lifetime of inter-
est is the minimum of the lifetimes associated with several
risks that are competing for the lifetime of the item. This
approach can be generalized from a series arrangement of
the risks to any arrangement of the risks that is consistent
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with the arrangement of components in a coherent system.
Third, finite mixtures (Everitt and Hand [8]; McLachlan and
Peel [13]) can be used to blend several parametric models
into a single, more flexible model. Fourth, a new paramet-
ric model, such as the IDB (Increasing, Decreasing, Bathtub)
model suggested by Hjorth [10] that can belong to the IFR,
DFR, and BT distribution classes, can be formulated, and
probabilistic and statistical properties of the model can be
derived. It is the fourth approach that is taken in this article.

Let T be a positive random variable. Consider first the
survivor function for the two-parameter case with a positive
shape parameter κ and a positive scale parameter λ:

S(t) = P(T ≥ t) = 1

1 + (eλt − 1)κ
t ≥ 0.

This survival function resembles the log logistic survival
function with the second term of the denominator being
changed in its base to an exponential function, which is why
we call it “logistic–exponential.”1 The probability density

1 The survivor function for the log logistic distribution is S(t) =
(1 + (λt))−κ for t ≥ 0. Tadikamalla and Johnson [17] describe
transformations of a standard log logistic random variable useful for
modeling. This survivor function also bears some resemblance to
the one-parameter Burr Type II distribution given in Burr [2] which
has survivor function S(t) = 1 − (1 + e−t )−κ for −∞ < t < ∞
and the exponentiated Weibull distribution [15] which has survivor
function S(t) = 1 − (1 − e−(λt)κ )θ for t ≥ 0.
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function for the logistic–exponential distribution is

f (t) = −S ′(t) = λκ(eλt − 1)κ−1eλt

(1 + (eλt − 1)κ)2
t ≥ 0

and the hazard function is

h(t) = f (t)

S(t)
= λκeλt (eλt − 1)κ−1

1 + (eλt − 1)κ
t ≥ 0,

which is used to determine the distribution classes that can be
assumed by this parametric model. The distribution reduces
to an exponential distribution when κ = 1, which belongs
to both IFR and DFR classes. The distribution is in the BT
class when 0 < κ < 1, and in the UBT class when κ > 1.
Interestingly enough, in both the BT and UBT cases, the haz-
ard function achieves its extreme point (minimum in the BT
case and maximum in the UBT case) at t = ln(x(κ) + 1)/λ,
where x(κ) is the sole positive root of κx − xκ = 1 − κ .
More details concerning this root are given in Section 2. To
the best of our knowledge, this survival distribution is unique
in that it is the only two-parameter distribution that includes
all four distribution classes as special cases.

As shown subsequently, this two-parameter case might
not provide enough flexibility for modeling empirical data.
Thus, we introduce a third parameter θ ≥ 0 (which shifts
the distribution to the left, followed by a truncation at zero
and a rescaling), making it a full-fledged unifier of the four
distribution classes.2 The survivor function is

S(t) = 1 + (eλθ − 1)κ

1 + (eλ(t+θ) − 1)κ
t ≥ 0; λ > 0, κ > 0, θ ≥ 0.

The third parameter shifts the two-parameter hazard curve
to the left, providing a wider variety of models in the IFR,
DFR, BT, and UBT classes. Figure 1 illustrates the various
cases. The graph shows the classes of logistic–exponential
distributions by their three parameters: the horizontal axis is
κ , and the vertical axis is λθ ; the first quadrant is divided
into four regions by a vertical line at κ = 1 and a monoto-
nically decreasing curve, with each region corresponding to
the class as labeled in the graph. The equation of the monot-
one decreasing curve is λθ = ln(x(κ) + 1), thus is totally
determined by κ , and has a vertical asymptote at zero.

The derivation of the decreasing curve in Fig. 1 is as fol-
lows. Since the third parameter θ results in a shifting of the

2 Although the two-parameter case includes all four of the distribu-
tion classes, the IFR and DFR classes are restricted to a single value
of the shape parameter, κ = 1, corresponding to a constant haz-
ard function. Therefore a modeler should not use the two-parameter
logistic–exponential distribution, for example, to fit a data set known
to come from a population with a monotone increasing hazard func-
tion. The three-parameter model would be an appropriate candidate
model in that case.

Figure 1. Distribution classes for the three-parameter logistic–
exponential distribution illustrated in the parameter space.

hazard function from the two-parameter case, once it passes
the extreme point of the hazard function, the UBT shape will
only have its decreasing tail remaining, thus becoming a DFR
shape, and similarly BT will become an IFR. So consider the
hazard function of the two-parameter model that is the spe-
cial case when the third parameter θ is zero. All that needs
to be done is to find out the critical point of the derivative of
the hazard function:

h′(t) = λ2κ(eλt − 1)κ−2(κeλt − 1)eλt

1 + (eλt − 1)κ

−
(

λκ(eλt − 1)κ−1eλt

1 + (eλt − 1)κ

)2

= 0.

As expected, there is a unique positive root for the derivative
of the hazard function when κ �= 1, and that root is found to
be tc = ln(x(κ) + 1)/λ.

2. PROBABILISTIC PROPERTIES

The logistic–exponential distribution has several useful
probabilistic properties for lifetime modeling. Unlike most
distributions in the BT and UBT classes, the logistic–
exponential distribution enjoys closed-form density, hazard,
cumulative hazard, and survival functions. The moments are
finite, although they cannot be expressed in closed form.
Some asymptotic results on moments are mentioned below
and discussed in more detail in Appendix A.

The distribution classes for the three-parameter version of
the logistic–exponential distribution and some probabilistic
properties are listed below:

• The distribution is in the BT class when 0 < κ < 1
and λθ < ln(x(κ) + 1). The minimum of the hazard
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Figure 2. Hazard functions in the IFR and BT classes with
κ = 1/2 and λ = 1.

function occurs at ln(x(κ) + 1)/λ − θ . This case is
illustrated in Fig. 2 for κ = 1/2, λ = 1, and θ = 1/2.
The minimal hazard is achieved at tc − θ ∼= 1.421.

• The distribution is in the IFR class when 0 < κ < 1
and λθ ≥ ln(x(κ) + 1). This case is illustrated in
Fig. 2 for κ = 1/2, λ = 1, and θ = 2.

