INPUT MODELING USING A COMPUTER ALGEBRA SYSTEM

Diane L. Evans
Lawrence M. Leemis

Department of Mathematics
College of William & Mary
Williamsburg, VA 23187-8795, U.S.A.

ABSTRACT

Input modeling that involves fitting standard univari-
ate parametric probability distributions is typically per-
formed using an input modeling package. These pack-
ages typically fit several distributions to a data set, then
determine the distribution with the best fit by com-
paring goodness-of-fit statistics. But what if an ap-
propriate input model is not included in one of these
packages? The modeler must resort to deriving the ap-
propriate estimators by hand for the appropriate in-
put model. The purpose of this paper is to investi-
gate the use of a prototype Maple-based probability
language, known as APPL (A Probability Program-
ming Language), for input modeling. This language al-
lows an analyst to specify a standard or non-standard
distribution for an input model, and have the deriva-
tions performed automatically. Input modeling serves
as an excellent arena for illustrating the applicability
and usefulness of APPL. Besides including pre-defined
types for over 45 different continuous and discrete ran-
dom variables and over 30 procedures for manipulating
random variables (e.g., convolution, transformation),
APPL contains input modeling procedures for parame-
ter estimation, plotting empirical and fitted CDFs, and
performing goodness-of-fit tests. Using examples, we
illustrate its utility for input modeling.

1 PRELIMINARY EXAMPLES

There have been dozens of statistical languages devel-
oped over the years to relieve the computations as-
sociated with interactive or batch processing of data.
APPL’s data structures and algorithms were initially
developed to accommodate probability problems, but
may be used to solve input modeling problems as
well. In order to illustrate the syntax and capability
of APPL, we begin with some simple examples from
probability theory in this section, then address some
input modeling problems in the next section.

Example 1. Find the probability that the sum of
eight independent and identically distributed U(0,1)
random variables falls between % and 12—1 Letting
X1, X2, ..., Xg denote the U(0,1) random variables, the
desired probability is

8
7 1
Pris<y Xi<=|.
r(2<i—1 - 2)

The two standard methods for approximating the prob-
ability are the central limit theorem and Monte Carlo
simulation. The central limit theorem approximation
gives only one digit of accuracy for this particular prob-
lem. Monte Carlo simulation, on the other hand, con-
verges to the exact value if a good random number gen-
erator is used, but requires custom coding and requires
a 100-fold increase in computing time for each addi-
tional digit of accuracy. The APPL statements

n := 8;

X := UniformRV(0, 1);

Y := ConvolutionIID(X, n);
CDF(Y, 11 / 2) - CDF(Y, 7 / 2);

solve the problem exactly, yielding

3580151
5160960°

ConvolutionIID computes the exact distribution of the
sum and stores the result in Y. This may be coded up
more compactly as

Y := ConvolutionIID(UniformRV(0, 1), 8);
CDF(Y, 11 / 2) - CDF(Y, 7 / 2); 0

Example 2. Let X ~ triangular(1,2,3) and ¥ ~
U(1,2). If X and Y are independent, find the distribu-
tion of V = XY.

The APPL code to solve this problem is

X := TriangularRV(1, 2, 3);
Y := UniformRV(1, 2);
V := Product(X, Y);

which returns the probability density function of V as

v—In(v) —1 l<v<?2
—3v+4In(v)+4-5In(2) 2<v<3
fr(v) = —tv+In(3v)+1 I<v<4
v —31In(v) —3+1In(216) 4<wv<6.

More complicated distributions than the triangular
and uniform can be input in a similar manner. a

Example 3. Let X be a random variable associated
with the Kolmogorov—Smirnov test statistic in the all-
parameters-known case for sample size n = 5 under
Hy. Similarly, let Y be a Kolmogorov—Smirnov random
variable (all parameters known) with n = 3. If X and
Y are independent, find Var [max {X,Y}].

The APPL code to solve this problem is

X := KSRV(5);
Y := KSRV(3);
Z := Maximum(X, Y);
Variance(Z);

. . 10368751452319387558371671 .
which yields Fe3s 358 506a50000000006 ©F APproxi-

mately 0.0155362. m]

Since the base language for APPL is the symbolic
language Maple, symbolic parameters can be accom-
modated, as illustrated in the next example.

