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Abstract

New linear representations of Artin’s group, spin representations

and multi-parameter Burau representations, are constructed. They

are generalizations of the classical Burau representation.

1 Introduction

When the author was a graduate student with professor Xiao-Song Lin, one

problem that I worked on was to search some knot invariants in order to

distinguish two different orientations of a knot. In this paper, we report one

attempt where the starting point is representations of Artin’s braid group.

Every geometric braid gives a knot or link by closing, and each knot can be

transformed into a closed braid. It was known classically that the Alexan-

der polynomial of a given knot or link can be calculated directly from the

image under the reduced Burau representation of a braid, where this braid
∗Email: jptian@math.wm.edu; Phone: 757-221-2002; Nov 4, 2007.
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represents a given knot or link. The detailed information in this direction

can be found in [2]. The Burau representation admits many different de-

finitions, each in its own way giving some insight [4]. In [5], Long gave a

new derivative of the Burau representation by using an action of Aut(Fn) on

the representation variety R = R(Fn, G), where G is a compact semisimple

Lie group and Fn is the free group of rank n. Once the braid group Bn is

viewed as a subgroup of Aut(Fn), for any global fixed curve of Bn inside R,

linearization of the action gives a linear representation on the Lie algebra

of Gn. We mark each component of a fixed curve, or equivalently, mark

each component of the maximal torus of Gn, with different parameters or

spin symbols, the action of each braid in Bn will permute those color pa-

rameters or spin symbols. We then sum all derivatives (tangent maps) of

a braid, which is as a diffeomorphism of the representation variety R, at

marked tangent spaces together. This sum will give multi-parameter Burau

representations and spin representations on the complex part of the sum-

mation of all Lie algebras. For G = SU(2, C), spin representations come

up naturally with the action of the Weyl group of Gn on its maximal torus.

Our result reported here is also a partial response to ”‘Open problem 7”’ in

a recent paper of Birman and Brendle [6]. We also remark that these new

representation can not arise from any Hecke algebra, and hope that they

may encode more information about the braid group.

The organization of the paper is as follows. In section 2, we recall some

related preliminaries and Long’s construction. In section 3, we give a new

type of representation of the braid groups, and call them spin representa-

tions. In section 4, we give multi-parameter representations of the braid

groups, and call them multi-parameter Burau representations. We also give

a remark about eigenvalues of these representations in order to compare
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with Jones’s Hecke algebra representations. In all cases, we compute out

detailed matrix forms for the representations.

2 Preliminaries

For the free group Fn, we fix once and for all a generator set {x1, x2, · · · , xn}.

The n-string braid group Bn, is defined to be the subgroup of Aut(Fn) gen-

erated by the automorphisms {σi |i = 1, 2, · · · , n− 1}, where the action of

σi is given by

xi 7−→ xi+1,

xi+1 7−→ x−1
i+1 · xi · xi+1,

xj 7−→ xj , j 6= i, i + 1.

The basic fact about the braid group we need is stated in Artin’s theorem

[1], that, for any β ∈ Aut(Fn), β ∈ Bn if and only if

β(xi) = A−1
i xτβ(i)Ai, 1 ≤ i ≤ n,

β(x1x2 · · ·xn) = x1x2 · · ·xn,

where τβ is the permutation induced by β and Ai is a word in generators

x1, x2, · · · xn.

We take the compact semisimple Lie group G to be SU(2, C) for explicit

computation purpose. We know that SU(2, C) is the group of unitary ma-

trices of determinant 1, SU(2, C) = {

 a b

−b a

 : aa + bb = 1, a, b ∈ C},

which is homeomorphic to the 3-sphere S3. We compute the tangent bun-

dle as follows. Let q ∈ SU(2, C), q =

 a b

−b a

, is any point, and
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w ∈ Tq(SU(2, C) is a tangent vector, w =

 u v

−u v

. There is a differen-

tial curve w(t) : (−1, 1) −→ SU(2, C), such that w(0) = q and dw
dt |t=0 = w.

Write w(t) =

 w1(t) w2(t)

−w2(t) w1(t)

, then we have w1(t)w1(t)+w2(t)w2(t) =

1. Differentiate this equation on both sides, and evaluate at t = 0. This

gives au + au + bv + bv = 0. So, the tangent bundle of SU(2, C) is

T (SU(2, C)) = {(

 a b

−b a

 ,

 u v

−v u

) : au+au+bv+bv = 0, aa+bb = 1}.