• The distribution is in the UBT class when κ > 1
and λθ < ln(x(κ) + 1). The maximum of the hazard
function occurs at ln(x(κ) + 1)/λ − θ . This case is
illustrated in Fig. 3 for κ = 5, λ = 1, and θ = 0 (the
two-parameter case). The maximal hazard is achieved
at tc − θ ∼= 0.9748.

• The distribution is in the DFR class when κ > 1 and
λθ ≥ ln(x(κ) + 1). This case is illustrated in Fig. 3
for κ = 5, λ = 1, and θ = 1.

• In the trivial case of κ = 1, the logistic–exponential
distribution collapses to the exponential distribution,
which is in both the IFR and DFR classes.

• The distribution has exponential(κλ) right-hand tails,
i.e., limt→∞ h(t) = λκ . (The exponential distribution
has a constant hazard function.) All hazard functions
have horizontal asymptotes at λκ , which implies that
the distribution behaves like an exponential distribu-
tion for large t . The only other widely-used survival
model with exponential tails is the gamma distrib-
ution. On the other hand, when t approaches zero,
eλt − 1 ≈ λt , thus the distribution behaves like a
log logistic distribution around t = 0. These prop-
erties are incorporated into our name for the new
distribution.

• The pth fractile of the distribution is:

tp = 1

λ
ln

(
1 +

(
(eλθ − 1)κ + p

1 − p

)1/κ
)

− θ .

• Random variates can be generated via inversion by:

T ← 1

λ
ln

(
1 +

(
(eλθ − 1)κ + U

1 − U

)1/κ
)

− θ ,

where U ∼ U(0, 1), yielding an efficient, synchro-
nized, and monotone variate generation algorithm.

• When 0 < κ < 1 and θ = 0, both the probability den-
sity function and the hazard function have a vertical
asymptote at t = 0.

• All moments exist for this distribution, due to its
exponential right-hand tail, although moments that
can be expressed in closed-form might not be avail-
able. Some asymptotic results exist, however, for the
two-parameter case:

lim
κ→∞ E[T n] =

(
ln 2

λ

)n

,

lim
κ↓0

(λκ)nE[T n] =
∫ ∞

0

nzn−1

ez + 1
dz,

for any positive integer n. These results will be used
to construct a plot described next. See Appendix A
for more detail on the asymptotic properties of the
moments.

• To compare this new distribution with other
commonly-known distributions, the chart from Cox
and Oakes [4, p. 27] and Meeker and Escobar [14, p.
110] for the two-parameter logistic–exponential is
drawn in Fig. 4 for the log normal, log logistic,
Weibull, and gamma distributions. The horizontal axis
is the coefficient of variation γ1 = σ/µ and the ver-
tical axis is the skewness γ2 = E[(T − µ)3]/σ 3. The

Figure 3. Hazard functions in the DFR and UBT classes with
κ = 5 and λ = 1.
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Figure 4. Coefficient of variation γ1 versus skewness γ2 for some
two-parameter survival models.

curve for the two-parameter logistic–exponential has
a few unique characteristics relative to the others plot-
ted in the figure. First, it is the only curve that is
bounded. Second, it is the only curve that achieves
a maximum in the (γ1, γ2) plane, which occurs at
γ1

∼= 1.39. Beginning at (0, 0) on the graph (the case
as κ → ∞), the curve closely approximates that of the
UBT log normal distribution, although their concavi-
ties differ. After passing through the exponential case
of (1, 2), which is the IFR/DFR case, the BT region of
the curve continues into areas of the (γ1, γ2) plane not
covered by the other distributions. The curve achieves
its maximum of γ2

∼= 2.14 at γ1
∼= 1.39, then declines

and finally ends at (γ1, γ2) ∼= (1.5568, 2.1126), which
is the limiting case as κ ↓ 0. These interesting fea-
tures of the curve clearly distinguish the logistic–
exponential distribution from the other popular sur-
vival distributions plotted in Fig. 4. The fact that the
curve associated with the logistic–exponential distri-
bution covers territory that is distinct from the other
distributions is useful for modeling. Plotting (γ̂1, γ̂2)

in Fig. 4 for a particular data set can be used for model
discrimination.

• In a similar fashion, the skewness γ2 can be plot-
ted on the horizontal axis versus the kurtosis γ3 =
E[(T −µ)4]/σ 4 on the vertical axis for the same two-
parameter survival distributions, as shown in Fig. 5.
Beginning at (0, 4.2) on the graph (the case as κ →
∞), the curve associated with the UBT class proceeds
to the κ = 1 exponential special case (IFR/DFR) at
(2, 9) and ends in the BT class (the case as κ ↓ 0)
at (γ2, γ3) ∼= (2.1126, 8.6876) (see Appendix A.2 for
details). Since lower-order moments are more signifi-
cant, we recommend the use of the (γ1, γ2)graph given

in Fig. 4 for model discrimination. Figure 5 is plot-
ted upside down “in accordance to well-established
convention” [11, p. 23].

3. STATISTICAL INFERENCE

We fit two data sets that could have come from different
classes of distributions. Both complete and right-censored
data sets will be considered. We first present a complete data
set using a reliability data set that has been suspected to be in
the UBT class, then a right-censored data set from survival
analysis illustrates the BT case. Comparison with other distri-
butions will be provided when possible. Numerical methods
are required to determine the maximum likelihood estima-
tors (MLEs), which is typical of most two-parameter lifetime
models.

3.1. Complete Data Sets: Two-Parameter Model

We begin with the case of fitting the two-parameter model
to uncensored datasets. Let t1, t2, . . . , tn denote the failure
times. The likelihood function for the two-parameter model
is

L(κ , λ) =
n∏

i=1

f (ti , κ , λ) =
n∏

i=1

λκ(eλti − 1)κ−1eλti

(1 + (eλti − 1)κ)2
.

The log likelihood function is

ln L(κ , λ) =
n∑

i=1

(ln λ + ln κ + (κ − 1) ln(eλti − 1)

+ λti − 2 ln(1 + (eλti − 1)κ)

Figure 5. Skewness γ2 versus kurtosis γ3 for some two-parameter
survival models.
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and the partial derivatives of the log likelihood function are

∂ ln L(κ , λ)

∂κ
= n

κ
+

n∑
i=1

ln(eλti − 1)

− 2
n∑

i=1

(eλti − 1)κ ln(eλti − 1)

1 + (eλti − 1)κ

∂ ln L(κ , λ)

∂λ
= n

λ
+

n∑
i=1

(κ − 1)tie
λti

eλti − 1
+

n∑
i=1

ti

− 2
n∑

i=1

κ(eλti − 1)κ−1tie
λti

1 + (eλti − 1)κ
.