Example 4. Let X have the triangular distribution
with minimum a, mode b, and maximum ¢. Find the

CDF of X.
The APPL code to determine the CDF is

X := TriangularRV(a, b, c);
CDF(X);

which yields

0 s <a
_(@—a)? o

F(z) = (C_G)Eb:a;2 <z <b
1—m b<z<e

! r >c. 0O

APPL is capable of computing the distribution of
order statistics, as shown in the following two examples.

Example 5. Consider a sample of size n = 7 from a
Weibull distribution with scale parameter A =
shape parameter x = 2 with PDF

1
3 and

1 1 2
fx(z) = jwems” z > 0.

Calculate the mean of the second order statistic.
The mean of the second order statistic is

7 6
é\/ﬁﬂ' -2 V7T = 1.0456613,

which is computed with the APPL commands

X := WeibullRV(1 / 2, 2);
Y := OrderStat(X, 7, 2);
Mean(Y); a

Additionally, APPL is capable of performing oper-
ations on discrete random variables. The APPL data
structure is similar to that for continuous random
variables. There is a single format for continuous
random variables, but two formats for discrete random

variables.

Example 6. Define a geometric random variable X
with parameter p = i to model the number of trials up

to and including the first success, i.e., fx(z) = - gx_l,

11
z = 1,2,.... Calculate the median of the maximum
order statistic when n = 5 items are sampled with re-
placement from this geometric distribution.

The APPL statements

X := GeometricRV(1 / 4);
Y := OrderStat(X, 5, 5);
IDF(Y, 0.5);

return the median of the distribution as 8. O

A modeler is not limited to the built-in distributions
introduced so far (e.g., UniformRV, TriangularRV,
KSRV, WeibullRV). Any discrete or continuous ran-
dom variable can be accommodated by using the data
structure illustrated in the next example.

Example 7. Let the random variable T' have hazard
function

_[A 0<t<1
}”@)_{ Y’ t>1

for A > 0. Find the survivor function S(¢) = Pr(T >).
The APPL code requires inputting the hazard func-
tion for T as a list of three sublists

assume(lambda > 0);

T := [[t —> lambda, t -> lambda * tJ],
[0, 1, infinity],
["Continuous", "HF"]];

SF(T);

where the assume statement defines the parameter
space. This yields the survivor function

e~ M 0<t<1
ST(t) = { e—)\(t2+1)/2 +> 1. O

Example 8. (Hogg and Craig 1995, page 287) Let X
and X, be iid observations drawn from a population
with PDF

f(x) =021

where 8 > 0. Test Ho: 6 = 1 versus Hy: 6 > 1
using the test statistic X3 X, and the critical region
C = {(X1,X2)|X1X2 >3/4}. TFind the significance
level o and power function for the test.

The APPL code to compute the power function is

<<,

n = 2;

crit := 3 / 4;

assume(theta > 0);

X := [[x -> theta * x - (theta - 1)],
[0, 1], ["Continuous", "PDF"]];

T := ProductIID(X, n);

power := SF(T, crit);

which yields
Pr(rejecting Hol0) = 1 — (3/4)? +6(3/4)% In(3/4).

The fact that the population distribution is non-
standard indicates that X must be defined using the
list of three sublists data structure shown above.

To compute the significance level of the test, the ad-
ditional Maple statement

alpha := subs(theta = 1, power);
is required, yielding @ = 1/4 4 (3/4) In(3/4) = 0.0342.

To plot the power function requires the additional state-
ment

plot(power, theta = 0 .. 4);

Obviously, this example can be generalized for different
sample sizes, population distributions, and critical
values with only minor modification. a

Example 9. Consider the independent random vari-
ables Uy ~ U(0,1) and Uz ~ U(0,1). The Box—Muller
algorithm for generating a single standard normal de-
viate V can be coded in one line (Devroye 1996) as

V v/ =2InUj cos(27Us),

where U; and U; are independent random numbers.
Using the Transform (Glen, Leemis, and Drew 1997)
and Product procedures together, one can determine
the PDF of V. Due to the principle inverse difficulty
with trigonometric functions, however, the transforma-
tion must be rewritten as

V «— +/=2InUj cos(nUs)

before using Transform on the second factor in the ex-
pression.

