A digraph D is primitive if there exists an integer m such that any two
not necessarily distinct vertices u and v are joined by a directed path of
length m. The smallest such m is called the exponent of D and denoted by
$\gamma(D)$.

A primitive digraph D has large exponent if $\gamma(D)$ satisfies
$\alpha_n = \lfloor \frac{w_n}{2} \rfloor + 2 \leq \gamma(D) \leq w_n$, where $w_n = (n - 1)^2 + 1$. It is shown that the minimum
number of arcs in a primitive digraph D on n vertices with exponent equal
to α_n is either $n+1$ or $n+2$. For given $n \geq 8$, there always exists a primitive
digraph on n vertices with exponent α_n and $n+2$ arcs. Such digraphs for the
cases n even and n odd are different. An algorithm determines for a given
n, whether the minimum number of arcs in such digraphs is $n+1$ or $n+2$.

This is joint work with G. MacGillivray, D. D. Olesky and P. van den
Driessche.