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ABSTRACT

Most discrete-event simulation models have stochastic
elements that mimic the probabilistic nature of the sys-
tem under consideration. A close match between the in-
put model and the true underlying probabilistic mech-
anism associated with the system is required for suc-
cessful input modeling. The general question consid-
ered here is how to model an element (e.g., arrival pro-
cess, service times) in a discrete-event simulation given
a data set collected on the element of interest. For
brevity, it is assumed that data is available on the as-
pect of the simulation of interest. It is also assumed
that raw data is available, as opposed to censored data,
grouped data, or summary statistics. This example-
driven tutorial examines introductory techniques for in-
put modeling. Most simulation texts (e.g., Law and
Kelton 2000) have a broader treatment of input model-
ing than presented here. Nelson and Yamnitsky (1998)
survey advanced techniques.

1 DATA COLLECTION

There are two approaches that arise with respect to the
collection of data. The first is the classical approach,
where a designed experiment is conducted to collect the
data. The second is the exploratory approach, where
questions are addressed by means of existing data that
the modeler had no hand in collecting. The first ap-
proach is better in terms of control and the second ap-
proach is generally better in terms of cost.

Collecting data on the appropriate elements of the
system of interest is one of the initial and pivotal steps
in successful input modeling. An inexperienced mod-
eler, for example, collects wait times on a single-server
queue when waiting time is the performance measure
of interest. Although these wait times are valuable for
model validation, they do not contribute to the input
model. The appropriate data elements to collect for
an input model for a single-server queue are typically

arrival and service times. An analysis of sample data
collected on such a queue is given in Sections 3.1 and
3.2.

Even if the decision to sample the appropriate el-
ement is made correctly, Bratley, Fox, and Schrage
(1987) warn that there are several things that can be
“wrong” about the data set. Vending machine sales will
be used to illustrate the difficulties.

• Wrong amount of aggregation. We desire to model
daily sales, but have only monthly sales.

• Wrong distribution in time. We have sales for this
month and want to model next month’s sales.

• Wrong distribution in space. We want to model
sales at a vending machine in location A, but only
have sales figures on a vending machine at location
B.

• Censored data. We want to model demand, but we
only have sales data. If the vending machine ever
sold out, this constitutes a right-censored observa-
tion. The reliability and biostatistical literature
contains techniques for accommodating censored
data sets (Lawless 1982).

• Insufficient distribution resolution. We want the
distribution of number the of soda cans sold at a
particular vending machine, but our data is given
in cases, effectively rounding the data up to the
next multiple of 24.

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy illustrating the scope of
potential input models available to simulation analysts.
Modelers too often restrict their choice of input models
to the top two branches. There is certainly no unique-
ness in the branching structure chosen for the taxon-
omy. The branches under stochastic processes, for ex-
ample, could have been state followed by time, rather
than time followed by state, as presented.
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Figure 1: A Taxonomy for Input Models



Examples of specific models that could be placed on
the branches of the taxonomy appear at the far right
of the diagram. Mixed, univariate, time-independent
input models have “empirical/trace-driven” given as a
possible model. All of the branches include this particu-
lar model. A trace-driven input model simply generates
a process that is identical to the collected data values so
as not to rely on a parametric model. A simple example
is a sequence of arrival times collected over a 24-hour
time period. The trace-driven input model for the ar-
rival process is generated by having arrivals occur at
the same times as the observed values.

The upper half of the taxonomy contains models
that are independent of time. These models could have
been referred to as Monte Carlo models. Models are
classified by whether there is one or several variables
of interest, and whether the distribution of these ran-
dom variables is discrete, continuous, or contains both
continuous and discrete elements. Examples of univari-
ate discrete models include the binomial distribution
and a degenerate distribution with all of its mass at
one value. Examples of continuous distributions include
the normal distribution and an exponential distribution
with a random parameter Λ (see, for example, Martz
and Waller 1982). Bézier curves (Flanigan–Wagner and
Wilson 1993) offer a unique combination of the para-
metric and nonparametric approaches. An initial dis-
tribution is fitted to the data set, then the modeler
decides whether differences between the empirical and
fitted models represent sampling variability or an as-
pect of the distribution that should be included in the
input model.