The APPL code

Ul := UniformRV(O, 1);

U2 := UniformRV(0, 1);

gl := [[x -> 1In(x)], [0, infinityl];

X1 := Transform(Ul, gi);

g2 := [[x -> -2 * x], [-infinity, infinityl];
X2 := Transform(X1, g2);

g3 := [[x -> sqrt(x)], [0, infinityl];

X3 := Transform(X2, g3);

hi := [[x -> Pi * x], [-infinity, infinityl];
Y1 := Transform(U2, hil);

h2 := [[x -> cos(x)], [-infinity, infinityl]l;
Y2 := Transform(Y1, h2);

V := Product(X3, Y2);

yields the following PDF for V

v 0 e~ v?/(2¢2)

— ——dz —co<v <0
h(u) = TJo1z?V1 - 2?
o v 1 e~ v?/(227)
— 0<v<co.

- dzx
T Jo 21 — 22

While this form in not easily recognizable as the PDF
for the normal distribution, it is mathematically equiv-
alent to the more standard

1 e
h(v) = \/ﬂe /2

We anticipate that future versions of Maple will be
able to simplify these integrals. a

—oo < v < 0.

Example 10. This example considers the use of the
Kolmogorov—Smirnov test for assessing model adequacy
(goodness of fit) for the prime modulus multiplicative
linear congruential random number generator:

zi41 = az; mod m

fori=0,1,... where zo is aseed, a = 7° = 16, 807, and
m = 231 — 1 = 2,147,483, 647 (Park and Miller 1988).
The random numbers generated are z1/m, z2/m, etc.
If the seed zo = 987, 654, 321 is used, then the first five
random numbers generated are

1,605, 065, 384
2, 147, 483, 647

1,791,818, 921
2, 147, 483, 647

1,334, 477,970
2, 147, 483, 647

or, approximately

937, 423, 366
2, 147, 483, 647
252,032, 522
2, 147, 483, 647

0.7474168 0.8343807 0.4365218

0.6214147 0.1173618.

Since these five data values are being evaluated for their
uniformity, there should be a reasonable match between

their empirical cumulative distribution function and the
cumulative distribution function for a U(0, 1) random
variable. If we let the list Sample contain the five ran-
dom numbers generated above, then the APPL state-
ments required to plot these two functions over the in-
terval (0, 1), shown in Figure 1, are

n := b;
a =7 " 5;
seed := 987654321;
m:=2 "~ 31 - 1;
Sample := [];
for j from 1 to n do
seed := a * seed mod m:
Sample := [op(Sample), seed / m]:
od;

U := UniformRV(0, 1)

PlotEmpVsFittedCDF(U, Sample, [], 0, 1);

The five parameters to the plotting function are the
random variable whose CDF is to be plotted, the data
values in a list, the parameters associated with the ran-
dom variable (empty in this case of U(0, 1)), and the
optional lower and upper horizontal plotting limits.

[y
0.8
0.6

CDF

0.4+

0.2

0 02 04 , 06 08 1

Figure 1: The Empirical CDF of Sample and the The-
oretical U(0, 1) CDF

Let F(z) be the hypothesized CDF and F5(z) be the
empirical CDF. In order to determine the Kolmogorov—
Smirnov test statistic,

D5 =sup |F(z) — Fs(z)]|,

T
which measures the largest vertical distance between
the two cumulative distribution functions, the following
additional command must be issued

TestStat := KSTest(U, Sample, [1);

The approximate value of the test statistic for the five
random numbers is 0.2365, which occurs just to the left
of the random number 0.4365.

Since large values of the test statistic indicate a poor
fit and the cumulative distribution function Fp,(y) of
the test statistic is (Drew, Glen and Leemis 2000)

0 y<%

525 (105’3_1)5 %Sy<%
—9288z? +2401; _MJF_FL _ 96 Lcy<c &
1605 — 240z* +4241: +1207 - 188°07y sse BT S
_20%° +”4x _ +224 2_7281; 3<_y<l
1225 — 6% — 58 +24 +5221:1351 %§y<§
—20y° + 3245 — ﬁ 3+ 175 LD 1 I2y<d
—Sxy+221ry— :L‘y+ 121‘ :/—738?;8—1/1 §§g<§
2¢° — 10z* +201: — 2072 +10z -1 t<y<1
1 y2>1,

the p-value for this particular test is found with the
additional APPL statement

p := SF(KSRV(5),

which yields p = 0.8838.