Equating these partial derivatives to zero does not yield
closed-form solutions for the MLEs and thus a numeri-
cal method is used for solving these equations simulta-
neously. The initial estimates for the numerical method
can be acquired through the method of fractiles (Glen and
Leemis [9]), as shown subsequently, since the moments of
the distribution cannot be expressed in closed form.

The second-order differential (Hessian) matrix of the log
likelihood function evaluated at the MLEs is called the
observed information matrix, denoted as O(κ̂ , λ̂), where
(κ̂ , λ̂) is the MLE vector. For many parametric distributions, it
is a consistent estimator of the Fisher information matrix (Cox
and Oakes [4]). Information matrices can be used to obtain
asymptotic confidence intervals and perform hypothesis tests
with respect to the MLEs. In practice, the underlying infor-
mation matrices are often unavailable, and thus the observed
information matrices are used instead:

o
(
κ̂ , λ̂

)
=

(−∂2 ln L(κ ,λ)

∂κ2
−∂2∈L(κ ,λ)

∂κ∂λ−∂2 ln L(κ ,λ)

∂λ∂κ

−∂2 ln L(κ ,λ)

∂λ2

)
κ=κ̂ ,λ=λ̂

.

We will use the observed information matrix to derive
an asymptotic confidence interval for the MLEs of the
logistic–exponential distribution.

The first empirical data set is Lieblein and Zelen’s [12]
n = 23 ball bearing failure times (each measurement in 106

revolutions) given in Table 1, which has been also consid-
ered more recently by Caroni [3]. For this complete data
set, Crowder et al. [6, p. 63] conjectured that distributions
in the UBT class may fit the ball bearing data better than
distributions in the IFR class.

Table 1. The ball bearing failure times.

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40

Experimentation with the three-parameter model has
shown that the location parameter θ does not have a statis-
tically significant difference from zero, which indicates that
fitting the two-parameter model is reasonable. Thus we con-
duct the analysis of this data set using the two-parameter
model. The three-parameter model will be demonstrated on
the second data set for BT distributions, where the location
would seldom be zero due to the vertical asymptote on the
density and hazard functions at t = 0, which is unlikely to
occur in real-world survival distributions. However, in the
analysis of life times of some electronic parts, a vertical
asymptote at zero might be desirable.

As mentioned earlier, the initial estimates for the MLEs
could be found by the method of fractiles. From the empiri-
cal survivor function for the ball bearing data set, the 5/23rd
fractile is 42.12, and the 19/23rd fractile is 105.12. (Choos-
ing fractiles near the 25th and 75th percentiles is a reasonable
way to assure the numerical stability of the initial estimates.)
Using the closed-form expression for tp with θ = 0, the pth
fractile of the distribution is:

tp = 1

λ
ln

(
1 +

(
p

1 − p

)1/κ
)

.

Thus the simultaneous solution of

42.12 = 1

λ
ln

(
1 +

(
5

18

)1/κ
)

,

105.12 = 1

λ
ln

(
1 +

(
19

4

)1/κ
)

,

yields the initial estimates. Using the Maple numerical
solver fsolve() yields the following initial estimators: κ̂0 =
2.2023, λ̂0 = 0.01054. These initial values are then fed back
into fsolve() to solve for the MLEs:

κ̂ = 2.366 and λ̂ = 0.01059.

The same MLE values are obtained using the fixed-point
method we have developed for determining the MLEs. The
calculation of the initial values is straightforward, inspired by
the derivation of some bounds on the MLEs. Appendix B con-
tains the derivation of the bounds on the MLEs and Appendix
C contains details on the fixed-point method, as well as how
the initial values are calculated. The fitted survival curve and
the empirical survival function are plotted in Fig. 6, where
the fitted survival curve for the Weibull distribution is also
provided for the purpose of comparison.

The observed information matrix can be calculated from
the MLEs for the ball bearing data set:

O(κ̂ , λ̂) =
(

5.997 362.4
362.4 772500

)
.
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Figure 6. Fitted Weibull, fitted logistic–exponential, and empiri-
cal survivor functions for the ball bearing failure times.

The inverse of this matrix is an asymptotic estimate of the
variance–covariance matrix of the MLEs:

O−1(κ̂ , λ̂) =
(

0.1716152301 −0.0000805092
−0.0000805092 0.0000013323

)
.

Thus, taking the square root of those diagonal entries allows
for the asymptotic confidence intervals for κ and λ. The 95%
intervals in this case are:

1.685 < κ < 3.048 and 0.008696 < λ < 0.01249.

The asymptotic confidence interval for κ lies wholly above
1, leading to the conclusion that the data set is best fit with
a UBT distribution. A more graphical approach is to use the
likelihood ratio (Cox and Oakes [4]) to draw the confidence
region of the parameters. In Fig. 7, the 90%, 95%, and 98%
confidence regions are sketched. It is obvious that all of them
lie to the right of the critical line κ = 1, which strongly sup-
ports the use of an UBT survival model. The slight negative
correlation between the parameters apparent from the confi-
dence regions is consistent with the correlation between the
data values calculated to be −0.168 from the inverse of the
observed information matrix.

Further study for the ball bearing data set has been carried
out using various survival models to see how the new dis-
tribution performs. Table 2 gives the Kolmogorov–Smirnov
(K–S) goodness-of-fit statistic D23 at their MLE values for
several common survival models, in increasing order. The
logistic–exponential distribution fell in the middle, with a
goodness-of-fit statistic of 0.109, slightly larger than the
Inverse Gaussian distribution. It can be observed that all UBT
models fit slightly better than IFR models, further support-
ing Crowder et al.’s suspicion. Although the two-parameter

Figure 7. Maximum likelihood estimator and 90%, 95%, and 98%
confidence regions for the ball bearing failure times.

logistic–exponential distribution does not dominate the other
UBT models in terms of fit for this particular data set, the
territory mapped out by the logistic–exponential distribution
in Fig. 4 indicates that it will dominate the others for many
lifetime data sets.