If we take q to be the identity, we get the tangent space, which is the Lie

algebra G of SU(2, C). For any point q ∈ SU(2, C), the tangent space at

this point actually is the image of right translation of G by q. Furthermore,

the Lie algebra G can be decomposed into two subspaces:

G = G1 ⊕ G2

where

G1 = {

 is 0

0 −is

 : s ∈ R}, G2 = {

 0 ξ

−ξ 0

 : ξ ∈ C}.

We call G1 the real part, G1 the complex part. We also need some spe-

cial inner isomorphisms of SU(2, C) and their linearizations. For any q ∈

SU(2, C), we have a diffeomorphism Ãd(q) : SU(2, C) −→ SU(2, C) given

by A 7−→ qAq−1. Since Ãd(q)(Id) = Id, linearizing it at the identity Id,

we get an induced isomorphism of the Lie algebra, Ad(g)(X) = qXq−1 for

X ∈ G.

Now we recall Long’s construction. Set R = R(Fn, SU(2, C)), the repre-

sentation variety of Fn, topologized by the compact open topology. Because
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Fn is free, any n-tuple of matrices determines a representation, and any rep-

resentation determines an n-tuple of matrices. We therefore identify the rep-

resentation space R with SU(2, C)n = SU(2, C)×SU(2, C)×· · ·×SU(2, C),

and so R is differentiable, which actually is a Lie group. For any β ∈

Aut(Fn), it acts on the representation space R by ρ 7−→ β∗ρ, where the

image representation is defined by

β∗ρ(w) = ρ(β−1(w)), w ∈ Fn.

Or, view this action in matrix form that β∗ : SU(2, C)n −→ SU(2, C)n is

given by

β∗ : (M1,M2, · · · ,Mn) 7−→ (β−1
∗ M1, β

−1
∗ M2, · · · , β−1

∗ Mn).

The map β∗ is said to be the map associated to β. It is clear that β∗ is

a diffeomorphis of R although it is not a Lie group homomorphism. The

map Aut(Fn) −→ Diff(R) given by β 7−→ β∗ is a group homomorphism,

and moreover, this is a faithful representation. In order to get a linear

representation of a certain subgroup of Aut(Fn), say, the braid group Bn,

we have to use smooth structure of the representation variety to linearize the

image of Bn under this ∗ map. The parallelization of Lie group SU(2, C),

that is, trivialization of tangent bundle of Lie group SU(2, C), makes the

linearization possible in the Lie algebra G alone.

Suppose there is a path of representation α(t) : (−1, 1) −→ R, which

is fixed by β ∈ Bn, namely, β∗α(t) = α(t). Then, Long has a theorem

that there is a one-parameter family of representation of Bn defined by the

composition

ρt : Bn −→ Diff(R) −→ GL(Tα(t)(R)),

where ρt is given by ρt(β) = dβ∗α(t).
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3 Spin representations

By a spin, we mean an assignment of orientations to each component of

the maximal torus S1 × S1 × · · ·S1 of SU(2, C)n. For example, spin S =

(s1, s2, · · · , sn), where si = ±1, i = 1, 2, n. For each spin S, we define

the positive index and the negative index, which are two numbers, a(S) =

#{si |si = +1} and b(S) = #{si |si = −1}.

Denote Λθ =

 eiθ 0

0 e−iθ

, where 0 ≤ θ ≤ 2π, then Λ ∈ SU(2, C). Let

α(θ) be a curve given by α(θ) = (Λθ, Λθ, · · · , Λθ) in R. For any fixed para-

meter value θ and a spin S = (s1, s2, · · · , sn), denote pθ = (Λθ, Λθ, · · · , Λθ)

and pS
θ = (Λs1

θ , Λs2
θ , · · · , Λsn

θ ). If β ∈ Bn, β∗ is a diffeomorphism of R. By

Artin’s theorem mentioned above, it is easy to see that

β∗(A1, A2, · · · , An) = (w1Aτβ(1)w
−1
1 , w2Aτβ(2)w

−1
2 , · · · , wnAτβ(n)w

−1
n ),

where τβ is the permutation determined by the braid β, wj is a word on A1,

A2, · · · , and An, here, j = 1, 2, · · · , n. So, we have

β∗(pS
θ ) = (Λτβ(1)

θ , Λτβ(2)
θ , · · · , Λτβ(n)

θ ) =: p
τβ(S)
θ .