Examples of k-variable multivariate input models
(Johnson 1987, Wilson 1997) include a sequence of k
independent binomial random variables, a multivari-
ate normal distribution with mean µ and variance-
covariance matrix Σ and a bivariate exponential dis-
tribution (Barlow and Proschan 1981).

The lower half of the taxonomy contains stochas-
tic process models. These models are often used to
solve problems at the system level, in addition to
serving as input models for simulations with stochas-
tic elements. Models are classified by how time is
measured (discrete/continuous), the state space (dis-
crete/continuous) and whether the model is station-
ary in time. For Markov models, the discrete-state/
continuous-state branch typically determines whether
the model will be called a “chain” or a “process”,
and the stationary/nonstationary branch typically de-
termines whether the model will be preceded with the
term “homogeneous” or “nonhomogeneous”. Exam-
ples of discrete-time stochastic processes include ho-
mogeneous, discrete-time Markov chains (Ross 1997)
and ARIMA time series models (Box and Jenkins

1976). Since point processes are counting processes,
they have been placed on the continuous-time, discrete-
space branch.

In conclusion, modelers are too often limited to
univariate, stationary models since software is typically
written for fitting distributions to these models. Suc-
cessful input modeling requires knowledge of the full
range of possible probabilistic input models.

3 EXAMPLES

Two simple examples illustrate the types of decisions
that often arise in input modeling. The first example
determines an input model for service times and the sec-
ond example determines an input model for an arrival
process.

3.1 Service Time Model

Consider a data set of n = 23 service times collected to
determine an input model in a discrete-event simulation
of a queuing system. The service times in seconds are

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service times come from the life testing
literature (Lawless 1982, p. 228), the same principles
apply to both input modeling and survival analysis.]

The first step is to assess whether the observations
are independent and identically distributed (iid). The
data must be given in the order collected for indepen-
dence to be assessed. Situations where the iid assump-
tion would not be valid include:

• A new teller has been hired at a bank and the
23 service times represent a task that has a steep
learning curve. The expected service time is likely
to decrease as the new teller learns how to perform
the task more efficiently.

• The service times represent 23 times to completion
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the expected
time to complete the task is likely to increase with
time.

If a simple linear regression of the observation num-
bers versus the service times shows a significant nonzero
slope, then the iid assumption is probably not appro-
priate.

Assume that there is a suspicion that a learning
curve is present, which makes a modeler suspect that



the service times are decreasing. One appropriate hy-
pothesis test is

H0 : β1 = 0

versus
H1 : β1 < 0

associated with the linear model (Neter, Wasserman,
and Kutner 1989)

Y = β0 + β1X + ε,

where X is the observation number, Y is the service
time, β0 is the intercept, β1 is the slope, and ε is an
error term. Figure 2 shows a plot of the (xi, yi) pairs
for i = 1, 2, . . . , 23, along with the estimated regression
line. The p -value associated with the hypothesis test
is 0.14, which is not enough evidence to conclude that
there is a statistically significant learning curve present.
The negative slope is likely due to sampling variability.
The p -value may, however, be small enough to warrant
further data collection.
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Figure 2: Service Time Vs. Observation Number

There are a number of other graphical and statisti-
cal methods for assessing independence. These include
analysis of the sample autocorrelation function associ-
ated with the observations and a scatterplot of adjacent
observations (Law and Kelton 2000). The sample au-
tocorrelation function (ACF) for the service times is
plotted in Figure 3 for the first ten lags. The sample
ACF value at lag 1, for example, is the sample cor-
relation for adjacent service times. The sample ACF
value at lag 4, for example, is the sample correlation
for service times four customers apart. The horizontal
dotted lines at ± 2√

n
are 95% bounds used to determine

whether the spikes in the ACF are statistically signifi-
cant. None were statistically significant for the service

time data. For this particular example, assume that we
are satisfied that the observations are truly iid in order
to perform a classical statistical analysis.
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Figure 3: Sample Autocorrelation Function

