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Minimum Kolmogorov–Smirnov test statistic
parameter estimates
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We present and implement an algorithm for computing the parameter estimates in a univariate probabil-
ity model for a continuous random variable that minimizes the Kolmogorov–Smirnov test statistic. The
algorithm uses an evolutionary optimization technique to solve for the estimates. Several simulation
experiments demonstrate the effectiveness of this approach.
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1. Introduction

When a reliability analysis, survival analysis, or discrete-event simulation input modeling
analysis is performed, it is typically the case that a modeler collects data associated with
some system under consideration. Although this raw data provides an initial insight into the
stochastic elements of the system, often it is desirable to construct a model of the system which
is tractable for mathematical analysis, while remaining consistent with the data. Typically,
some common parametric model is chosen, such as the exponential distribution, then a point
estimation technique, such as maximum likelihood, is used to determine reasonable parameter
estimates for the model. Finally, some goodness-of-fit test is performed to validate the model.

However, this approach to modeling has two drawbacks. First, on the basis of experience
and an initial examination of the raw data, the modeler chooses which model to use a priori,
and then proceeds to choose reasonable parameters on the basis of data (for example λ̂ = 3.2,
if an exponential (λ) model is chosen). The model is then assessed via a goodness-of-fit test.
An obvious difficulty is that some other parametric model may have yielded an even better fit.

A second and related problem has to do with the computation involved in finding parameter
estimates. Analytical techniques for optimizing distribution parameters involve calculus.
Likelihood functions for distributions with multiple parameters can be cumbersome to analyze.
Differentiating them and solving for the estimators requires a symbolic language or a well
designed algorithm to ensure correctness and efficiency. Further, as stated above, we know
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that the modeler must repeat this process for several common models so that the best model
is not overlooked. Thus, finding a good model, along with good parameters, is a tedious task.

Popular parameter estimation techniques include maximum likelihood estimation (MLE),
method of moments (MOM), and least squares (LS). Often statistical properties of estimators
drive the choice of the parameter estimation technique selected. The exponential distribution
typically relies on MLE in modeling lifetime data, for example, because the point estimates are
closed form and the interval estimates are exact for complete and Type II censored data sets.
There are occasions, however, when only fit considerations drive the choice of the estimation
technique, as might be the case in the selection of an input model for a discrete-event simulation.

The purpose of this article is to consider an estimation technique which we refer to as
minimum Kolmogorov–Smirnov estimation (MKSE), whose purpose is to minimize the value
of the KS statistic. We use a heuristic optimization algorithm developed by Sobieszczanski–
Sobieski et al. [1] to estimate the parameters.

In spite of the benefits to MKSE, there are three significant drawbacks to our approach:

• The method provides point estimators, but no interval estimators. Thus, MKSE is more
closely aligned with the performance of MOM estimators, rather than MLE estimators,
where interval estimators can be constructed based on the likelihood ratio statistic.

• The method requires a number of arbitrary parameters to be prescribed in order for the
algorithm to converge to the MKSE. These parameters are described in section 3.

• As with all estimation procedures, sampling variability makes identifying the correct
population distribution difficult, as shown in section 4.

The software tool MKSFitter described in this article is capable of finding these estimates.
It is a tool that fits common models to data sets using a general-purpose Bell-Curve Based
evolutionary algorithm (BCB). The tool maintains a collection of common models that may
be easily extended by a user familiar with the C programming language. It takes as input an
arbitrary data set, and outputs the model which best fits the data, along with the parameters
that minimize the KS test statistic. Scott [2] contains related work.

Let x1, x2, . . . , xn denote an independent and identically distributed sample drawn from
a population with unknown parameters θ1, θ2, . . . , θk . The Kolmogorov–Smirnov (KS) test
statistic Dn, is defined by

Dn = sup
x

|F̂ (x) − Fn(x)|,

where n is the sample size, F̂ (x) is a fitted CDF, and Fn(x) is the empirical CDF, a step-function
that increases by 1/n at each data value. The KS statistic has been used for goodness-of-fit
testing for continuous populations for decades, although other tests have made slight improve-
ments in terms of power. The KS test’s appeal includes the straightforward computation of
the test statistic and the distribution-free characteristic of Dn. Its drawback is that its cumu-
lative distribution function of Dn under the null hypothesis (i.e., the data was drawn from a
population with CDF F(x)) is difficult to determine, leaving one to calculate critical values
with various approximation methods. An algorithm for computing the distribution of Dn for
small to moderate values of n is given by Drew et al. [3]. As the supremum must be achieved
at a data value, the computational formulas for computing Dn are:

D+
n = max

i=1,2,...,n

(
i

n
− F̂ (x(i))

)
, D−

n = max
i=1,2,...,n

(
F̂ (x(i)) − i − 1

n

)
, and

Dn = max{D+
n , D−

n },
where x(1), x(2), . . . , x(n) are the order statistics. The maximum positive difference, D+

n , detects
the largest vertical deviation between the two CDFs where the fitted CDF is below the empirical
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CDF. Likewise, the maximum negative difference, D−
n , detects the largest vertical deviation

between the two CDFs where the fitted CDF is above the empirical CDF. The smallest value
of Dn that can be achieved is 1/2n, which corresponds to the CDF of the fitted distribution
bisecting all of the risers of the steps associated with the empirical CDF.

We begin with three examples to motivate the technique. The first two involve fitting data sets
to the exponential distribution with a mean of θ . When x1, x2, . . . , xn denote an independent
and identically distributed sample drawn from an exponential population with mean θ , Hogg
and Craig [4] give the unbiased MLE as θ̂ = x̄. This estimator will be compared with the
MKSE.

Example 1: Consider the case of sampling a single (n = 1) value, x1, from an exponential
population with unknown mean θ . In this case, the MLE is simply θ̂ = x1. Thus, the fitted
CDF is

F̂ (x) = 1 − e−(x/x1) x > 0.

This fitted CDF strikes the riser associated with x1 of the empirical CDF at 1 − e−(x1/x1) =
1 − 1/e ∼= 0.6321, regardless of the value of x1. Thus, the distribution of the KS statistic
when the MLE is used is degenerate at 1 − 1/e. The MLE point estimator θ̂ = x1, although
unbiased, does not minimize the KS test statistic. In order to find the MKSE which will bisect
the riser, it is necessary to solve

1

2
= 1 − e−(x1/θ̂)

for θ̂ , yielding θ̂ = x1/ log 2. Thus, the distribution of the KS statistic when the MKSE is
used is degenerate at 1/2. A plot of the MLE and MKSE fitted distributions associated with
a single data value of x1 = 3 is shown in figure 1. Figure 2 is the associated plot of D1 vs. θ

with the MLE and MKSE labeled.

Figure 1. The empirical CDF, the fitted exponential MLE CDF, and the fitted exponential MKSE CDF for a single
data value x1 = 3.



198 M. D. Weber et al.

Figure 2. The value of the KS test statistic for various values of θ associated with an exponential model and a single
data value x1 = 3.

The theoretical minimum that the KS statistic can assume, 1/2n = 1/2 is shown by a
horizontal dashed line. In this case, the KS statistic is able to achieve this theoretical minimum
using the MKSE.

The next example illustrates the difference between MLE and MKSE on a non-trivial sample
size where the MKSE is not able to achieve the theoretical minimum. This is almost always
the case in practice.

Example 2: Consider the oft-studied dataset of n = 23 ball bearing failure times in millions
of revolutions [5]:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40

The exponential distribution can also be fitted to this data set, although the fit is poor because
the ball bearings are wearing out. Figure 3 contains a plot of the empirical CDF, along with the
fitted CDFs for the MLE and MKSE estimators. The MLE is θ̂ = x̄ = 1661.16/23 ∼= 72.22.
The value of D23 associated with the MLE is shown with a vertical dashed line just to the left
of x(4) = 41.52. The MKSE is θ̂ ∼= 96.10. In this case (since the exponential distribution has
a single parameter), the MKSE can be determined by solving the equation

1 − e−41.52/θ − 3

23
= 22

23
− (1 − e−128.04/θ )
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Figure 3. The empirical CDF, the fitted exponential MLE CDF, and the fitted exponential MKSE CDF for the ball
bearing data set.

for θ , which corresponds to the point where the KS test statistics switches from occurring just
to the left of x(4) = 41.52 (detected by D+

23) to occurring just to the right of x(22) = 128.04
(detected by D−

23). Figure 4 shows the value of D23 for various values of θ . The indices of
the order statistics where the maximum vertical difference between the CDFs is achieved are
shown above the curve, along with a + or − indicating whether the maximum difference was
detected by D+

23 or D−
23. The dots that are placed along the curve denote the points where

the order statistic associated with D23 switches from one data value to another. For the ball
bearing data, the order statistics where the maximum differences occur are x(1) → x(2) →
x(4) → x(22) → x(23). Note that the switch from x(22) to x(23) occurs off the horizontal scale
of figure 4 at θ ∼= 879. (All data sets begin this curve with 1− for small θ and end with n+
for large θ .) The theoretical minimum, 1/2n = 1/46 is indicated by a dashed horizontal line.
The KS test statistic value is ∼0.3068 at the MLE and is ∼0.2204 at the MKSE.