If this process is repeated for a total of 1000 groups
of mnonoverlapping consecutive sets of five random
numbers, the empirical CDF of the Kolmogorov—
Smirnov statistics should be close to the theoretical
from APPL if the random number generator is valid.
Figure 2 is a plot of the empirical CDF of the 1000
Kolmogorov—Smirnov statistics versus the theoretical
Kolmogorov—Smirnov CDF with n = 5. The empirical
CDF lies slightly above the theoretical. If this experi-
ment were performed repeatedly, the empirical CDFs
should fluctuate around the theoretical CDF. a

TestStat);

0.8
0.6
CDF

0.4+

0.2

Figure 2: Empirical CDF of 1000 Kolmogorov—Smirnov
Statistics and the Theoretical Kolmogorov—Smirnov

CDF forn=5

2 INPUT MODELING

Both APPL and Maple can easily be adapted for use in
input modeling. This section gives several examples of
cases where a symbolic language is of use in analyzing
a data set.

Example 11. Model selection. One of the tools for se-
lecting a suitable input model is a plot of the coefficient
of variation (y = o/u) versus the skewness

X—pu 3
- .
After constructing this plot, the sample coefficient of
variance and sample skewness can be plotted for a par-

13=F

ticular data set or data sets to determine an appropriate
distribution for modeling the data.

The code that produces the plot in Figure 3 for the
Weibull, gamma, log normal, and log logistic distribu-
tions uses the additional APPL procedures CoefOfVar
and Skewness. The statements necessary to plot
the gamma distribution’s coefficient of variation ver-
sus skewness are shown below. The plots for the other
distributions are calculated similarly. The Maple state-
ment used to display all four plots in one graphic is also
provided.

unassign(’kappa’);

lambda := 1;

X := GammaRV(lambda, kappa);
¢ := CoefOfVar(X);

s := Skewness(X);

GammaPlot := plot([c, s, kappa = 0.5 .. 999]
labels = [cv, skewl):

plots[display] ({GammaPlot, WeibullPlot,
LogNormalPlot, LogLogisticPlot},
scaling = unconstrained);

The unassign command in Maple is used to unassign
any previous value given to an existing variable name,
such as k. Future unassign statements will be omitted
for brevity. a

Example 12. The following n = 23 ball bearing failure
times (in 108 revolutions) will be analyzed to determine
a parametric input model in a discrete-event simulation.
The failure times are (Lawless 1982, page 228)

17.88 28.92 33.00 41.52 42.12 45.60

48.48 51.84 51.96 54.12 55.56 67.80

68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

(The same principles that apply to the modeling of
these ball bearing failure times also apply to the model-
ing of service times or stationary interarrival times for
a queueing system.)

First, consider fitting an exponential distribution to
this data set using maximum likelihood. The data set

1 12 14

—11 //

Figure 3: Coefficient of Variation, v, Versus Skewness,
~s3, for the Gamma, Weibull, Log Normal, and Log Lo-
gistic Distributions

for the ball bearing failure times, BallBearing, is a
pre-defined list in APPL. The APPL procedure MLE re-
turns the maximum likelihood estimators as a list. Its
arguments are the model, the data, and the parameters
to be estimated. The APPL statements

X := ExponentialRV(lambda);
lamhat := MLE(X, BallBearing, [lambdal);

return A = 0.0138 as the maximum likelihood estima-
tor. The additional APPL command

PlotEmpVsFittedCDF (X, BallBearing,
[lambda = lamhat[1]], 0, 180);

where lambda = lamhat[1] assigns the value in the list
lamhat to lambda, produces a plot of the empirical and
fitted CDFs on one set of axes, as seen in Figure 4.