The next step in the analysis of this data set in-
cludes plotting a histogram and calculating the values
of some sample statistics. A histogram of the observa-
tions is shown in Figure 4. Although the data set is
small, a skewed bell-shaped pattern is apparent. The
largest observation lies in the far right-hand tail of the
distribution, so care must be taken to assure that it
is representative of the population. The sample mean,
standard deviation, coefficient of variation, and skew-
ness are

x̄ = 72.22 s = 37.49
s

x̄
= 0.52

1

n

n
∑

i=1

(

xi − x̄

s

)3

= 0.88.

Examples of the interpretations of these sample statis-
tics are:

• A coefficient of variation s/x̄ close to 1, along with
the appropriate histogram shape, indicates that
the exponential distribution is a potential input
model.

• A sample skewness close to 0 indicates that a sym-
metric distribution (e.g., a normal or uniform dis-
tribution) is a potential input model.

The next decision that needs to be made is whether
a parametric or nonparametric input model should be
used. One simple nonparametric model would repeat-
edly select one of the service times with probability
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Figure 4: Histogram of Service Times

1/23. The small size of the data set, the tied value,
68.64 seconds, and the observation in the far right-hand
tail of the distribution, 173.40 seconds, tend to indicate
that a parametric analysis is more appropriate. For this
particular data set, a parametric approach is chosen.

There are dozens of choices for a univariate para-
metric model for the service times. These include gen-
eral families of scalar distributions, modified scalar dis-
tributions and commonly-used parametric distributions
(see, for example, Schmeiser 1990). Since the data is
drawn from a continuous population and the support
of the distribution is positive, a time-independent, uni-
variate, continuous input model is chosen. The shape of
the histogram indicates that the gamma, inverse Gaus-
sian, log normal, and Weibull distributions (Lawless
1982) are good candidates. Derivation of the point and
interval estimates for the Weibull distribution are given
in detail here. Similar approaches apply to the other
distributions.

Parameter estimates for the Weibull distribution
can be found by least squares, the method of moments,
and maximum likelihood. Due to desirable statisti-
cal properties, maximum likelihood is emphasized here.
The Weibull distribution has probability density func-
tion

f(x) = λκκxκ−1e−(λx)κ x ≥ 0,

where λ is a positive scale parameter and κ is a positive
shape parameter. Let x1, x2, . . . , xn denote the data
values. The likelihood function is

L(λ, κ) =

n
∏

i=1

f(xi) = λnκκn

[

n
∏

i=1

xi

]κ−1

e−
∑

n

i=1
(λxi)

κ

.

Since the natural logarithm (log) is a monotone func-
tion, the likelihood function and its logarithm achieve

their maximum at the same values of λ and κ. The
mathematics are typically more tractable for maximiz-
ing a log likelihood function, which, for the Weibull
distribution, is

logL(λ, κ) = n log κ+κn log λ+(κ−1)

n
∑

i=1

log xi−λ
κ

n
∑

i=1

x
κ

i .

The 2× 1 score vector has elements

∂ logL(λ, κ)

∂λ
=
κn

λ
− κλκ−1

n
∑

i=1

xκi

and

∂ logL(λ, κ)

∂κ
=

n

κ
+ n log λ+

n
∑

i=1

log xi −

n
∑

i=1

(λxi)
κ log λxi.

When these equations are equated to zero, the simul-
taneous equations have no closed-form solution for the
MLEs λ̂ and κ̂:

κn

λ
− κλκ−1

n
∑

i=1

xκi = 0

n

κ
+ n log λ+

n
∑

i=1

log xi −
n
∑

i=1

(λxi)
κ log λxi = 0.

To reduce the problem to a single unknown, the first
equation can be solved for λ in terms of κ yielding

λ =

(

n
∑n

i=1 x
κ
i

)1/κ

.