Thus, dβ∗
pS

θ
is a linear transformation from the tangent space TpS

θ
(R) at pS

θ

to the tangent space T
p

τβ(S)

θ

(R) at pτβ(S). It is clear that TpS
θ
(R) is the direct

sum of Lie algebras of SU(2, C), that is,

TpS
θ
(R) = TΛ

s1
θ

(SU(2, C))⊕ TΛ
s2
θ

(SU(2, C))⊕ · · · ⊕ TΛsn
θ

(SU(2, C)).

Fix two indexes a and b, and a+ b = n. Consider all spins that have the

index a(S) = a, and define a vector space marked by spins as follow,

Va,b = ⊕
a(S)=a

TpS
θ
(R).
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For each fixed θ, there are
(
n
a

)
points on the maximal torus S1×S1×· · ·S1.

So, Va,b is the direct sum of tangent spaces at these points.

We now define β for each β ∈ Bn, which is a linear transformation of

Va,b, by summing all derivatives together, namely,

β = ⊕
a(S)=a

dβ∗
pS

θ
.

If X ∈ T
p

S0
θ

(R) for some spin S0 with a(S) = a and b(S) = b, then β(X) ∈

T
p

τβ(S0)

θ

R, where τβ is the permutation determined by β. It is easy to check

that, for two braids β1 and β2,

dβ∗
1 p

S1
θ

· β∗
2 p

S1
θ

=


d(β∗1 · β∗2), if S1 = τβ2(S2),

0, otherwise.

Actually, we get a homomorphism from the braid group to the general linear

group of Va,b.

Theorem 3.1. Let Φ : Bn −→ GL(Va,b) given by Φ(β) = β, then Φ is a

group homomorphism.

Proof. The proof is a simple verification. For any two braids β1 and β2, if

β1 = ⊕a(S)=a dβ∗
1, pS

θ
and β2 = ⊕a(S)=a dβ∗

2, pS
θ
, we have

β1 · β2 = ( ⊕
a(S)=a

dβ∗
1, pS

θ
) · ( ⊕

a(S)=a
dβ∗

2, pS
θ
)

= ⊕
a(S)=a=a(S′)
S′=τβ2

(S)

dβ∗
1, pS′

θ

· dβ∗
2, pS

θ

= ⊕
a(S)=a

dβ∗
1, p

τβ2
(S)

θ

· dβ∗
2, pS

θ

= β1 · β2.
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We will consider several special cases in the following subsections. The

first two cases seem trivial, but they are basic building blocks for general spin

representations, and one of them gives famous Burau representations. In the

last subsection, we show that each spin for the maximal torus is determined

by an action of the Weyl group, and the action of the Weyl group determines

that there are only four types of basic representation matrix blocks.

3.1 Representations with the inverse spin S = (−1,−1, · · · ,−1)

Consider a spin with the negative index b(S) = n, all negative signs, call

it the inverse spin. The V0,n has only one copy of TpS
θ
(R), specifically,

V0,n = TpS
θ
(R) = TΛ−1

θ
(SU(2, C))⊕ TΛ−1

θ
(SU(2, C))⊕ · · · ⊕ TΛ−1

θ
(SU(2, C)).

We now want to compute the image of any given braid in Bn. It suffices to

compute the image of each generator of Bn. It is enough to compute the

image of σ1 ∈ Bn as a representative. We know in this case, σ1 = dσ∗
1 pS

θ
.

Since σ∗1(A1, A2, · · ·An) = (A1A2A
−1
1 , A1, A3, · · ·An) for any Aj ∈ SU(2, C),

σ∗1 acts as the identity on the last n − 2 factors. So, we only consider the

action of σ∗1 on the first two components. Suppose w is an element of the Lie

algebra G, a tangent vector at the identity Id of SU(2, C). Let’s denote a

tangent curve in SU(2, C) by w(t) that w(0) = Id and d
dtw(t)|t=0 = w. For

example, w(t) = ewt, where t ∈ (−1, 1). A tangent curve to the point pS
θ =

(Λ−1
θ , Λ−1

θ , · · · , Λ−1
θ ) in R can be given by v(t) = (w(t)·Λ−1

θ , Λ−1
θ , · · · , Λ−1

θ ).

Then, σ∗1(v(t)) = (w(t) ·Λ−1
θ ·Λ−1

θ · (w(t) ·Λ−1
θ )−1, w(t) ·Λ−1

θ , Λ−1
θ , · · · , Λ−1

θ ).