1
0.8+
0.6

CDF

0.4

0.2+

077720 40 60 80,100 120 140 160 180

Figure 4: Empirical and Fitted Exponential Cumula-
tive Distribution Functions for the Ball Bearing Data
Set

In order to assess the model adequacy, either a formal
goodness-of-fit test can be performed, or goodness-of-fit
statistics can be compared for competing models. The
Kolmogorov—Smirnov test statistic, for example, can be
computed with the additional APPL statement

KSTest (X, BallBearing, [lambda = lamhat[1]]);

which returns 0.3068, indicating a rather poor fit. O

As an alternative, one might consider fitting the
reciprocal of an exponential random variable to the
ball bearing failure times, as suggested in the following
example.

Example 13. Fit the reciprocal of an exponential ran-
dom variable to the ball bearing failure times in the
previous example.

The APPL statements required to find the distribu-
tion of the reciprocal of an exponential random variable
and find the MLE for the unknown parameter are

X := ExponentialRV(lambda) ;

g := [[x > 1/ x]1, [0, infinityl];

Y := Transform(X, g);

lamhat := MLE(Y, BallBearing, [lambdal);

which derives the PDF of Y to be

A
fY (y) — y_‘Ze My

y>0

and calculates the MLE A = 55.06. The function g is
used to find the distribution of ¥ = ¢g(X) =1/X. O

As can be seen in Figure 5, the reciprocal of the
exponential also provides a poor fit to the ball bearing
data. Neither the exponential model nor its reciprocal
are appropriate for modeling the failure times. It might
be appropriate to consider two-parameter distribu-
tions as potential models, as shown in the next example.

Example 14. Fit the inverse Gaussian and Weibull
distributions to the ball bearing failure times. Again
using the APPL procedures MLE and KSTest,

X := InverseGaussianRV(lambda, mu);
hat := MLE(X, BallBearing, [lambda, mul);
KSValue := KSTest(X, BallBearing,

[lambda = hat[1], mu = hat[2]]);

yields an improved fit with Py 231.67, o =2 72.22, and
a Kolmogorov—Smirnov test statistic of 0.088. The pro-
cedure MLE is able to return the appropriate values be-
cause the maximum likelihood estimators are in closed
form for this particular distribution.

Unfortunately, the statements

0.8

0.6+

CDF

0.4+

0.24

077720 40 60 80 (100 120 140 160 180

Figure 5: Empirical and Reciprocal Exponential Fitted
Cumulative Distribution Functions for the Ball Bearing
Data Set

Y := WeibullRV(lambda, kappa);
hat := MLE(Y, BallBearing, [lambda, kappal);

fail to return the MLEs in APPL. The Maple numer-
ical equation solving procedure fsolve is not clever
enough to exploit some of the structure in the score
vector that is necessary to find the MLEs. Therefore
a special routine, MLEWeibull, has been written that
computes MLEs for the Weibull distribution.

Besides the procedures PlotEmpVsFittedCDF and
KSTest, fit can be assessed visually using a Q—Q or P-P
plot (Law and Kelton 2000, pages 352-358). The APPL
statements used to produce the Q—Q and P—P plots for
the Weibull fit to the ball bearing failures displayed in
Figures 6 and 7 are

QQPlot(Y, BallBearing,
[lambda = hat[1], kappa

PPPlot(Y, BallBearing,
[lambda = hat[1], kappa

hat[2]]);

hat[2]]); O

To conclude the ball bearing data set examples, the
following table summarizes the Kolmogorov—Smirnov
test statistic values for various distributions that were
fit to the data in APPL via maximum likelihood esti-
mation.

Model Test statistic
Exponential 0.307
Reciprocal of Exponential 0.306
Weibull 0.151
Gamma 0.123
Arctangent 0.094
Log normal 0.090
Inverse Gaussian 0.088

Another wrinkle that can present itself in input
modeling is the presence of censoring. A right-censored

Q-Q Plot
1801

1601
1401
120
1001
model
804
60
404

207

0 ""20 40 60 80 100 120 140 160 180
sample

Figure 6: Q-Q Plot of Ball Bearing Data with Fitted
Weibull Distribution

- P-P Plot
0.89
0.69
model
0.49
0.24
0 : : - :
0.2 O'4sample0‘6 0.8 1

Figure 7: P—P Plot of Ball Bearing Data with Fitted
Weibull Distribution

data set, for example, often occurs in reliability and
biostatistical applications. Examples likely to arise
in discrete-event input modeling situations include
machine failure times (when some machines have not
yet failed) and the analysis of rare events.