Law and Kelton (2000, p. 305) give an initial estimate
for κ and Qiao and Tsokos (1994) present a fixed-point
algorithm for calculating the maximum likelihood es-
timators λ̂ and κ̂. Their algorithm is guaranteed to
converge for any positive initial estimate for κ for a
complete data set.

The score vector has a mean of 0 and a variance-
covariance matrix I(λ, κ) given by the 2× 2 Fisher in-
formation matrix

I(λ, κ) =





E
[

−∂2 logL(λ,κ)
∂λ2

]

E
[

−∂2 logL(λ,κ)
∂κ∂λ

]

E
[

−∂2 logL(λ,κ)
∂λ∂κ

]

E
[

−∂2 logL(λ,κ)
∂κ2

]



 .

The observed information matrix

O(λ̂, κ̂) =

[

−∂2 logL(λ̂,κ̂)
∂λ2

−∂2 logL(λ̂,κ̂)
∂κ∂λ

−∂2 logL(λ̂,κ̂)
∂λ∂κ

−∂2 logL(λ̂,κ̂)
∂κ2

]

,

can be used to estimate I(λ, κ).
For the 23 service times, the fitted Weibull distri-

bution has maximum likelihood estimators λ̂ = 0.0122



and κ̂ = 2.10. The log likelihood function evaluated
at the maximum likelihood estimators is logL(λ̂, κ̂) =
−113.691. Figure 5 shows the empirical cumulative dis-
tribution function (a step function with a step of height
1/23 at each data point) along with the Weibull fit to
the data.
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Figure 5: Empirical and Fitted Cumulative Distribu-
tion Functions for the Service Times

The observed information matrix is

O(λ̂, κ̂) =

[

681, 000
875

875
10.4

]

,

revealing a positive correlation between the elements of
the score vector. We now consider interval estimators
for λ and κ. Using the fact that the likelihood ratio
statistic, 2[logL(λ̂, κ̂) − logL(λ, κ)], is asymptotically
χ2 distributed in n with 2 degrees of freedom and that
χ2

2,0.05 = 5.99, a 95% confidence region for the param-
eters is all λ and κ satisfying

2[−113.691− logL(λ, κ)] < 5.99.

The 95% confidence region is shown in Figure 6. The
line κ = 1 is not interior to the region, indicating
that the exponential distribution is not an appropriate
model for this particular data set.

As further proof that κ is significantly different
from 1, the standard errors of the distribution of the
parameter estimators can be computed by using the in-
verse of the observed information matrix

O−1(λ̂, κ̂) =

[

0.00000165
−0.000139

−0.000139
0.108

]

.

This is the asymptotic variance-covariance matrix for
the parameter estimators λ̂ and κ̂. The standard errors
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Figure 6: 95% Confidence Region Based on the Likeli-
hood Ratio Statistic

of the parameter estimators are the square roots of the
diagonal elements

σ̂λ̂ = 0.00128 σ̂κ̂ = 0.329.

Thus an asymptotic 95% confidence interval for κ is

2.10− (1.96)(0.329) < κ < 2.10 + (1.96)(0.329)

or

1.46 < κ < 2.74,

since z0.025 = 1.96. Since this confidence interval does
not contain 1, the inclusion of the Weibull shape pa-
rameter κ is justified.

The model adequacy should now be assessed. Since
the chi-square goodness-of-fit test has arbitrary interval
limits, it should not be applied to small data sets (e.g.,
n = 23), such as the service times being considered
here. The Kolmogorov–Smirnov, Cramer–von Mises, or
Anderson–Darling goodness-of-fit tests (Lawless 1982)
are appropriate here. The Kolmogorov–Smirnov test
statistic, which is the maximum vertical difference be-
tween the empirical and fitted cumulative distribution
functions, is 0.151 for this data set with a Weibull
fit. This test statistic corresponds to a p -value of ap-
proximately 0.15 (Law and Kelton 2000, p. 366), so
the Weibull distribution provides a reasonable model
for these service times. The Kolmogorov–Smirnov test
statistic values for several models are shown below, in-
cluding four that are superior to the Weibull with re-
spect to fit.
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Figure 7: A P–P Plot for the Service Times Using the
Weibull Model