To emphasize the fact that the tangent curve is regarded as based at the

point pS
θ = (Λ−1

θ , Λ−1
θ , · · · , Λ−1

θ ), rewrite the image as

((w(t) · Λ−1
θ · w(t)−1 · Λθ) · Λ−1

θ , w(t) · Λ−1
θ , Λ−1

θ , · · · , Λ−1
θ ).
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Let’s now compute the derivative of the first component of this image, dif-

ferentiating by using product rule:

w(t) · w(t)−1 = I,

d

dt
w(t) · w(t)−1 + w(t) · d

dt
w(t)−1 = 0,

such,
d

dt
w(t)−1 = −w(t)−1 · d

dt
w(t) · w(t)−1;

and, so

d

dt
(w(t)Λ−1

θ w(t)−1Λθ)

=
d

dt
w(t) · Λ−1

θ w(t)−1Λθ + w(t)Λ−1
θ · d

dt
w(t)−1 · Λθ

= (
d

dt
w(t))Λ−1

θ w(t)−1Λθ − w(t)Λ−1
θ w(t)−1(

d

dt
w(t))w(t)−1Λθ,

evaluating at t = 0, notice w(0) = Id and d
dtw(t)|t=0 = w, we get

d

dt
(w(t)Λ−1

θ w(t)−1Λθ)|t=0 = w − Λ−1
θ wΛθ.

It is easy to see the second component of the image, which is d
dtw(t)|t=0 = w.

Therefore,

dσ∗
1 pS

θ
(w, 0, · · · , 0) = (w − Λ−1

θ wΛθ, w, 0, · · · , 0).

We now consider the action of the derivative on the second component.

Let

ṽ(t) : (−1, 1) −→ R

t 7−→ (Λ−1
θ , w(t)Λ−1

θ , Λ−1
θ , · · · , Λ−1

θ ).

The action of generator σ1 is

σ∗1 ṽ(t) = σ∗1(Λ
−1
θ , w(t)Λ−1

θ , Λ−1
θ , · · · , Λ−1

θ )

= (Λ−1
θ w(t)Λθ · Λ−1

θ , Λ−1
θ , · · · , Λ−1

θ ).

9



We evaluate the derivative at t = 0, that d
dt(Λ

−1
θ w(t)Λθ)|t=0 = Λ−1

θ wΛθ. So,

we have

dσ∗
1 pS

θ
(0, w, · · · , 0) = (Λ−1

θ wΛθ, 0, · · · , 0).

The space V0,n also has the real part and the complex part. The real

part of V0,n is formed by all real parts of their factors: TΛ−1
θ

(SU(2, C)) ⊕

TΛ−1
θ

(SU(2, C))⊕· · ·⊕TΛ−1
θ

(SU(2, C)), which is an n-dimensional subspace.

The complex part of V0,n is formed by all complex parts of their factors,

which also is an n-dimensional subspace.

For any vector X ∈ G1, i.e, X =

 ir 0

0 −ir

 is in the real part of the

Lie algebra G, the action of Ad(Λ−1
θ ) is identity, since Ad(Λ−1

θ )(X) = X.

Therefore,

dσ∗
1 pS

θ
(X, 0, · · · , 0) = (0, X, 0, · · · , 0),

dσ∗
1 pS

θ
(0, X, 0, · · · , 0) = (X, 0, 0, · · · , 0),

and

dσ∗
1 pS

θ
(0, 0, X, 0, · · · , 0) = (0, 0, X, 0, · · · , 0),

which is the identity. So, we get the matrix representation for σ1 on the real

part of V0,n as follows  0 1

1 0

⊕ In−2.

We can conclude that the representation of any element in the braid group

Bn on the real part of V0,n is a permutation matrix.

For any element

 0 ζ

−ζ 0

 in the complex part G2 of the Lie algebra G,

we see, Ad(Λ−1
θ )

 0 ζ

−ζ 0

 = Λ−1
θ

 0 ζ

−ζ 0

 Λθ =

 0 ζe−2iθ

−ζe2iθ 0

.
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That is, ζ 7−→ ζe−2iθ. Set eiθ = λ, for any vector X in the complex part G2,

we have

σ1(X, 0, · · · , 0) = (X − Λ−1
θ XΛθ, X, 0, · · · , 0)

= ((1− λ−2)X, X, 0, · · · , 0),

and

σ1(0, X, 0, · · · , 0) = (Λ−1
θ XΛθ, 0, · · · , 0)

= (λ−2X, 0, · · · , 0).