It is natural to consider the parameters that minimize the
K–S test statistic, which seems to be a more direct approach.
Research has been carried out in this direction recently by
Weber et al. [18]. Their experiments demonstrated that the
effectiveness of this approach is comparable to that of the
long-established MLE approach. Table 3 lists another order-
ing of models fitted to the same ball bearing data this way.
Again, we conclude that UBT models fit better than the IFR
models, adding further evidence to support Crowder et al.’s
conjecture.

3.2. Right-Censored Data Sets: Three-Parameter
Model

The second dataset comes from biostatistics (Burns [1])
when experiments were carried out as human subjects were
placed in a cubical cabin mounted on a hydraulic piston and

Table 2. K–S goodness-of-fit statistics for the ball bearing failure
times at their MLEs.

Distribution Class D23

Log normal UBT 0.090
Arctangent UBT 0.093
Log logistic UBT 0.094
Inverse Gaussian UBT 0.099
Logistic–Exponential UBT 0.109
Gamma IFR 0.123
Weibull IFR 0.152
Exponential IFR 0.301
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Table 3. K–S goodness-of-fit statistics for the ball bearing failure
times at minimum K–S parameter estimates.

Model D23 Scale Shape

Log Logistic 0.0808 0.0159 3.176
Log normal 0.0813 4.1400 0.517
Logistic–Exponential 0.0885 0.0109 2.284
Gamma 0.0895 17.16 4.032
Weibull 0.0987 0.0132 2.234
Exponential 0.2204 96.10 –

subjected to vertical motion for two hours. Table 4 gives the
length of time (in minutes) until each subject first vomited.
Censoring can occur in one of two ways: a subject may request
anearlystop,whileseveralotherssurvivedthewhole testwith-
out vomiting. Although two groups of subjects were put on
test under different motion conditions, here we only used the
larger group subjected to the more severe conditions. For our
analysis here, we assume a random censoring scheme, which
may not be reasonable due to the self-censoring present in this
data set (an option exercised by the individual at six minutes).

To fit this data to the three-parameter logistic–exponential
distribution, let t1, t2, . . . , tr be the vomiting times and
c1, c2, . . . , cm be the right censoring times. Maximum like-
lihood estimation is now based on the likelihood function

L(κ , λ, θ) =
r∏

i=1

f (ti , κ , λ, θ)

m∏
i=1

S(ci , κ , λ, θ)

=
r∏

i=1

λκ(1 + (eλθ − 1)κ)(eλ(ti+θ) − 1)κ−1eλ(ti+θ)

(1 + (eλ(ti+θ) − 1)κ)2

×
m∏

i=1

1 + (eλθ − 1)κ

1 + (eλ(ci+θ) − 1)κ
.

To get initial estimates for the three parameters, three frac-
tiles are taken to build three equations by the fractile formula
given as a property in Section 2. The same numerical method
is used to simultaneously solve for the initial estimates, yield-
ing roughly κ̂0 = 0.4, λ̂0 = 0.01, and θ̂0 = 6. Solving for the
MLEs of the parameters numerically yields

κ̂ = 0.133344, λ̂ = 0.06557, θ̂ = 14.5013,

and a K–S statistic of 0.120. The hazard function at the MLEs
is plotted in Fig. 8. The hazard function has the BT shape,

Table 4. Time to vomit data set (in minutes; the ∗’s denote
right-censored observations).

5 6∗ 11 11 13 24 63
65 69 69 79 82 82 102

115 120∗ 120∗ 120∗ 120∗ 120∗ 120∗
120∗ 120∗ 120∗ 120∗ 120∗ 120∗ 120∗

Figure 8. Hazard function of the fitted three-parameter logistic–
exponential distribution.

indicating that, at the beginning, the human body that sur-
vives the first few minutes of vertical motion rapidly adjusts
to the cyclical motion conditions, thus lowering the hazard
function considerably. As time passes, however, effects accu-
mulate, and the body begins to tire and the hazard function
increases.

4. CONCLUSIONS AND FURTHER WORK

The logistic–exponential distribution enjoys the unique
property of traversing all of the four commonly seen classes of
distributions, i.e., IFR, DFR, BT, and UBT. It has been shown
that the survival function and its inverse can be expressed in
closed form. Moments of any degree exist, although they
cannot be expressed in closed form. This distribution gives
reliability engineers and biostatisticians another option for
modeling lifetimes.

The distribution can also be used to determine the class
from which a particular data set has been drawn. But to
automate the use of this model, some specific numerical
methods still need to be developed. Although we have pro-
posed a fixed-point method for the two-parameter logistic–
exponential distribution, and have successfully applied it to
simulated data sets, a rigorous proof of its convergence is
still desirable. Also, work still needs to be done to extend the
flexibility of the numerical methods for the three-parameter
case.

APPENDIX A. ASYMPTOTIC PROPERTIES
OF THE MOMENTS

The moments associated with the two-parameter logistic–exponential dis-
tribution cannot be expressed in closed form. This appendix investigates the
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behavior of these moments as κ ↓ 0 and κ → ∞. One of the purposes of
this investigation is to determine the limiting behavior of the coefficient of
variation γ1 = σ/µ and the skewness γ2 = E[(T − µ)3]/σ 3 for plotting
the curve in Fig. 4. More specifically, these limits pin down the two ends of
the curve for the two-parameter logistic–exponential distribution in Fig. 4.

When κ Approaches Infinity

Moments for the logistic–exponential distribution in the two-parameter
case are:

Mn = E[T n] =
∫ ∞

0
tnf (t)dt =

∫ ∞

0
S(t)(tn)′dt

=
∫ ∞

0

ntn−1

1 + (eλt − 1)κ
dt ,

via integration by parts. Replacing t with ln(x + 1)/λ, we have:

Mn =
∫ ∞

0

n lnn−1(x + 1)

λn(x + 1)(xκ + 1)
dx.