Model Test statistic
Exponential 0.307
Weibull 0.151
Gamma 0.123

Arctangent 0.094
Log normal 0.090

Inverse Gaussian 0.088

Many of the discrete-event simulation packages ex-
hibited at the Winter Simulation Conference have the
capability of determining maximum likelihood estima-
tors for several popular parametric distributions. If the
package also performs a goodness-of-fit test such as the
Kolmogorov–Smirnov or chi-square test, the distribu-
tion that best fits the data set can quickly be deter-
mined.

P–P (probability–probability) and Q–Q (quantile–
quantile) plots can also be used to assess model ad-
equacy. A P–P plot, for example, is a plot of the
fitted cumulative distribution function at the ith or-
der statistic x(i), F̂ (x(i)), versus the adjusted empirical

cumulative distribution function, F̃ (x(i)) = i−0.5
n , for

i = 1, 2, . . . , n. A plot where the points fall close to
the line passing through the origin and (1, 1) indicates
a good fit. For the 23 service times, a P–P plot for
the Weibull fit is shown in Figure 7, along with a line
connecting (0, 0) and (1, 1). P–P plots should be con-
structed for all competing models.

3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation
of whether a stationary (no time dependence) or non-
stationary model is appropriate. Modeling arrivals to

a lunch wagon is used to illustrate the decision-making
process.

Arrival times to a lunch wagon between 10:00 AM
and 2:30 PM are collected on three days. The realiza-
tions were generated from a hypothetical arrival process
given by Klein and Roberts (1984). A total of n = 150
arrival times were observed, including n1 = 56, n2 = 42
and n3 = 52 on the k = 3 days. Defining (0, 4.5] to be
the time interval of interest (in hours) the three real-
izations are

0.2152 0.3494 0.3943 . . . 4.175 4.248,

0.3927 0.6211 0.7504 . . . 4.044 4.374,

and

0.4499 0.5495 0.6921 . . . 3.643 4.357.

One preliminary statistical issue concerning this
data is whether the three days represent processes
drawn from the same population. External factors such
as the weather, day of the week, advertisement, and
workload should be fixed. For this particular example,
we assume that these factors have been fixed and the
three processes are representative of the population of
arrival processes to the lunch wagon.

The input model for the process comes from the
lower branch (stochastic processes) of the taxonomy in
Figure 1. Furthermore, the arrival times constitute re-
alizations of a continuous-time, discrete-state stochastic
process, so the remaining question concerns whether or
not the process is stationary.

If the process proves to be stationary, the tech-
niques from the previous example, such as drawing a
histogram, and choosing a parametric or nonparametric
model for the interarrival times, are appropriate. This
results in a Poisson or renewal process model. On the
other hand, if the process is nonstationary, a nonhomo-
geneous Poisson process might be an appropriate input
model. A nonhomogeneous Poisson process is governed
by an intensity function λ(t) which gives an arrival rate
[e.g., λ(2) = 10 means that the arrival rate is 10 cus-
tomers per hour at time 2] that can vary with time.
The next paragraph describes a nonparametric proce-
dure for estimating the cumulative intensity function
Λ(t) =

∫ t

0
λ(τ)dτ from k realizations.

The cumulative intensity function is to be esti-
mated on (0, S], where S is a known constant which
equals 4.5 in this case. The interval (0, S] may represent
the time a system allows arrivals (e.g., 9 AM to 5 PM
at a bank) or one period of a cycle (e.g., one day at an
emergency room). Let ni, i = 1, 2, . . . , k be the number

of observations in the ith realization, n =
∑k

i=1 ni, and
let t(1), t(2), . . . , t(n) be the order statistics of the super-
position of the k realizations, t(0) = 0 and t(n+1) = S.