Therefore, the matrix representation for σ1 over the complex part of V0,n is 1− λ−2 λ−2

1 0

⊕ In−2.

Similarly, we can get the matrix representation for other generator σj , 1 ≤

j ≤ n− 1, that is,

Ij−1 ⊕

 1− λ−2 λ−2

1 0

⊕ In−j−1.

We denote these matrices by Dj , and this is one family of representation

building blocks.

3.2 Burau representations and the spin S = (+1,+1, · · · ,+1)

We consider another extreme case where the spin has all positive signs,its

indexes a(S) = n and b(S) = 0. This is a major case in [5]. For completion,

we also mention some details about this case here. The Vn,0 has only one

copy TpS
θ
(R), that is, Vn,0 = TpS

θ
(R) = TΛθ

(SU(2, C)) ⊕ TΛθ
(SU(2, C)) ⊕

· · · ⊕ TΛθ
(SU(2, C)). The computation is similar as that in the previous

11



subsection, so we briefly go through the results. w(t) is the tangent curve

at identity of SU(2, C) as before, we take a tangent curve to the point

pS
θ = (Λθ, Λθ, · · · , Λθ) to be v(t) = (w(t) ·Λθ, Λθ, · · · , Λθ). Then, we have

σ∗1(v(t)) = ((w(t) · Λθ · w(t)−1 · Λ−1
θ ) · Λθ, w(t) · Λθ, Λθ, · · · , Λθ).

After taking derivative, we have

dσ∗
1 pS

θ
(w, 0, · · · , 0) = (w − ΛθwΛ−1

θ , w, 0, · · · , 0).

For the second component, taking the tangent curve to be

ṽ(t) = (Λθ, w(t)Λθ, Λθ, · · · , Λθ),

we then have

σ∗1 ṽ(t) = (Λθw(t)Λ−1
θ · Λθ, Λθ, · · · , Λθ).

Taking derivative, we have

dσ∗
1 pS

θ
(0, w, · · · , 0) = (ΛθwΛ−1

θ , 0, · · · , 0).

For any vector X ∈ G1, since Ad(Λθ)(X) = X, the matrix represen-

tation for σ1 on the real part of Vn,0 is a permutation matrix. For any

element

 0 ζ

−ζ 0

 in the complex part G2 of the Lie algebra G, we have,

Ad(Λθ)

 0 ζ

−ζ 0

 =

 0 ζe2iθ

−ζe−2iθ 0

. That is, ζ 7−→ ζe2iθ. Set

eiθ = λ, for any vector X in the complex part G2, we have

σ1(X, 0, · · · , 0) = (X − ΛθXΛ−1
θ , X, 0, · · · , 0)

= ((1− λ2)X, X, 0, · · · , 0),
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and

σ1(0, X, 0, · · · , 0) = (ΛθXΛ−1
θ , 0, · · · , 0)

= (λ2X, 0, · · · , 0).

Therefore, the matrix representation for σ1 over the complex part of Vn,0 is 1− λ2 λ2

1 0

⊕ In−2.

Similarly, we can get the matrix representations for other generators σj ,

1 ≤ j ≤ n− 1, that is,

Ij−1 ⊕

 1− λ2 λ2

1 0

⊕ In−j−1.

We denote these matrices by Gj , and this is another family of representation

building blocks. If we set λ2 = t, we get the Burau representation for the

braid group Bn.

3.3 Representations with the spins of b(S) = 1

We consider the spins S which have the negative index b(S) = 1, for example,

S = (−1,+1, · · · ,+1). There are n different spins that each has one negative

sign. As before, we denote the point pθ in the maximal torus marked by

a spin S by pS
θ . Specifically, denote qk = (Λθ, · · · , Λθ, Λ−1

θ , Λθ, · · · , Λθ),

where k = 1, 2, · · · , n. So, in this case, we have

Vn−1,1 = ⊕
b(S)=1

TpS
θ
(R) = ⊕n

k=1Tqk(R).

We still focus on computation of the matrix representation of σ1 ∈ Bn firstly.

We know that

σ∗1q1 = σ∗1(Λ
−1
θ ,Λθ,· · · ,Λθ) = (Λθ,Λ−1

θ ,Λθ,· · · ,Λθ) = q2,
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σ∗1q2 = σ∗1(Λθ,Λ−1
θ ,Λθ,· · · ,Λθ) = q1,

and

σ∗1qk = qk, for 3 ≤ k ≤ n.