Example 15. Consider the problem of determining an
input model for the remission time for the treatment
group in the study concerning the drug 6-MP (Gehan
1965). Letting an asterisk denote a right-censored ob-
servation, the remission times (in weeks) are

6 6 6 6% 7 9% 10 10% 11* 13 16
17% 19% 20% 22 23 25% 32% 32% 34*% 35%,

Both MP6 and MP6Censor are pre-defined lists in
APPL. MP6 is simply the 21 data values given above,
and MP6Censor is the list

[1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

where (represents a censored value and 1 represents an
uncensored value. The statements used to determine
the MLE for an exponential distribution are

X := ExponentialRV(lambda);
hat := MLE(X, MP6, [lambda], MP6Censor);

The code yields A= 3%. Similarly, the statement

hat := MLEWeibull(MP6, MP6Censor);

yields the MLE estimates A= 0.03 and & = 1.35 for the
Weibull distribution. The Kaplan—Meier product-limit
survivor function estimate for the MP6 data set, along
with the fitted Weibull survivor function, are plotted in
Figure 8 using the additional APPL statements

Y := WeibullRV(lambda, kappa);
PlotEmpVsFittedSF(Y, MP6,
[lambda = hat[1], kappa = hat[2]],
MP6Censor, 0, 23);

The downward steps in the estimated survivor function
occur only at observed remission times. The six param-

17—
0.8

0.6

SF

0.4

0.2

15 20

Figure 8: Product-Limit Survivor Function Estimate
and Fitted Weibull Survivor Function for the 6-MP
Treatment Group

eters to the plotting function are the random variable
whose SF is to be plotted, the data values in a list,
the parameters associated with the random variable,
the right-censoring vector in a list, and the lower and
upper plotting limits. Note that the product-limit
estimator cuts off after the largest observed remission
time (Lawless 1982). O

All of the input modeling examples thus far have
been limited to continuous data. The next example fits
the geometric distribution as a model for daily demand
at a vending machine.

Example 16. A vending machine has capacity for 24
cans of “Purple Passion” grape drink. The machine is
restocked to capacity every day at noon. Restocking
time is negligible. The last five days have produced the
following Purple Passion sales:

14 24 18 20 24.

The demand for Purple Passion at this particular vend-
ing machine can be estimated from the data by treating
the 24-can sales figures as right-censored demand obser-
vations. If demand has the geometric distribution, with
probability function

F(t) = p(1 = p)*
find the MLE for p.

As discussed in the introductory section, many pro-
cedures, like MLE, are able to handle discrete distribu-
tions. Since the pre-defined geometric distribution in
APPL is parameterized for t = 1,2,..., we need to de-
fine a geometric random variable with the different pa-
rameterization (used above) in the list of three sublists
data structure. No new APPL commands are needed
to compute the MLE for p. The statements

X =[x ->px* (1 -p) "~ xl,

[0 .. infinity],

["Discrete", "PDF"]1];
PurplePass := [14, 24, 18, 20, 24];
PurplePassCensor := [1, 0, 1, 1, 0];
MLE(X, PurplePass, [p]l, PurplePassCensor);

t=0,1,2,...

yield p = %. Model adequacy is not considered for
this particular example. a

All previous examples have considered time-
independent observations. There are occasions when
a series of event times may be time dependent, and a
more complicated input model may be appropriate.

Example 17. Ignoring preventive maintenance, twelve
odometer readings (from a certain model of car) associ-
ated with failures appearing over the first 100,000 miles
are

12,942 28,489
88,143 91,809

65,561
92,360

78,254
94,078

83,639
98,231

85,603
99,900.