The piecewise-linear estimator of the cumulative inten-
sity function between the time values in the superposi-
tion is

Λ̂(t) =
in

(n+ 1)k
+

[

n(t− t(i))

(n+ 1)k(t(i+1) − t(i))

]

for t(i) < t ≤ t(i+1); i = 0, 1, 2, . . . , n, which is given
in Leemis (1991) and extended to nonoverlapping in-
tervals in Arkin and Leemis (2000). Asymptotic confi-
dence intervals and variate generation via inversion are
also contained in these references. This estimator (solid
line), along with 95% confidence bounds (dashed lines),
are given in Figure 8. The cumulative intensity function
estimator at time 4.5 is 150/3 = 50, the point estima-
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Figure 8: Point and 95% Confidence Interval Estima-
tors for the Cumulative Intensity Function

tor for the expected number of arriving customers per
day. If Λ̂(t) is linear, a stationary model is appropriate.
Since customers are more likely to arrive to the lunch
wagon between 12:00 (t = 2) and 1:00 (t = 3) than
at other times and the cumulative intensity function
estimator has an S-shape, a nonstationary model is in-
dicated. More specifically, a nonhomogeneous Poisson
process is a reasonable model for the arrival process.

The next question to be determined is whether a
parametric or nonparametric model should be chosen
for the process. Figure 8 indicates that the intensity
function increases initially, remains fairly constant dur-
ing the noon hour, then decreases. This may be dif-
ficult to model parametrically, so a nonparametric ap-
proach, possibly using Λ̂(t) in Figure 8 might be appro-
priate. Process generation for simulation is straightfor-
ward (Leemis 1991).

There are many potential parametric models for
nonstationary arrival processes. The next paragraph

describes the procedure for fitting a power law process,
where the intensity function has the same parametric
form as the hazard function for theWeibull distribution.
Other models can be fit in a similar fashion.

The likelihood function for estimating the vector of
unknown parameters θ = (θ1, θ2, . . . , θp) from a single
realization on (0, S] is

L(θ) =

[

n
∏

i=1

λ(ti)

]

exp

[

−
∫ S

0

λ(t)dt

]

.

MLEs can be determined by maximizing L(θ) or its log-
arithm with respect to all unknown parameters. Con-
fidence intervals for the unknown parameters can be
found in a similar manner to the service time example.
Owing to the additive property of the intensity function
for multiple realizations, the likelihood function for the
case of k realizations is

L(θ) =

[

n
∏

i=1

kλ(ti)

]

exp

[

−
∫ S

0

kλ(t)dt

]

.

The power law process has intensity function

λ(t) = λκκtκ−1 t > 0,

for λ > 0 and κ > 0. Thus the likelihood function for k
realizations is

L(λ, κ) = knλnκκne−k(λS)κ
n
∏

i=1

tκ−1
i .

The log likelihood function is

logL(λ, κ) = n log(kκ)−nκ log λ−k(λS)κ+(κ−1)

n
∑

i=1

log ti.

The 2× 1 score vector has elements

∂ logL(λ, κ)

∂λ
=

κn

λ
− kS

κ
κλ

κ−1

and

∂ logL(λ, κ)

∂κ
= n log λ+

n

κ
+

n
∑

i=1

log ti − k(λS)κ log (λS) .

When the score is equated to zero, the analytic expres-
sions for λ and κ are

κ̂ =
n

n logS −∑n
i=1 log ti

λ̂ =
1

S

(n

k

)1/κ

.

Substituting the arrival times into these formulas yields
MLEs λ̂ = 4.86 and κ̂ = 1.27. The cumulative intensity
function for the power law process

Λ(t) = (λt)κ t > 0,
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Figure 9: Empirical and Fitted Power Law Estimators
for the Cumulative Intensity Function

is plotted along with the nonparametric estimator in
Figure 9. Note that due to the peak in customer arrivals
around the noon hour, the power law process is not an
appropriate model since it is not able to adequately
approximate the intensity function.