In order to calculate the limit as κ → ∞, consider the inequalities below:

λnMn =
∫ 1

0

n lnn−1(x + 1)

(x + 1)(xκ + 1)
dx +

∫ ∞

1

n lnn−1(x + 1)

(x + 1)(xκ + 1)
dx

<

∫ 1

0

n lnn−1(x + 1)

x + 1
dx +

∫ ∞

1

nxn−1

xκ
dx

= lnn(2) + n

κ − n
,

for n − κ < 0 since ln(x + 1) ≤ x for x ≥ 0 and the random variable T has
positive support (which implies that x > 0). On the other hand,

λnMn >

∫ 1

0

n lnn−1(x + 1)

(x + 1)(xκ + 1)
dx

=
∫ 1

0

n(1 + xκ − xκ ) lnn−1(x + 1)

(x + 1)(xκ + 1)
dx

=
∫ 1

0

n lnn−1(x + 1)

x + 1
dx −

∫ 1

0

nxκ lnn−1(x + 1)

(x + 1)(xκ + 1)
dx

> lnn(2) − n

∫ 1

0
xκ+n−1dx

= lnn(2) − n

κ + n

The squeeze method is used to determine that the value of the nth moment
as κ approaches infinity:

lim
κ→∞ Mn =

(
ln 2

λ

)n

.

This conclusion can be used to calculate the limiting coefficient of variation
γ1:

lim
κ→∞ γ1 = lim

κ→∞
σ

µ
= lim

κ→∞

√
M2 − M2

1

M1

=
√

ln2 2/λ2 − (ln 2/λ)2

ln 2/λ
= 0.

For the calculation of the limiting skewness γ2, the direct application of the
results presented here yields an indeterminate form:

lim
κ→∞ γ2 = lim

κ→∞
M3 − 3M2M1 + 2M3

1(
M2 − M2

1

)3/2
= 0

0
.

This is consistent with the fact that the limiting distribution of T is degenerate
at ln 2/λ as κ → ∞ since

lim
κ→∞ F(t) =




0 t < ln 2/λ

1/2 t = ln 2/λ

1 t > ln 2/λ.

Numerical analysis, however, reveals that the skewness also approaches 0
for large κ . This establishes (γ1, γ2) = (0, 0) as the limiting point in Fig. 4
as κ → ∞.

When κ Approaches Zero

From the previous section:

Mn =
∫ ∞

0

n lnn−1(x + 1)

λn(x + 1)(xκ + 1)
dx.

Replacing x with ym, where m = 1/κ , we have:

Mn =
∫ ∞

0

mnym lnn−1(ym + 1)

λny(y + 1)(ym + 1)
dy.

Taking the limit and simplifying:

lim
κ↓0

(λκ)nMn = lim
m→∞

∫ ∞

0

nym lnn−1(ym + 1)

mn−1y(y + 1)(ym + 1)
dy

= lim
m→∞

∫ ∞

1

nym lnn−1(ym + 1)

mn−1y(y + 1)(ym + 1)
dy

+
[

lim
m→∞

∫ 1

0

nym lnn−1(ym + 1)

mn−1y(y + 1)(ym + 1)
dy = 0

]

= lim
m→∞

∫ ∞

1

n(ym + 1 − 1) lnn−1(ym + 1)

mn−1y(y + 1)(ym + 1)
dy

= lim
m→∞

∫ ∞

1

n lnn−1(ym + 1)

mn−1y(y + 1)
dy

−
[

lim
m→∞

∫ ∞

1

n lnn−1(ym + 1)

mn−1y(y + 1)(ym + 1)
dy = 0

]

= lim
m→∞

∫ ∞

1

n(lnn−1(ym + 1) − lnn−1(ym) + lnn−1(ym))

mn−1y(y + 1)
dy

=
[

lim
m→∞

∫ ∞

1

n(lnn−1(ym + 1) − lnn−1(ym))

mn−1y(y + 1)
dy = 0

]

+ lim
m→∞

∫ ∞

1

n lnn−1(y)

y(y + 1)
dy

= lim
m→∞

∫ ∞

1

n lnn−1(y)

y(y + 1)
dy.

The reason that

lim
m→∞

∫ 1

0

nym lnn−1(ym + 1)

mn−1y(y + 1)(ym + 1)
dy = 0
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is that 0 ≤ ln(ym +1)≤ym, so substituting with this inequality, it is obvious
that

lim
m→∞

∫ 1

0

nymn

mn−1y(y + 1)(ym + 1)
dy = 0.

The squeeze method can be applied successfully here as well. The reason
that

lim
m→∞

∫ ∞

1

n lnn−1(ym + 1)

mn−1y(y + 1)(ym + 1)
dy = 0

is obvious when n = 1. For n > 1 it can be reasoned that since

lnn−1(ym + 1)

(ym + 1)

has an upper bound a(n) for any integer n > 1, the integral also has an upper
limit, and since

lim
m→∞

∫ ∞

1

na(n)

mn−1y(y + 1)
dy = 0,

the squeeze method can be applied to obtain the zero limit. The reason that

lim
m→∞

∫ ∞

1

n(lnn−1(ym + 1) − lnn−1(ym))

mn−1y(y + 1)
dy = 0,

is also obvious when n = 1. For n > 1 it can be reasoned that since

lnn−1(ym + 1) − lnn−1(ym)

has an upper bound b(n) for any given n > 1, the integral also has an upper
limit, and since

lim
m→∞

∫ ∞

1

nb(n)

mn−1y(y + 1)
dy = 0,

the squeeze method can be applied to obtain the zero limit. Replacing z with
ln(y), we have:

lim
κ↓0

(λκ)nMn = lim
m→∞

∫ ∞

0

nzn−1

ez + 1
dz =

∫ ∞

0

nzn−1

ez + 1
dz.

Since this integral exists and depends only on n, denote it as m(n). From
this result we can calculate the limiting coefficient of variation γ1 = σ/µ as
κ decreases to 0:

lim
κ↓0

γ1 = lim
κ↓0

√
M2 − M2

1

M1

= lim
κ↓0

√
(λκ)2M2 − (λκM1)2

λκM1

=
√

m(2) − m(1)2

m(1)
.

Likewise, we can express the limiting skewness as:

lim
κ↓0

γ2 = lim
κ↓0

M3 − 3M2M1 + 2M3
1(

M2 − M2
1

)3/2

= lim
κ↓0

(λκ)3M3 − 3(λκ)2M2(λκ)M1 + 2(λκ)3M3
1(

(λκ)2M2 − (λκ)2M2
1

)3/2

= m(3) − 3m(2)m(1) + 2m(1)3

(m(2) − m(1)2)3/2
.

Using numerical methods, these values are limκ↓0 γ1 ∼= 1.5568 and
limκ↓0 γ2 ∼= 2.1126.