Consider fitting a nonhomogeneous Poisson process
to the above data set, where the ending time of the ob-
servation interval is assumed to be 100,000 miles. The
data can be approximated by a power law process (i.e.,
the intensity function has the same parametric form
as the hazard function for a Weibull random variable).
The following APPL statements, including the addi-
tional procedure MLENHPP, return A = 0.000026317
and & = 2.56800:

CarFailures := [12042, 28489, 65561, 78254,
83639, 85603, 88143, 91809, 92360, 94078,
98231, 999001 ;

X := WeibullRV(lambda, kappa);

hat := MLENHPP(X, CarFailures,

[lambda, kappal, 100000);

The last argument in MLENHPP tells the procedure
that the failures were observed over the interval [0,
100,000] miles. The additional APPL statement

PlotEmpVsFittedCIF(X, Sample, [lambda = hat[1],
kappa = hat[2]], 0, 100000);

produces a plot of the empirical cumulative intensity
function and the fitted Weibull cumulative intensity
function as shown in Figure 9. i

124

104

0720000 40000 60000 8000 100000

Figure 9: Cumulative Intensity Function Estimate and
Fitted Weibull Cumulative Intensity Function for the
CarFailures Data Set

Every example considered thus far has used maxi-
mum likelihood to estimate the unknown parameters.
APPL includes the procedure MOM for computing the
method of moments estimators.

Example 18. (Larsen and Marx, 2001, page 319) Hur-
ricanes typically strike the eastern and southern coastal
regions of the United States, although they occasion-
ally sweep inland before completely dissipating. The
U.S. Weather Bureau reported that during the period
from 1900 to 1969 a total of 36 hurricanes moved as
far as the Appalachian Mountains. The maximum 24-
hour precipitation levels (measured in inches) recorded
from those 36 storms during the time they were over
the mountains are shown at top of the following page.

A histogram of the data, which can be plotted in
Maple, suggests that the random variable X, which is
the maximum 24-hour precipitation, might be well ap-
proximated by the gamma distribution.

31.00 2.82 3.98 4.02 9.50 4.50
11.40 10.71 6.31 4.95 5.64 5.51
13.40 9.72 6.47 10.16 4.21 11.60
4.75 6.85 6.25 3.42 11.80 0.80
3.69 3.10 22.22 7.43 5.00 4.58
4.46 8.00 3.73 3.50 6.20 0.67.

The following APPL code finds the method of mo-
ments estimates for the parameters A and k, where
Hurricane is the above data set pre-defined in APPL

X := GammaRV(lambda, kappa);
hat := MOM(X, Hurricane, [lambda, kappal);

The resulting estimates for the parameters are

1 _ 954000 ~ (y ¢ . _ 6952275 Ay
A= To50155 = 0.224 and £ = Tooairs = 1.64. O

3 FURTHER WORK

Some ongoing work in the area of input modeling in
APPL is described here. First, most distributions con-
taining 3 or 4 unknown parameters (e.g., the Johnson
distributions) are not going to have closed-form max-
imum likelihood estimators. Based on our experience
with the Weibull distribution illustrated in Example 14,
it will be necessary to write custom code for many of
these distributions. This is precisely what is required
from the batch and interactive software packages that
perform input modeling. Fortunately, there is signif-
icant literature concerning the numerical methods re-
quired to arrive at these estimators.

Second, some distributions, such as the Erlang distri-
bution, have both a discrete and a continuous param-
eter. In order to compute parameter estimates, it is
necessary to prove results that will expedite their cal-
culation. In using maximum likelihood on the Erlang,
for example, it would not be possible to calculate the
MLEs for the scale parameter for all shape parameters
in the parameter space. Thus some results concerning
the monotonicity of the likelihood function as the shape
parameter varies are necessary to provide an algorithm
for calculating the MLEs.

Third, some distributions have their unknown param-
eters as part of their support. Consider finding the
MLEs for the triangular(a, b, ¢) distribution for a sam-
ple size of n = 2. Without loss of generality, assume
z1 < z2. Symmetry dictates that

T+ T2
2
and that b— @ = é— b. Thus the problem of finding the

MLE for a, for example, boils down to maximizing

21 —a) x1—a

(c—a)(b—a) (b—a)?’

b=

f(z130) =

Differentiating with respect to a yields

[)_f _ —(b—a)? +2(z1 — a)(b—a)
Oa (b—a)* '

When the derivative is equated to zero and the resulting
equation is solved for a, the MLE is

21‘1 — Z)

a

Likewise,
2332 —b.

¢

Moving to the case of n = 3 is more complicated since
it is not clear whether the middle data value should
have its likelihood function considered part of the left
or the right support of the PDF. An algorithm must be
developed in order to compute the MLEs for general n.