Since the intensity function is analogous to the haz-
ard function for time-independent models, an appropri-
ate 2-parameter distribution to consider would be one
with a hazard function that increases initially, then de-
creases. A log-logistic process, for example, with inten-
sity function (Lawless 1982)

λ(t) =
λκ(λt)κ−1

1 + (λt)κ
t > 0,

for λ > 0 and κ > 0, would certainly be more ap-
propriate. More generally, the EPTMP (exponential-
polynomial-trigonometric function with multiple peri-
odicities) model, originally given by Lee, Wilson and
Crawford (1991) and generalized by Kuhl, Damerdji
and Wilson (1998) with intensity function

λ(t) = exp

[

m
∑

i=0

αit
i +

p
∑

k=1

γk sin(ωkt+ φk)

]

t > 0.

can model a nonmonotonic intensity function.

4 SOFTWARE

The typical input modeling software is capable of fit-
ting several distributions to a data set and evaluating
goodness of fit. A symbolic, Maple-based probability
package named APPL, developed by Glen, Evans and
Leemis (2001), is briefly illustrated here to show the

modeling flexibility gained by using a computer alge-
bra system. The package allows a user to define and
manipulate random variables, as opposed to numeri-
cal procedures applied to data. The package allows a
user to calculate expected values, distributions of order
statistics, transformations of random variables, distri-
butions of sums of independent random variables, etc.
Although initially written to solve probability prob-
lems, the software has been extended to address input
modeling problems as well. The following eight sub-
sections contain examples that illustrate the use of the
language. The first six introduce the probability side of
the language and the last two are input modeling ap-
plications. The Maple prompt > is included with the
APPL statements.

4.1 Convolutions

Let X1, X2, . . . , X10 be independent and identically dis-
tributed U(0,1) random variables. Find

Pr

(

4 <

10
∑

i=1

Xi < 6

)

.

The typical approaches to a question of this type are
central limit theorem, which is approximate, and Monte
Carlo simulation, which, although it converges to the
exact solution, requires custom coding and each addi-
tional digit of accuracy requires a 100-fold increase in
computational effort. The APPL statements to solve
this problem are

> n := 10;

> X := UniformRV(0, 1);

> Y := ConvolutionIID(X, n);

> CDF(Y, 6) - CDF(Y, 4);

which yield
655177

907200
,

or approximately 0.722. The central limit theorem
yields only one digit of accuracy in this case due to
the small value of n and the non-normality of the pop-
ulation distribution. The ConvolutionIID procedure
determines the PDF of the sum, and the CDF procedure
determines the value of the CDF at the values indicated.

4.2 Symbolic Parameters

APPL is capable of handling symbolic parameters, in
addition to the numeric parameters from the previous
example. Let X have the triangular distribution with
parameters a, b, and c. Find the CDF of X.
The APPL statements to determine the CDF are



> X := TriangularRV(a, b, c);

> CDF(X);

which yield

F (x) =































0 x ≤ a
(x− a)2

(c− a)(b− a)
a < x ≤ b

1− (c− x)2

(c− a)(c− b)
b < x ≤ c

1 x > c.

4.3 Non-Standard Distributions

The uniform and triangular distributions have been
used in the previous examples. Cases will arise where a
non-standard distribution will be needed, as illustrated
in this example. Let the random variable T have hazard
function (Lawless, 1982)

hT (t) =

{

λ 0 < t < 1
λt t ≥ 1

for λ > 0. Find the survivor function (the complement
of the CDF).
The APPL statements require inputting the hazard
function for T as a list of three sublists

> assume(lambda > 0);

> T := [[t -> lambda, t -> lambda * t],

[0, 1, infinity],

["Continuous", "HF"]];

> SF(T);

which yield the survivor function

ST (t) =

{

e−λt 0 < t < 1

e−λ(t2+1)/2 t ≥ 1.

