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Given a finite time horizon that has been partitioned into subintervals over which event counts have been accumulated for multiple
realizations of a population NonHomogeneous Poisson Process (NHPP), this paper develops point and confidence-interval estimators
for the cumulative intensity (or mean value) function of the population process evaluated at each subinterval endpoint. As the number
of realizations tends to infinity, each point estimator is strongly consistent and the corresponding confidence-interval estimator is
asymptotically exact. If the NHPP has a piecewise constant intensity (rate) function, then the proposed point and confidence-interval
estimators for the cumulative intensity function are valid over the entire time horizon and not just at the subinterval endpoints; and in
this case algorithms are presented for generating event times from the estimated NHPP. Event count data from a call center illustrate
the point and interval estimators.

1. Introduction

A NonHomogeneous Poisson Process (NHPP) is often ap-
propriate for the modeling of a series of events that occur
over time in a nonstationary fashion. Two common appli-
cation areas are the modeling of arrivals to a waiting line
(queueing theory) and the failure times of a repairable sys-
tem (reliability theory). NHPPs have been used to model
event occurrences in a variety of applications, ranging from
arrivals to a computer electronics store (White, 1999) to
product repair times (Nelson, 2003). This article consid-
ers the nonparametric estimation of the cumulative inten-
sity function for a NHPP from a data set of k realizations
of event counts over predefined subintervals. Variate gen-
eration algorithms are given for the generation of all of
the events in a particular cycle and for the generation of
the next event, which is appropriate for a general-purpose,
discrete-event simulation language.

A NHPP generalizes a Homogeneous Poisson Process
(HPP). Events occur at a constant rate of λ events per unit
time in a HPP. A NHPP is governed by an intensity func-
tion, λ(t), which may vary with time. The cumulative inten-
sity function:

�(t) =
∫ t

0
λ(τ )dτ, t > 0,

gives the expected number of events by time t . The number
of events that occur on the interval (a, b] is Poisson with

mean
∫ b

a λ(t)dt . Events can be generated for use in discrete-
event simulation as �−1(E1), �−1(E2), . . . , where E1, E2, . . .
are the event times in a unit HPP (Cinlar, 1975).

Section 2 describes the estimation technique. Section 3
gives two variate generation algorithms. Section 4 illustrates
the use of the technique on a data set. Section 5 gives ex-
tensions to the work and some conclusions.

2. Estimation

Oftentimes event-time data are given as counts that occur
in disjoint subintervals as opposed to the event times them-
selves (Law and Kelton, 2000, p. 391). This section describes
point and interval estimates for the intensity and cumulative
intensity functions based on this count data.

Assume that there are k independent realizations of a
NHPP with cumulative intensity function �(t) collected on
the interval (0, S], where S is a real, fixed constant. This in-
terval could be part of a day (e.g., arrivals to a lunchwagon
between 10:00 am and 2:30 pm) or one cycle in a process
(e.g., arrivals to an emergency room during 24 hours). The
estimation techniques and variate generation algorithms
developed here require that the origin be the time when
data are first collected and that the time units are consis-
tent with the data. If the interval of interest is from 10:00
am to 2:30 pm, for example, then the interval is (0, 4.5] if
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the data are in hours or (0, 270] if the data are in minutes.
The time interval (0, S] is partitioned into m subintervals:

(a0, a1], (a1, a2], . . . , (am−1, am],

where a0 = 0 and am = S. The subintervals do not nec-
essarily have equal widths. Let n1, n2, . . . , nm be the total
number of observed events in the subintervals over the k
realizations.

Assume that the population NHPP has an intensity func-
tion λ(t) that is piecewise constant on each subinterval of
the partition (a0, a1], (a1, a2], . . . , (am−1, am]. Since the aver-
age intensity function on the interval (ai−1, ai] is the rate per
unit time of the events that occur on that interval, the max-
imum likelihood estimator is the average number of events
that occurred on the interval, normalized for the length of
the interval:

λ̂(t) = ni

k(ai − ai−1)
, ai−1 < t ≤ ai,

for i = 1, 2, . . . , m. The associated cumulative intensity
function estimate is a continuous, piecewise-linear function
on (0, S]:

�̂(t) =
(

i−1∑
j=1

nj

k

)
+ ni(t − ai−1)

k(ai − ai−1)
, ai−1 < t ≤ ai,

for i = 1, 2, . . . , m. (If there are no events observed on inter-
val i, i.e., ni = 0, then the intensity function estimate is zero
on interval i and the cumulative intensity function estimate
is constant on interval i. In the variate generation algo-
rithms to be described in the next section, no events will be
generated for such an interval. This is useful for modeling an
interval where no events should occur, e.g., lunchbreaks.)
This estimator passes through the points (ai,

∑i
j=1(nj/k))

for i = 1, 2, . . . , m. Asymptotic properties of this estimator
in the case of equal-width subintervals are considered by
Henderson (2003).