Also, we know in this case σ1 is given by

σ1 = dσ∗1 q1
⊕ dσ∗1 q2

⊕ dσ∗1 q3
⊕ · · · ⊕ dσ∗1 qn

.

We need to compute three tangent maps, derivatives.

Consider dσ∗1 q1
: Tq1R −→ Tq2R. Let w(t) to be a tangent curve to the

identity of SU(2, C) as before. Define a tangent curve to the point q1 as

v(t) : (−1, 1) −→ R

t 7−→ (w(t)Λ−1
θ , Λθ, · · · , Λθ),

then, the action of σ∗1 is given by

σ∗1v(t) = (w(t)Λ−1
θ · Λθ · (w(t)Λ−1

θ )−1, w(t)Λ−1
θ , Λθ, · · · , Λθ)

= (w(t)Λθw(t)−1Λ−1
θ · Λθ, w(t)Λ−1

θ , Λθ, · · · , Λθ),

which is a tangent curve to the point q2. Evaluating at t = 0,

d

dt
(w(t)Λθw(t)−1Λ−1

θ )|t=0 = w − ΛθwΛ−1
θ ,

so, we have tangent map,

dσ∗1 q1
(w, 0, · · · , 0) = (w − ΛθwΛ−1

θ , w, 0, · · · , 0).

If a tangent curve to the point q1 is defined to be

ṽ(t) : (−1, 1) −→ R

t 7−→ (Λ−1
θ , w(t)Λθ, Λθ, · · · , Λθ),
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the action of σ∗1 will be

σ∗1 ṽ(t) = (Λ−1
θ w(t)Λθ · Λθ, Λ−1

θ , Λθ, · · · , Λθ).

After taking derivative, we have

dσ∗1 q1
(0, w, 0, · · · , 0) = (Λ−1

θ wΛθ, 0, · · · , 0).

It is easy to see that the matrix representation of the derivative over the

real part Vn−1,1 is a permutation matrix. By using the actions of Ad(Λθ)

and Ad(Λ−1
θ ) in the previous two subsections, we easily get the matrix for

the derivative dσ∗1 q1
over the complex part, which is 1− λ2 λ−2

1 0

⊕ In−2 = E1.

Consider dσ∗1 q2
: Tq2R −→ Tq1R. Define a tangent curve to the point q2

to be

v(t) : (−1, 1) −→ R

t 7−→ (w(t)Λθ, Λ−1
θ , Λθ, · · · , Λθ),

then we have a tangent curve to the point q1, which is

σ∗1v(t) = (w(t)Λθ · Λ−1
θ · (w(t)Λθ)−1, w(t)Λθ, Λθ, · · · , Λθ)

= (w(t)Λ−1
θ w(t)−1Λθ · Λ−1

θ , w(t)Λθ, Λθ, · · · , Λθ).

Once taking derivative, we get

dσ∗1 q2
(w, 0, · · · , 0) = (w − Λ−1

θ wΛθ, w, 0, · · · , 0).

In order to compute the second component, define a tangent curve to the

point q2 to be

ṽ(t) : (−1, 1) −→ R

t 7−→ (Λθ, w(t)Λ−1
θ , Λθ, · · · , Λθ),
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then the action of σ∗1 is

σ∗1 ṽ(t) = (Λθw(t)Λ−1
θ · Λ−1

θ , Λθ, Λθ, · · · , Λθ).

After taking derivative, we have

dσ∗1 q2
(0, w, 0, · · · , 0) = (ΛθwΛ−1

θ , 0, · · · , 0).

Therefore, we get the matrix representation of the derivative dσ∗1 q2
on the

complex part, which is 1− λ−2 λ2

1 0

⊕ In−2 = F1.

Since, for k ≥ 3, σ∗1qk = qk, from subsection 3.2, we know that the matrix

for dσ∗1 qk
on the complex part is 1− λ2 λ2

1 0

⊕ In−2 = G1.

Therefore, we get the matrix representation for σ1 as follows 0 F1

E1 0

⊕G1 ⊕ · · · ⊕G1 = Mσ1 .

This is n2 × n2 matrix, or n× n block matrix.