4.4 Products

Let X ∼ U(1, 3) and Y ∼ U(1, 2). Assume that X and
Y are independent. Find the distribution of V = XY .
The APPL statements to solve this problem are

> X := UniformRV(1, 3);

> Y := UniformRV(1, 2);

> V := Product(X, Y);

which return the probability density function of V as

fV (v) =











1
2 log v 1 < v ≤ 2
1
2 log 2 2 < v ≤ 3
1
2 log(6/v) 3 < v < 6.

More complicated distributions than the uniform can
be input in a similar manner.

4.5 Minimums, Maximums, Moments

The Kolmogorov–Smirnov test statistic in the all pa-
rameters known case has a piecewise polynomial CDF,
and is referred to here as a KS random variable. Let X
be a KS random variable with n = 6. Let Y be a KS
random variable with n = 4. Assuming that X and Y
are independent, find

V ar [max {X,Y }] .

The APPL statements to solve this problem are

> X := KSRV(6);

> Y := KSRV(4);

> Z := Maximum(X, Y);

> Variance(Z);

which yield the variance as exactly

1025104745465977580000192015279

83793210145582989309719976345600
,

or approximately 0.0122337.

4.6 Order Statistics

Fifteen values are sampled with replacement from a ge-
ometric population with p = 2/5. Find the probability
that the maximum order statistic from the sample is
seven.
APPL handles discrete random variables with an inter-
nal data structure that is quite similar to the continuous
case. The statements to solve this problem are

> X := GeometricRV(1 / 3);

> Y := OrderStat(X, 15, 15);

> PDF(Y, 7);

yielding 19120529999425587086503291891100284387002471961024
125236737537878753441860054533045969266612127846243

or approximately 0.1527.

4.7 Maximum Likelihood Estimation

Maximum likelihood estimators can also be calculated
in APPL. Consider the n = 23 service times from Sec-
tion 3.1. Find the maximum likelihood estimators for
λ and µ associated with the inverse Gaussian distribu-
tion.
Using the APPL procedure MLE

> stimes := [105.84, 28.92, ..., 33.00];

> X := InverseGaussianRV(lambda, mu);

> hat := MLE(X, stimes, [lambda, mu]);

The variable hat is assigned the list [231.6740936,

72.22434782] corresponding to the MLEs

λ̂ = 231.67 and µ̂ = 72.22.



The value of APPL over traditional input model-
ing software is the ability to create new random vari-
ables. The user could, for example, fit the reciprocal
of the square root of an exponential random variable
to the service time data set. The additional APPL
statements required to find the distribution of the re-
ciprocal of the square root of an exponential random
variable, the MLE for the unknown parameter, and the
Kolmogorov–Smirnov goodness-of-fit statistic for this
distribution and the service time data set are

> unassign(’lambda’);

> X := ExponentialRV(lambda);

> g := [[x -> 1 / sqrt(x)], [0, infinity]];

> Y := Transform(X, g);

> hat := MLE(Y, stimes, [lambda]);

> KSTest(Y, stimes, [lambda = hat[1]]);

which calculate the MLE λ̂ ∼= 2244.50 and Kolmogorov–
Smirnov value 0.1416. The function g is used to find
the distribution of Y = g(X) = 1/

√
X.

4.8 Fitting NHPPs

Fit the arrival times to the lunchwagon from Section
3.2 to a power law process in APPL. The statements
required to fit the NHPP are

> arrtimes := [0.2152, 0.3494, ..., 4.374];

> X := WeibullRV(lambda, kappa);

> hat := MLENHPP(X, arrtimes,

[lambda, kappa], 4.5);

The last argument in MLENHPP tells the procedure that
the failures were observed over the interval (0, 4.5]
hours. The additional APPL statement

> PlotEmpVsFittedCIF(X, arrtimes,

[lambda = hat[1], kappa = hat[2]], 0, 4.5);

produces a plot (similar to Figure 9) of the empirical
cumulative intensity function and the power law cumu-
lative intensity function.

Additional examples of the use of APPL in input
modeling are in Evans and Leemis (2000).
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