The population intensity function λ(t) will not be piece-
wise constant over each subinterval (ai−1, ai] in the arbi-
trary partition of (0, S] in most applications. As shown

max ← ∑m
i=1 ni/k (upper bound for HPP)

i ← 1 (initialize interval counter)
j ← 1 (initialize variate counter)
cumint ← ni/k (initialize cumulative intensity)
generate Uj ∼ U(0, 1) (generate first random number)
Ej ← − log(1 − Uj) (generate first HPP event time)
while (Ej ≤ max) (while more events to generate)

while (Ej > cumint) (while in wrong interval)
i ← i + 1 (increment interval counter)
cumint ← cumint + ni/k (increment cumulative intensity)

endwhile
Tj ← ai − (cumint − Ej)k(ai − ai−1)/ni (generate jth NHPP event time)
j ← j + 1 (increment variate counter)
generate Uj ∼ U(0, 1) (generate jth random number)
Ej ← Ej−1 − log(1 − Uj) (generate next HPP event time)

endwhile
return (T1, T2, . . . , Tj−1) (return NHPP event times)

in Leemis (1991), �̂(t) can only be consistent in this gen-
eral case at the endpoints of the subintervals as k → ∞,
i.e., limk→∞ �̂(ai) = �(ai) with probability one for i =
0, 1, . . . , m. This means that the usual confidence-interval
estimate for the cumulative intensity function:

�̂(t) − zα/2

√
�̂(t)

k
< �(t) < �̂(t) + zα/2

√
�̂(t)

k
,

for 0 < t ≤ S, where zα/2 is the 1 − α/2 fractile of the stan-
dard normal distribution, is only asymptotically exact at
the endpoints of the subintervals, i.e.:

lim
k→∞

Pr

(
�̂(ai) − zα/2

√
�̂(ai)

k
< �(ai) < �̂(ai)

+ zα/2

√
�̂(ai)

k

)
= 1 − α,

for i = 0, 1, . . . , m. For this reason, the displays of the point
and confidence-interval estimates for the cumulative inten-
sity functions given in the examples in Section 4 are given
only at the subinterval endpoints, and connected by dashed
lines (to indicate the appropriate point estimator if λ(t) was
piecewise constant over the subintervals).

A piecewise-constant interval estimate for λ(t) for one re-
alization is found using the technique described in Rigdon
and Basu (2000, p. 114), and an alternative confidence
interval based on the chi-square distribution for multiple re-
alizations is given in Casella and Berger (2002, pp. 434–435).

3. Variate generation

A realization of a Poisson process for modeling in a
discrete-event simulation can be generated by inversion. Let
T1, T2, . . . denote the event times for the NHPP with cu-
mulative intensity function �̂(t) generated on (0, S]. Fur-
thermore, let E1, E2, . . . be the event times of a unit ho-
mogeneous Poisson process. Using the algorithm below,
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the NHPP event times can be generated from the in-
puts a0, a1, a2, . . . , am; n1, n2, . . . , nm, and k. The logarithm
function used here is the natural logarithm (log base e).
Comments are given at the right in brackets.

The algorithm is valid when the population NHPP with
intensity function λ(t) is piecewise constant. Any departure
from this assumption results in an approximate estimator
�̂(t) and associated approximate variate generation algo-
rithm between the subinterval endpoints.

The algorithm given above is appropriate when
∑m

i=1 ni/k
is of modest size so that there is adequate memory available
to store the event times prior to the execution of the discrete-
event simulation model. This approach is not appropriate
for a general-purpose simulation language since the num-
ber of events to be generated for the NHPP is not known in
advance and could require excessive memory. The second
algorithm given below uses the next-event approach (Banks
et al., 2001), which schedules the next event when the cur-
rent event is being processed. The algorithm has the same
static inputs (a0, a1, . . . , am; n1, n2, . . . , nm, and k) as the
first algorithm, except that this algorithm returns the next
event time given that the current event occurs at the dynamic
input time T ∈ (0, S]. The algorithm returns the time of the
next NHPP event �̂−1(�̂(T) + E), where E ∼ expon(1), or
−1 if the ending time S is encountered. The algorithm is
illustrated in Fig. 1.

The algorithm returns −1 if there are no further events
to be generated, or the next event time. The variable
cumint.now contains the cumulative intensity function as-
sociated with the time of the current NHPP event T , i.e.,
�̂(T). The variable cumint.new contains the cumulative in-
tensity function associated with the time of the next HPP
event, �̂(T) + E, where E is a unit exponential random
variable. At the end of the execution of this algorithm,

max ← ∑m
j=1 nj/k (maximum cumulative intensity)

j ← 1 (initialize interval index)
while (T > aj) (while wrong interval)

j ← j + 1 (find interval index)
endwhile
cumint.now ← ∑j−1

i=1 ni/k + nj(T − aj−1)/(k(aj − aj−1)) (calculate �̂(T))
cumint ← ∑j

i=1 ni/k (initialize cumulative intensity interval bound)
generate U ∼ U(0, 1) (generate a random number U)
E ← − log(1 − U) (generate a unit exponential random variate)
cumint.new ← cumint.now + E (calculate �̂(T) + E)
if (cumint.new ≤ max) then (if there are more events to generate)

while (cumint.new > cumint) (while cumint is in the wrong interval)
j ← j + 1 (increment interval counter)
cumint ← cumint + nj/k (increment cumulative intensity)

endwhile
return(aj − (cumint − cumint.new)k(aj − aj−1)/nj) (NHPP event time �̂−1(�̂(T) + E))

else
return(−1) (−1 to indicate no more NHPP events to generate)

endif

the variable cumint contains the cumulative intensity func-
tion value at the right interval endpoint associated with the
returned event time.