The third and final example considers a two-parameter model.

Example 3: Consider fitting the ball bearing failures to the Weibull distribution with CDF

F(x) = 1 − e−(λx)κ x > 0,

where λ and κ are positive parameters. Using standard techniques [6, p. 217], the MLEs
are λ̂ ∼= 0.0122, κ̂ ∼= 2.10. Using software to be described later in this article, the MKSEs
are λ̂ ∼= 0.0132, κ̂ ∼= 2.23. The MLEs correspond to a KS statistic of D23

∼= 0.151 and the
MKSEs correspond to a KS statistic of D23

∼= 0.099. A plot of the CDFs of these two fitted
distributions is given in figure 5.
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Figure 4. The value of the KS test statistic for various values of θ associated with an exponential model and the
ball bearing data set.

Figure 5. The empirical CDF, the fitted Weibull MLE CDF, and the fitted Weibull MKSE CDF for the ball bearing
data set.
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2. Literature review

The literature available on the KS statistic is extensive. Stephens’ article [7, chapter 4] con-
tains comprehensive coverage on the use of the KS statistic, as well as other statistics based
on the empirical distribution function. To the best of our knowledge, there is no literature
on computational experiments in which the KS test statistic is minimized so as to compute
the parameter estimates in a univariate probability model for a continuous random variable.
Gyorfi et al. [8, 9], however, provide a theoretical treatment of minimum Kolmogorov distance
estimates for both univariate [8] and multivariate [9] distributions. They give conditions for
the underlying metric space under which parameter estimates are consistent. In particular,
they show that all location and scale models, with parent distributions different from Dirac,
and all standard exponential models satisfy these conditions. If inconsistent estimators arise,
Donoho and Liu [10] indicate that consistency can be achieved using the Cramer–VonMises
statistic rather than the KS statistic, which is a relatively minor modification to the methods
presented in this article.

3. Problem formulation

The underlying algorithm of the MKSFitter is a general-purpose optimizer named BCB [1]. It is
a population-based heuristic, similar in spirit to evolutionary strategies (ESs) and evolutionary
programs (EPs) but has fewer parameters to adjust. See Back [11] for detailed information
concerning ESs and EPs. A new generation in BCB is selected exactly the same as a (µ + λ) −
ES with λ = µ. That is, the best µ individuals out of µ parents plus λ children are selected
for the next generation and fit individuals may continue from one generation to the next. The
recombination and mutation mechanisms of BCB are illustrated in figure 6 for the case of
k = 3 unknown parameters. Consider the line through two k-dimensional parent vectors �P1

and �P2 selected for mating. First, determine the weighted mean �M of these two vectors where
the weights are given by the fitness (KS statistic) of each parent. Next, generate a N(0, σ 2

m)

variate Z. The resulting point �B = �M + | �P2 − �P1| · Z is the child, prior to mutation. Note
that �B is not restricted to lie on the line segment P1P2 because the support of Z is (−∞, ∞).
Mutation ensues by first generating a radius r for an k − 1 dimensional hypersphere. The
radius is a N(0, σ 2

r ) variate. Typically σr � σm. Finally, the mutated child �C is selected by
sampling uniformly on the surface of the k − 1 dimensional hypersphere. Ideally, when the
algorithm terminates after several generations, the population has converged to some optimal
region of the search space. The specifics of BCB can be found by Kincaid et al. [12] and
Sobieszczanski-Sobieski et al. [1].

We use BCB as an alternative to analytical optimization for choosing near-optimal para-
meters for some given model. As BCB is a general-purpose optimizer, we simply need to
define the objective function, the decision variables and set the BCB parameter values. The
four parameters and their default values are: population size (50), number of generations (100),
σm (1.0), and σr (4.0).

The MKSFitter tool maintains a set of continuous, univariate probability distributions F .
Each model F ∈ F , for example the Weibull or normal distributions, has associated para-
meters [(λ, κ) for the Weibull model, and (µ, σ ) for the normal model]. For each model, the
parameter(s) serve as decision variable(s).