Now we need to consider σ2 ∈ Bn. It is clear that, σ∗2q1 = q1, σ∗2q2 = q3,

σ∗2q3 = q2 and σ∗2qk = qk for k ≥ 4. For dσ∗2 q1
: Tq1R −→ Tq1R, after a

similar computation, we get the corresponding matrix G2 given by

I1 ⊕

 1− λ2 λ2

1 0

⊕ In−3.

For dσ∗2 q2
: Tq2R −→ Tq3R, the matrix is E2 given by

I1 ⊕

 1− λ2 λ−2

1 0

⊕ In−3.
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For dσ∗2 q3
: Tq3R −→ Tq2R, the matrix is F2 given by

I1 ⊕

 1− λ−2 λ2

1 0

⊕ In−3.

Therefore, we get the matrix for σ2 as follows:

G2 ⊕

 0 F2

E2 0

⊕G2 ⊕ · · · ⊕G2 = Mσ2 .

Denote

Gk = Ik−1 ⊕

 1− λ2 λ2

1 0

⊕ In−k−1,

Fk = Ik−1 ⊕

 1− λ−2 λ2

1 0

⊕ In−k−1,

and

Ek = Ik−1 ⊕

 1− λ2 λ−2

1 0

⊕ In−k−1.

The first one is a Burau block in our context, the other two are new blocks.

They are building blocks for our spin representations for the spins with

a(S) = n − 1. Using similar computations, we can get the matrix for the

generator σk ∈ Bn, which is

Mσk
= Gk ⊕ · · ·Gk ⊕

 0 Fk

Ek 0

⊕Gk ⊕ · · · ⊕Gk,

the first k − 1 blocks and the last n− k − 1 blocks are all Gk.

We here give a directly verification of the matrix representations for spins

with the positive index a(S) = n− 1, and this shows that these representa-

tions don’t depend on the way we get them.
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Lemma 3.1. For the families of block matrices Ek, Fk and Gk, 1 ≤ k ≤ n,

there exist the following identities:

FkFk+1Gk = Gk+1FkFk+1,

EkGk+1Fk = Fk+1GkEk+1,

GkEk+1Ek = Ek+1EkGk+1,

and for |i− j| ≥ 2,

FiGj = GjFi, EiGj = GjEi, GiGj = GjGi.

Proof. For simplicity, we consider k = 1 for the identities those are involved

to three matrices.

F1F2G1 = (


1− λ−2 λ2 0

1 0 0

0 0 1

⊕ In−3) · (


1 0 0

0 1− λ−2 λ2

0 1 0

⊕ In−3) ·

·(


1− λ2 λ2 0

1 0 0

0 0 1

⊕ In−3)

= (


1− λ−2 λ2 − 1 λ4

1 0 0

0 1 0

⊕ In−3) · (


1− λ2 λ2 0

1 0 0

0 0 1

⊕ In−3)

=


1− λ−2 λ2 − 1 λ4

1− λ2 λ2 0

1 0 0

⊕ In−3.
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And,

G2F1F2 = (


1 0 0

0 1− λ2 λ2

0 1 0

⊕ In−3) · (


1− λ−2 λ2 0

1 0 0

0 0 1

⊕ In−3) ·

·(


1 0 0

0 1− λ−2 λ2

0 1 0

⊕ In−3)

=


1− λ−2 λ2 − 1 λ4

1− λ2 λ2 0

1 0 0

⊕ In−3.

So, we get the identity F1F2G1 = G2F1F2. Similar computations show

E1G2F1 = F2G1E2 and G1E2E1 = E2E1G2.

As to the commutativity identities, they are easy to see since non-identity

blocks have never come together when taking multiplication. For example,

F1G3 = (

 1− λ−2 λ2

1 0

⊕I2⊕In−4)·(I2⊕

 1− λ2 λ2

1 0

⊕In−4) = G3E1.

Theorem 3.2. For k = 1,2,· · · ,n− 2,

Mσk
Mσk+1

Mσk
= Mσk+1

Mσk
Mσk+1

,

and for |i− j| ≥ 2,

MσiMσj = MσjMσi .

Proof. It is enough to check Mσ1Mσ2Mσ1 = Mσ2Mσ1Mσ2 and Mσ1Mσ3 =
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Mσ3Mσ1 . We see that

Mσ1Mσ2Mσ1 = (


0 F1 0

E1 0 0

0 0 G1

⊕G1 ⊕ · · ·G1) · (


G2 0 0

0 0 F2

0 E2 0

⊕

⊕G2 ⊕ · · ·G2) · (


0 F1 0

E1 0 0

0 0 G1

⊕G1 ⊕ · · ·G1).