APPENDIX B. RANGE OF MLES FOR
PARAMETERS

In this appendix we provide a rectangular boundary for the MLEs of λ̂

and κ̂ for the two-parameter logistic–exponential distribution for a complete
data set. If numerical solvers fail to converge to the MLEs, a grid search over
this rectangle is appropriate. For the theorems stated below, we assume that
t1, t2, . . . , tn denote the lifetimes and t(1), t(2), . . . , t(n) denote the associated
order statistics drawn from a logistic–exponential distribution with survivor
function

S(t) = P(T ≥ t) = 1

1 + (eλt − 1)κ
t ≥ 0.

Range of λ̂ When κ̂ Is Unknown

This section proves the inequality that provides lower and upper bounds
for λ̂ as:

ln 2

t(n)

< λ̂ <
ln 2

t(1)

.

Lower Bound for λ̂

THEOREM: The lower bound for λ̂ is λ̂l = ln 2/t(n).

PROOF: Use proof by contradiction. Rewrite the second element of the
score vector as:

∂ ln L(κ , λ)

∂λ
=

n∑
i=1

(
eλti − λti − 1

λ(eλti − 1)
+ 1 − (eλti − 1)κ

1 + (eλti − 1)κ
· κtie

λti

eλti − 1

)
.

If 0 < λ̂t(n) ≤ ln 2, which implies 0 < λ̂ti ≤ ln 2, i = 1, 2, . . . , n, then

0 < eλ̂ti − 1 ≤ 1, i = 1, 2, . . . , n, so

1 − (eλ̂ti − 1)κ̂

1 + (eλ̂ti − 1)κ̂
· κ̂ ti e

λ̂ti

eλ̂ti − 1
≥ 0, i = 1, 2, . . . , n.

Since λ̂ti > 0 ⇒ eλ̂ti − λ̂ti − 1 > 0, i = 1, 2, . . . , n, the term below is
obviously positive:

eλ̂ti − λ̂ti − 1

λ̂(eλ̂ti − 1)
> 0.

Thus each term is positive, so the sum of all these positive terms should also
be positive, which means

∂ ln L(κ̂ , λ̂)

∂λ
> 0.

This contradicts the fact that the MLEs satisfy

∂ ln L(κ̂ , λ̂)

∂λ
= 0.

This establishes the proposed lower bound for λ̂. �
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Upper Bound for λ̂

THEOREM: The upper bound for λ̂ is λ̂u = ln 2/t(1).

PROOF: Again, use proof by contradiction. After simplification,

κ
∂ ln L(κ , λ)

∂κ
− λ

∂ ln L(κ , λ)

∂λ
=

n∑
i=1

(
κ

1 − (eλti − 1)κ

1 + (eλti − 1)κ

×
(

ln(eλti − 1) − λtie
λti

eλti − 1

)
+ λti

eλti − 1

)
.

If λ̂t(1) ≥ ln 2, which implies that λ̂ti ≥ ln 2, i = 1, 2, . . . , n, then

eλti − 1 ≥ 1, i = 1, 2, . . . , n. Since additionally, κ̂ > 0, 1 − (eλ̂ti − 1)κ̂ ≤ 0,
which implies

κ̂
1 − (eλ̂ti − 1)κ̂

1 + (eλ̂ti − 1)κ̂
≤ 0 i = 1, 2, . . . , n.

Also, the other factor in the summand is always negative, i.e.,

ln(eλ̂ti − 1) − λ̂ti e
λ̂ti

eλ̂ti − 1
< 0 i = 1, 2, . . . , n.

If we rewrite this factor as

(eλ̂ti − 1) ln(eλ̂ti − 1) − eλ̂ti ln(eλ̂ti )

eλ̂ti − 1
< 0 i = 1, 2, . . . , n,

and denote xi = eλ̂ti − 1 ≥ 1, we have

xi ln(xi ) − (xi + 1) ln(xi + 1)

xi

< 0, (xi ≥ 1) i = 1, 2, . . . , n,

since xi ln(xi ) is monotonically increasing when xi ≥ 1. So

κ̂
∂ ln L(κ̂ , λ̂)

∂κ
− λ̂

∂ ln L(κ̂ , λ̂)

∂λ
> 0.

which contradicts the first-order MLE assumptions:

∂ ln L(κ̂ , λ̂)

∂κ
= 0 and

∂ ln L(κ̂ , λ̂)

∂λ
= 0.

This establishes the upper bound as claimed. In summary, the range of λ̂ is

ln 2

t(n)

< λ̂ <
ln 2

t(1)

.
�

Range of κ̂ When λ̂ Is Unknown

This section proves the inequality that provides lower and upper bounds
for κ̂ as:

t(1)p

t(n) ln 2
< κ̂ <

n + 3

− ln(2t(1)/t(n) − 1)
,

where p ∼= 1.58 is a constant determined numerically.

Lower Bound for κ̂

THEOREM: The lower bound for κ̂ when λ̂ is unknown is

κ̂ >
p

ln 2
· t(1)

t(n)

,

where p is the only positive root of 1 − x tanh(x/2) = 0, found numerically
as p ∼= 1.58.

PROOF: Consider the ith data value in the second element of the score
vector, which is

∂ ln f (ti ; κ , λ)

∂κ
= ln(eλti − 1) + 1

κ
− 2(eλti − 1)κ ln(eλti − 1)

1 + (eλti − 1)κ

Defining xi = κ ln(eλti − 1), we can reduce the expression above to

∂ ln f (ti ; κ , λ)

∂κ
= 1

κ

(
1 + xi(1 − exi )

1 + exi

)
.

Thus, the sign of the partial derivative is determined as a function of xi .
Define

g(x) = 1 + x(1 − ex)

1 + ex
= 1 − x tanh(x/2),

which is an even function, and

g′(x) = 1 − e2x − 2xie
x

(1 + ex)2
,

which is an odd function. There are two real roots to g(x) = 0, denoted by
p1 = −p and p2 = p. Define the right-hand-side of the inequalities below

κ ln(eλ̂t(n) − 1) < κ ln(eλ̂ut(n) − 1) = Xu,

κ ln(eλ̂t(1) − 1) < κ ln(eλ̂l t(1) − 1) = Xl .