We define our objective function to be the minimization of the KS statistic. Thus, for each
parametric model F with parameters (θ1, θ2, . . . , θk) ∈ � that we consider, we use BCB to
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Figure 6. BCB geometrical construct in 3D space.

heuristically solve

min
θ1,θ2,...,θκ

sup
x

|F̂ (x) − Fn(x)|.

Finally, we do one such optimization for each of several common models maintained in the
software, so the overall optimization using one application of BCB for each model F ∈ F , is

min
F∈F

(
min

θ1,θ2,...,θκ

sup
x

|F̂ (x) − Fn(x)|
)

.

In the one-dimensional examples in the Introduction, there was a single valley, and a single
minimum. This unimodality may or may not extend to several dimensions when multiple
parameter values are to be calculated. However, unimodality is not required for BCB to perform
well. In fact, it has been demonstrated to be extremely effective in solving multidimensional
problems with very large numbers of local optima in Sobieszczanski–Sobieski et al. [1].

4. Experimentation

To verify that MKSFitter chooses the correct population a high percentage of the time and that
the MKSE performs comparable to MLE, we performed two sets of experiments.

In our first set of experiments, we constructed several random data sets and used MKS-
Fitter to analyze them. We generated an n = 10, 30, and 100 point data set from each of
four models [normal(30, 3), Weibull(1, 1/2), exponential power (1, 1/2), and log normal
(2.0, 0.5)], as parameterized by Leemis [6]. These four distributions correspond to the IFR,



Kolmogorov–Smirnov test statistic 203

Table 1. Best distributions identified: n = 10 point data sets.

Normal(30, 9) Weibull(1, 0.5) ExpPow(1, 0.5) Log norm(2.0, 0.5)

Frequency KS Frequency KS Frequency KS Frequency KS

Exponential
Normal 0.53 0.141 0.03 0.136 0.13 0.155 0.15 0.124
Weibull 0.22 0.122 0.16 0.121 0.11 0.131
Log normal 0.47 0.139 0.41 0.139
Log logistic 0.34 0.126 0.28 0.136 0.25 0.134
Gompertz 0.05 0.159 0.04 0.128
Gamma 0.11 0.129 0.11 0.132 0.08 0.113
Exponential power 0.25 0.128 0.28 0.136

DFR, BT, and UBT survivor distribution classes, respectively. For 100 replications, we
recorded the proportion of times that MKSFitter identified the various distributions in F .

Tables 1–3 report the fraction of time that the various distributions are identified by MKS-
Fitter as the parent population. Also reported are the mean KS statistic values over the data
sets that the respective distributions were identified as the parent population.

We may make several observations about the results. First, we note that MKSE improves
with its ability to detect the correct distribution as n increases. For example, for the exponential
power data sets of size 10, 30, and 100, the proportion of the time that this distribution was
identified as the best fit was 0.28, 0.47, and 0.69, respectively. Second, we note that, as
expected, the mean KS values decrease as the sample size increases. For the three exponential
power data sets, the mean KS value decreased from 0.136 to 0.080 to 0.047. These results
give us confidence that MKSE is able to consistently identify good parameter estimates, and

Table 2. Best distributions identified: n = 30 point data sets.

Normal(30, 9) Weibull(1, 0.5) ExpPow(1, 0.5) Log norm(2.0, 0.5)

Frequency KS Frequency KS Frequency KS Frequency KS

Exponential
Normal 0.54 0.084 0.01 0.121 0.06 0.076
Weibull 0.37 0.075 0.25 0.073 0.10 0.079
Log normal 0.46 0.083 0.43 0.079
Log logistic 0.27 0.080 0.09 0.078 0.28 0.079
Gompertz 0.03 0.075
Gamma 0.14 0.085 0.15 0.079 0.13 0.076
Exponential power 0.22 0.075 0.47 0.080

Table 3. Best distributions identified: n = 100 point data sets.

Normal(30, 9) Weibull(1, 0.5) ExpPow(1, 0.5) Log norm(2.0, 0.5)

Frequency KS Frequency KS Frequency KS Frequency KS

Exponential
Normal 0.72 0.045
Weibull 0.69 0.044 0.12 0.046 0.02 0.042
Log normal 0.28 0.044 0.39 0.043
Log logistic 0.11 0.047 0.01 0.057 0.39 0.046
Gompertz
Gamma 0.08 0.044 0.18 0.044 0.20 0.042
Exponential power 0.12 0.041 0.69 0.047
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Table 4. Distances from parameter estimates to
(λ, κ) = (1, 1/2).