A more sophisticated implementation of this “next-
event” algorithm would store max, j, cumint, and cumint.
new between the generation of events, effectively eliminating
the first seven lines of the algorithm. The procedure could
begin with the generation of the U(0, 1), which would save
substantial execution time for large m.

4. Example

Table 1 contains counts by hour and day of the week of 9512
arriving phone calls associated with a call center over the
period 8/12/01 to 8/18/01 which is open from 8 am to 9 pm
daily. Time is measured in hours, which is aligned to the ori-
gin so that S = 13 and the time interval of observation is
(0, 13]. No callers obtained busy signals. No infomercials,
which create a spike in call volume, were run during this
period. The organization occasionally runs infomercials at
various times during the day. These infomercials create a
spike in the volume to the call center just after the infomer-
cial is aired. No infomercials were run during this 7-day
period so the appropriate population cumulative intensity
function �(t) is a baseline process that excludes the addi-
tional volume generated by infomercials. A separate anal-
ysis is necessary to evaluate the magnitude and duration
of the additional call volume generated by an infomercial.
Although there are approximately 5% of the calls which are
abandoned, we treat this input as the incoming stream, real-
izing that the estimate obtained will be a bit pessimistic (i.e.,
an overestimate). The totals in the bottom row of the table
indicate that call volume is not homogeneous throughout
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Table 1. Arrival counts to a call center

Time

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 Total

Sunday 42 47 79 101 83 74 79 105 88 94 84 51 68 995
Monday 63 144 133 163 140 104 137 145 163 150 113 91 79 1625
Tuesday 75 129 148 144 134 128 132 135 150 119 102 66 58 1520
Wednesday 76 115 97 127 98 120 130 130 124 97 92 51 77 1334
Thursday 57 108 184 134 131 109 129 135 118 108 94 77 69 1453
Friday 72 134 139 129 123 114 106 156 145 123 102 67 68 1478
Saturday 56 91 93 96 77 83 86 109 127 95 81 68 45 1107

Total 441 768 873 894 786 732 799 915 915 786 668 471 464 9512

the day and that the intensity function has two modes: one
between 10 am and 12 pm and a second between 3 pm and
5 pm. It also appears that the volume varies by day of the
week.

Fig. 1. Geometry associated with the next-event approach for
variate generation when m = 3, a0 = 0, a1 = 2, a2 = 6, a3 = 7;
n1 = 10, n2 = 3, n3 = 11, k = 2, T = 1.624, �̂(T) = 4.060, E =
5.091, �̂(T) + E = 9.151, �̂−1(�̂(T) + E) = 6.482. The dashed
lines indicate the interval boundaries where the cumulative inten-
sity function estimate changes slope.

The lightest day in terms of call volume was Sunday. The
heaviest day in terms of call volume was Monday. Figure 2
contains a plot of the estimated cumulative intensity func-
tion for Sunday and Monday. The 99% confidence intervals
for the cumulative intensity function indicate that there is
a statistically significant difference between the call volume
on the two days.

Assuming that an exhaustive pairwise comparison of the
seven days under consideration indicates that the weekends
can be clumped together into a single model (with k = 2)
and that the weekdays can be clumped together into a single
model (with k = 5), Figure 3 contains the two cumulative
intensity function estimates and the associated 99% con-
fidence intervals. Not surprisingly, the confidence interval
limits for the weekdays are narrower than those for the
weekends due to the larger sample size. These cumulative
intensity function estimates can be used as input models in
a discrete-event simulation for decision-making purposes
(e.g., staffing).

5. Extensions and conclusions

In most practical settings, the number of realizations col-
lected k, will be a fixed constant from interval to interval.
In some instances, however, such as subintervals contain-
ing an unusually low number of events or subintervals of
particular interest, k may not be fixed. With only minor
modifications (e.g., replacing k by ki or kj), the estimators
and variate generation algorithms can be modified to ac-
commodate the generalization.

This article has shown that it is straightforward to esti-
mate and simulate NHPPs from count data collected over
predefined subintervals. One drawback with count data is
that the boundaries on the cells are arbitrary. If the cells
are too narrow, then sampling variability can cause unre-
liable estimates. If the cells are too wide, then it is pos-
sible to miss a trend. Therefore, event times, rather than
counts, are preferred. In these cases, nonparametric esti-
mates suggested, for example, by Leemis (1991) and Arkin
and Leemis (2000), or parametric estimates suggested, for
example, by Kuhl et al. (1997) or Rigdon and Basu (2000),
are appropriate.
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Fig. 2. Cumulative intensity function estimate for Sunday and Monday.

Fig. 3. Cumulative intensity function estimate for weekdays and weekends.
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