It can be proved that3 Xl + Xu ≥ 0, which means if Xu ≤ p, then
Xl > −Xu ≥ −p. Since Xl < xi < Xu ⇒ p1 < xi < p2 ⇒ g(xi) >

0, i = 1, 2, . . . , n,

∂ ln f (ti ; κ , λ)

∂κ
> 0, i = 1, 2, . . . , n ⇒

n∑
i=1

∂ ln f (ti ; κ , λ)

∂κ
> 0.

That contradicts the fact that the partial derivative of the log likelihood
function is zero at the MLEs. So Xu > p, which yields

κ ln(eλ̂ut(n) − 1) > p ⇒ κ >
p

ln(2t(n)/t(1) − 1)
>

t(1)p

t(n) ln 2
. �

3 This is equivalent to proving that (2r − 1)(21/r − 1) ≥ 1, when
r ≥ 1. Since, when r = 1, the equality holds, it can be proved if
its derivative is non-negative: 2r (21/r − 1) − 21/r (2r − 1)/r2 ≥ 0.
Rewrite that as r2r /(2r − 1) ≥ (1/r)21/r/(21/r − 1), which sug-
gests we can just prove the monotonicity of r2r /(2r − 1), or
x log2 x/(x −1) is increasing for x ≥ 2 after substitution of x = 2r ,
which can be proved by taking a derivative.
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Upper bound for κ̂

THEOREM: The upper bound for κ̂ when λ̂ is unknown is

κ̂ <
n + 3

− ln(2t(1)/t(n) − 1)
.

PROOF: The following notation will be used throughout the proof:

xi = κ̂ ln(eλ̂ti − 1), i = 1, 2, . . . , n,

xu = κ̂ ln(eλ̂t(n) − 1) > 0,

xl = κ̂ ln(eλ̂t(1) − 1) < 0.

Recall that

∂ ln L(κ , λ)

∂κ
= κ

n∑
i=1

g(xi) = 0 ⇒
n∑

i=1

g(xi) = 0,

which implies that (since g(x) ≤ n − 1):

∑
|xi |>p

−g(xi) =
∑

|xi |≤p

g(xi) ≤ n − 1.

It can be shown that g(x) has the following properties:

|x| > p ⇒ |x| − p < −g(x).

Thus, it follows that

(|xu| − p) + (|xl | − p) ≤
∑

|xi |>p

−g(xi) ≤ n − 1

since xu ≥ 0 and xl ≤ 0. Thus we have

xu − xl ≤ n + 2p − 1.

Obviously 2p − 1 < 3, so we have:

κ̂ <
n + 3

ln(eλ̂t(n) − 1) − ln(eλ̂t(1) − 1)
.

The right-hand side of the inequality above is monotonically decreasing to
λ̂, so we can use the lower bound of λ here to get an upper bound for κ̂ . In
summary, the range of κ̂ is:

t(1)p

t(n) ln 2
< κ̂ <

n + 3

− ln(2t(1)/t(n) − 1)
.

�

Range of κ̂ When λ̂ Is Known

The boundary for κ̂ is quite loose, but, if λ̂ is already known, there
is a much narrower range for κ̂ , based on the observation that g(x) =
1−x tanh(x/2) and that 1−|x| ≤ g(x) < 1.557−|x|, as illustrated in Fig. 9.
The value 1.557 is the numerical approximation of g(1+LambertW(1/e))+
1 + LambertW(1/e), where LambertW(1/e) is the real root of xex = 1/e.
Since at the MLE it is already known that

∑n
i=1 g(xi) = 0, summing through

all the inequalities on xi yields

n −
n∑

i=1

|xi | < 0 < 1.557n −
n∑

i=1

|xi |.

Figure 9. g(x) lies between 1 − |x| and 1.557 − |x|.

Recall that xi = κ̂ ln(eλ̂ti − 1), i = 1, 2, . . . , n, so κ̂ can be solved from the
inequality, producing a much tighter range κ̂ t

l < κ̂ < κ̂t
u than the range in

the previous section:

n∑n
i=1 | ln(eλ̂ti − 1)| < κ̂ <

1.557n∑n
i=1 | ln(eλ̂ti − 1)| .

Boundaries Applied to the Ball Bearing Failure Times

As discussed in the statistical inference section, the oft-analyzed ball
bearing failure times have been fitted to the logistic–exponential distribu-
tion. The boundaries will be calculated for this data set to verify that the
MLEs κ̂ and λ̂ lie in the rectangular region rendered by the upper and lower
boundaries.

First calculate the boundaries for λ̂ from the ball bearing failure times.
The ball bearing data set has n = 23 observations, with t(1) = 17.88, t(23) =
173.40, thus we have:

ln 2

t(n)

< λ̂ <
ln 2

t(1)

⇒ 0.0040 < λ̂ < 0.0388.

Since the upper bound and the lower bounds for λ̂ are functions of t(1)

and t(23) respectively, a natural conjecture about the initial guess for λ̂ would
be something of an average of the function applied to all the observations,
which is the harmonic average:

λ̂h = ln 2

n

n∑
i=1

1

ti
= 0.0126.

Still another simple initial guess is to use the arithmetic average:

λ̂a = n ln 2∑n
i=1 ti

= 0.0096.

Both of these initial guesses are reasonably close to the MLE λ̂ = 0.01059,
and, in general, both will lie in the ranges developed here for distinct data
values. It is difficult to tell which initial guess is more accurate; in our
fixed-point method, the latter is adopted as the initial guess of λ̂.
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Figure 10. Parameter boundaries for the ball bearing failure times.

Now consider the boundaries for κ̂ , which will be calculated according
to the formula developed previously:

t(1)p

t(n) ln 2
< κ̂ <

n + 3

− ln(2t(1)/t(n) − 1)

or 0.2350 < κ̂ < 9.9905. Finally, the tighter boundaries for κ̂ when λ̂ is
known for a complete data set are

n∑n
i=1 | ln(eλ̂ti − 1)| < κ̂ <

1.557n∑n
i=1 | ln(eλ̂ti − 1)|

or 1.6938 < κ̂ < 2.6371.
Figure 10 shows the boundaries, initial parameter guesses, and the MLEs

(κ̂ , λ̂). The lower and upper boundaries for λ̂ are labeled λ̂l and λ̂u respec-
tively, and the lower and upper boundaries for κ̂ when λ̂ is unknown are
labeled κ̂l and κ̂u, and the tight boundaries for κ̂ when λ̂ is given are labeled
κ̂ t
l and κ̂ t

u respectively. The two initial guesses are labeled λ̂h for using the

harmonic average and λ̂a for using the simple arithmetic average. The MLE
is also plotted on the graph and lies within the larger rectangular region as
expected.