Mean Std. Dev. Min. Max.

MKSE 0.21 0.16 0.02 0.83
MLE 0.20 0.17 0.01 0.99

this ability improves with more input data. The log normal population was the most difficult
to identify. This is partly due to the fact that the log logistic distribution is also in the UBT
class, and that the logarithms of random variables having these distributions have symmetric
probability density functions.

In our second set of experiments, we compare MKSE and MLE. We generate 100 data sets
of 100 Weibull(1, 1/2) variates. To each of these data sets, we apply MKSE and MLE, which
each yield a pair of estimates (λ̂, κ̂). For each such pair, we compute its distance from (1, 1/2).
The goal is to determine which method yields the most accurate estimates. The distance
results are given in table 4. A plot of the estimates is given in figure 7. We note that both
methods yield estimates with similar accuracy. While the mean and minimum distance of MLE

Figure 7. Weibull(1, 1/2) parameter estimates from MKSE and MLE.
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is slightly smaller, MLE has a slightly greater variability and a larger maximum distance. With
our sample size chosen, these differences are most likely owing to sampling variability. These
results give us confidence that MKSE is on par with the more established method of MLE,
with respect to accuracy of parameter estimates.

5. Using MKSfitter

5.1 Common usage

MKSFitter may be used as a black-box tool. That is, if a user has a sorted data set in a file
named, for example, ballbearings.dat, the user may type at the command line:
mksfitter < ballbearings.dat

and expect to see the following output for the ball bearing data set:

Model K-S Scale Param Shape Param
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Log logistic 0.08079062 0.01589375 3.17549147
Log normal 0.08128213 4.14000931 0.51698360
Gamma 0.08953485 17.16327119 4.03181847
Weibull 0.09868065 0.01318428 2.23422230
Normal 0.10664124 65.11006950 32.95900275
Exponential 0.22038238 96.10201571 - - - - - - - - - - -
Gompertz 0.42456225 0.01000000 1.02967888

5.2 Possible modifications

There are a few cases in which the user may need to make very minor changes to the inner
workings of MKSFitter. These involve large parameter values, ‘hard’ data sets, and extending
the current list of models.

Like most optimization algorithms, BCB must know what the allowable ranges for decision
variable values are. The default configuration allows distribution parameters to lie in [0.001,
100.0]. This information is contained in the input file bcbparams.dat. If the user’s data
is such that this range needs to be extended, the user may simply edit this file and change the
value(s). No recompilation is needed.

Some optimization problems are harder than others for population-based heuristics. That
is, some problems require a larger population size or more generations. Increasing either of
these will allow the optimizer to examine more solutions before it terminates, thereby likely
improving upon the quality of solutions found. These two parameters to BCB are also found in
bcbparams.dat. The default population size is 50, and the default number of generations
is 100. As above, these values may be changed by the user by simply editing this file. Again,
no recompilation is needed. The user may want to increase these values if all models yield a
poor KS, but it is believed that the data should fit some model. (Note that for some data sets,
no model currently available in MKSFitter may be appropriate.)

Finally, the user may wish to incorporate additional models into MKSFitter. This requires
knowledge of C programming, editing two C source files, and recompiling the software.
The user should examine the function evalobj() in the file bcb.c, as well as the func-
tion print_results() in runbcb.c. These contain similar case statements which
loop over the available models. It should be clear how to extend these to consider another
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model. The software has been placed on the web and the source code is available at
www.math.wm.edu/∼leemis/bcb.html.

6. Conclusions and extensions

We have demonstrated the need for a data fitting tool which reduces the guesswork and
computational cost of fitting failure time data to common distributions. We have shown that
MKSFitter fulfills this need, in a heuristic sense, as demonstrated by our experimental results.
Finally, MKSFitter is a tool that is simple to use as a black-box tool, while also being easy for
advanced users to extend to include any number of arbitrary failure time models.

For modelers interested in adapting our general framework to their own setting, there are
two extensions that are easily be made to the software. First, the software could be rewritten to
accommodate right-censored observations, which are prevalent in reliability and biostatistical
applications. In this case, the software would minimize the vertical distance between the
Kaplan–Meier product-limit estimator and the fitted CDF up to the last observed failure.
Second, the objective function can be changed from the KS statistic to any other goodness-of-
fit statistic. The Cramer–VonMises or Anderson–Darling statistics [13] may be used in place
of the KS statistic.
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