Fourth, an asymptotic confidence region for unknown
parameters based on the likelihood ratio statistic can be
determined by plotting the appropriate contour of the
log likelihood function. Maple’s symbolic and numeric
abilities can be exploited to produce these plots for ar-
bitrary distributions and data sets.

In conclusion, APPL is a platform which can be used
for input modeling in an interactive, as opposed to a
batch platform. Its ability to interface with probabil-
ity theory presents some advantages for calculating ex-
act probability measures. For further reading concern-
ing the APPL software, see Glen, Leemis, and Evans
(2000).

ACKNOWLEDGMENTS

Diane Evans gratefully acknowledges support from the
Clare Boothe Luce Foundation. The authors thank
John Drew and Andy Glen for their contributions to
the APPL language, and Steve Roberts for his helpful
suggestions on the paper.

REFERENCES

Devroye, L. 1996. Random Variate Generation in One
Line of Code. Proceedings of the 1996 Winter Sim-
ulation Conference, ed. J. Charnes, D. Morrice, D.
Brunner, J. Swain, 265-272. Institute of Electrical
and Electronics Engineers, Coronado, California.

Drew, J. H., A. G. Glen, L. M. Leemis. 2000. Com-
puting the Cumulative Distribution Function of the
Kolmogorov-Smirnov Statistic, to appear, Computa-
tional Statistics and Data Analysis.

Gehan, E. A. 1965. A Generalized Wilcoxon Test
for Comparing Arbitrarily Singly-Censored Samples.
Biometrika 52:203-223.

Glen, A. G., L. M. Leemis, and J. H. Drew. 1997. A
Generalized Univariate Change-of-Variable Transfor-
mation Technique. INFORMS Journal on Comput-
ing 9:288-295.

Glen, A. G., L. M. Leemis, and D. L. Evans. 2000.
APPL: A Probability Programming Language. to
appear, The American Statistician.

Hogg, R. V., and A. T. Craig. 1995. Mathematical
Statistics. 5th ed. Englewood Cliffs, New Jersey:
Prentice-Hall.

Larsen, R. J., and M. J. Marx. 2001. An Introduction
to Mathematical Statistics and it Applications, 3d ed.
Englewood Cliffs, New Jersey: Prentice-Hall.

Law, A. M., and W. D. Kelton. 2000. Simulation mod-
eling and analysis. 3d ed. New York: McGraw—Hill.

Lawless, J. F. 1982. Statistical Models and Methods for
Lifetime Data, New York: John Wiley & Sons, Inc.

Park, S. K. and K. W. Miller. 1988. Random Number
Generators: Good Ones Are Hard to Find. Commu-
nications of the ACM 31:1192-1201.

AUTHOR BIOGRAPHIES

DIANE L. EVANS is a PhD student in Applied
Science at The College of William & Mary. She re-
ceived her BS and MA degrees in Mathematics from
Ohio State University. She has also received an
MS degree in Operations Research from the Math-
ematics Department at The College of William &
Mary. She has taught in the Mathematics and Com-
puter Science Department at Wittenberg University
in Springfield, Ohio (1992-1994) and in the Mathe-
matics Department at Virginia Wesleyan (1994-1998),
and in the Mathematics Department at The College
of William & Mary. Her research interests are in
applied probability and operations research. She is
a member of AMS, ASA, and INFORMS. Her email
and web addresses are <devansOmath.wm.edu> and
<www.math.wm.edu/~devans>.

LAWRENCE M. LEEMIS is a professor and chair
of the Mathematics Department at the College of
William & Mary. He received his BS and MS degrees
in Mathematics and his PhD in Industrial Engineering
from Purdue University. He has also taught courses
at Baylor University, The University of Oklahoma, and
Purdue University. His consulting, short course, and
research contract work includes contracts with AT&T,
NASA/Langley Research Center, Delco Electronics,
Department of Defense (Army, Navy), Air Logistic
Command, ICASE, Komag, Federal Aviation Admin-
istration, Tinker Air Force Base, Woodmizer, Magnetic
Peripherals, and Argonne National Laboratory. His re-

search and teaching interests are in reliability and simu-
lation. He is a member of ASA, IIE, and INFORMS. His
email and web addresses are <leemis@math.wm.edu>
and <www.math.wm.edu/~leemis>.