APPENDIX C. FIXED-POINT METHOD FOR MLE

In this appendix we develop a fixed-point method for the numerical calcu-
lation of the MLEs for the two-parameter logistic–exponential distribution
for a complete data set. A rigorous proof of this method is not provided, but
we include Maple code for estimating MLEs. Our sense is that the proce-
dure given here works with field data, and would only fail when the data
set is ill conditioned, i.e., the ratio of the largest observation to the smallest
observation is extremely large (e.g., in 108 when you are planning to have
eight effective digits of accuracy for the MLEs). The term “ill conditioned”
is not in an absolute sense though, as it actually depends on what precision
one expects from the fixed-point method. Generally speaking, the more ill
conditioned, the fewer effective digits one can get. On the other hand, if we
have infinite-precision computation facility, this is not an issue at all.

The fixed-point method we have developed and experimented with is
quite simple. We need two functions that calculate new κ and λ from old
ones as well as all the observations. These are the fixed-point functions we

have implemented:

κk+1 = n

(
n∑

i=1

ln(eλk ti − 1) tanh(κk ln(eλk ti − 1)/2)

)−1

,

λk+1 = λk − ∂ ln L(λk , κk+1)

∂λ

/
∂2 ln L(λk , κk+1)

∂λ2
.

The fixed-point equation for κ is just a straightforward transformation of the
first-order condition for κ

∂ ln L(λ, κ)

∂κ
= n

κ
−

n∑
i=1

ln(eλti − 1) tanh(κ ln(eλti − 1)/2) = 0

and the fixed-point equation for λ is simply Newton’s method, which is a
special case of fixed-point method, applied to the first-order condition for λ

∂ ln L(λ, κ)

∂λ
= 0

with a little variation in that we used the new κ as soon as it is available,
which speeds convergence.

Another important issue in numerical methods is how to determine a good
initial guess. Fortunately, this can be readily computed from our previous
work on the boundaries. We chose the following initial guesses:

λ0 = n ln 2∑n
i=1 ti

, κ0 = n∑n
i=1 | ln(eλ0 ti − 1)| .

Once the initial values are calculated, they can be fed into the fixed-
point method and iterations are carried out until it converges to the desired
accuracy. The Maple procedure lgxFixedPoint given at the end of this
appendix follows the considerations above: it first checks if the data is ill
conditioned, and eventually returns the number of iterations and the results
from the last iteration. Convergence is achieved if the number of iterations
is less than the prescribed maximal number of iterations.

This procedure works well and converges with an average of about 20
iterations for simulated logistic–exponential data for n = 5, 10, 25, and
50, and for λ ranging from 0.1 to 100 and κ ranging from 0.5 to 10. Our
results show that except for those ill-conditioned data sets, the fixed point
method provides MLEs with the desired accuracy, which demonstrates that
the fixed-point method is quite reliable.

Some experiments on how to extend this method to data sets with cen-
sored data have been carried out with satisfactory results. The initial guess
and the fixed-point formula changed slightly. We have implemented the iter-
ative method in Maple. Similar testing procedures are also developed, the
testing results are quite good. Below we give the mathematical formulas:

κk+1 = r

(
r∑

i=1

ln(eλk ti − 1) tanh(κk ln(eλk ti − 1)/2)

+
s∑

j=1

ln(eλkcj − 1)

1 + (eλkcj − 1)−κk




−1

,

λk+1 = λk − ∂ ln L(λk , κk+1)

∂λ

/
∂2 ln L(λk , κk+1)

∂λ2
,

where the ti , i = 1, 2, . . . , r are observed lifetimes, cj , j = 1, 2, . . . , s are
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censoring times. The initial guesses are given by

λ0 = r ln 2∑r
i=1 ti + ∑s

j=1 ci

and

κ0 = r∑r
i=1 | ln(eλ0 ti − 1)| + ∑s

j=1 | ln(eλ0cj − 1)| .

#
# procedure name: lgxFixedPoint
# argument: t (a list of lifetimes)
# returned values: number of iterations, MLEs
#
lgxFixedPoint := proc(t)
local newk, newl, logf, dlogf, ddlogf, lgxeps,

big, sml, nobs, lamb, kapp, iterat, delta,
converged;

nobs := nops(t);
lgxeps := 0.000000001;
sml := t[1];
big := t[1];
for iterat from 1 to nobs do

big := max(t[iterat], big);
sml := min(t[iterat], sml);

end do;
if (sml < 100 * big * lgxeps) then

return [0, "Ill-conditioned data!"];
end if;
newk := (kappa, lambda, t, n) -> n /

sum(ln(exp(lambda * t[j]) - 1)
* tanh(kappa * ln(exp(lambda * t[j])
- 1) / 2), j = 1 .. n);

logf := (kappa - 1) * ln(exp(lambda * nt[i])
- 1) + ln(kappa) + ln(lambda)
+ lambda * nt[i] - 2 * ln(1
+ (exp(lambda * nt[i]) - 1)ˆ kappa);

dlogf := diff(logf, lambda);
ddlogf := diff(dlogf, lambda);
newl := (k, l, t, n) -> l - sum(subs (kappa = k,

lambda = l, nt = t, dlogf), i = 1 .. n)
/ sum(subs(kappa = k, lambda = l, nt = t,
ddlogf), i = 1 .. n);

lamb := evalf(nobs * log(2) / sum(t[i],
i = 1 .. nobs));

kapp := nobs / sum(abs(ln(exp(lamb *
t[i]) - 1)), i = 1 .. nobs);

for iterat from 1 to 90 do
converged := 0;
delta := kapp;
kapp := newk(kapp, lamb, t, nobs);
delta:= abs(kapp - delta) / kapp;
if (delta < lgxeps) then converged := 1 end if;
delta := lamb;
lamb := newl(kapp, lamb, t, nobs);
delta := abs(lamb - delta) / lamb;
if (delta < lgxeps) then

converged := converged + 1
end if;
if (converged = 2) then break end if;

end do;
return [iterat, [kapp, lamb]];
end proc;
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