Since Gk is a Burau block, we have G1G2G1 = G2G1G2. We only need to

check 
0 F1 0

E1 0 0

0 0 G1




G2 0 0

0 0 F2

0 E2 0




0 F1 0

E1 0 0

0 0 G1



=


G2 0 0

0 0 F2

0 E2 0




0 F1 0

E1 0 0

0 0 G1




G2 0 0

0 0 F2

0 E2 0

 .

After a simply matrix calculation, it reduces to
0 0 F1F2G1

0 E1G2F1 0

G1E2E1 0 0

 =


0 0 G2F1F2

0 F2G1E2 0

E2E1G2 0 0

 .

By the Lemma 3.1, this is an identity. We compute

Mσ1Mσ3 =

 0 F1G3

E1G3 0

⊕

 0 G1F3

G1E3 0

⊕G1G3 ⊕ · · ·G1G3;

and

Mσ3Mσ1 =

 0 G3F1

G3E1 0

⊕

 0 F3G1

E3G1 0

⊕G3G1 ⊕ · · ·G3G1.

By the Lemma 3.1, we see Mσ1Mσ3 = Mσ3Mσ1 .

20



3.4 Representations with the spins of b(S) = 2, b

In order to show that four types of representation building blocks are needed

for general spin representations, we now work on a case where each spin

has the negative index b(S) = 2, for example S = (−1,−1,+1, · · · ,+1).

There are n(n−1)
2 such spins. For any fixed θ, there are n(n−1)

2 point in the

maximal torus marked by these spins. For certainty, we denote them as

follows. q1 2 = (Λ−1
θ , Λ−1

θ , Λθ, · · · ,Λθ), q1 3 = (Λ−1
θ , Λθ, Λ−1

θ , Λθ, · · · ,Λθ),

· · · , q1 n = (Λ−1
θ , Λθ, Λθ, · · · ,Λθ, Λ−1

θ ); q2 3 = (Λθ, Λ−1
θ , Λ−1

θ , Λθ, · · · ,Λθ),

q2 4 = (Λθ, Λ−1
θ , Λθ, Λ−1

θ , Λθ, · · · ,Λθ), · · · , q2 n = (Λθ, Λ−1
θ , Λθ, · · · ,Λθ, Λ−1

θ );

· · · · · · , qn−2 n−1 = (Λθ, · · · ,Λθ,Λ−1
θ ,Λ−1

θ ,Λθ), qn−2 n = (Λθ, · · · ,Λθ,Λ−1
θ ,ΛθΛ−1

θ );

and qn−1 n = (Λθ, · · · ,Λθ, Λ−1
θ , Λ−1

θ ). We order those tangent spaces lexi-

cographically, then we have

Vn−2, 2 = Tq1 2R⊕ Tq1 3R⊕ · · · ⊕ Tq1 n ⊕ · · · · · · ⊕ Tqn−2 n ⊕ Tqn−1 n .

For the generator of the braid group σ1, its image is given by

σ1 = dσ∗1 q12
⊕ dσ∗1 q13

⊕ · · · ⊕ dσ∗1 q1n
⊕ · · · ⊕ dσ∗1 qn−1 n

.

We see σ∗1(q1 2) = q1 2, as before, we can linearize it, and compute its

matrix representation at the point q1 2 over the complex part of Vn−2, 2,

which is  1− λ−2 λ−2

1 0

⊕ In−2 = D1.

For σ∗1(q1 3) = q2 3, we use the same procedure, and get its matrix represen-

tation at the point q1 3, which is 1− λ2 λ−2

1 0

⊕ In−2 = E1.
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Actually, since σ∗1(q1 k) = q2 k for k = 3, 4, · · · , n, their linearizations are

all the same, and their matrix representations are all E1, but at different

marked points. Since σ∗1(q2 k) = q1 k for k = 3, 4, · · · , n, their matrix

representations are  1− λ−2 λ2

1 0

⊕ In−2 = F1.

For the point qi j , where i ≥ 3 and j ≥ 4, the negative sign of spins does not

affect the tangent map dσ∗1 qij
, so its matrix representation is a Burau block

G1. Let’s sum up, the matrix representation of σ1 is given by

D1 ⊕

 0 F̃1

Ẽ1 0

⊕ I(n−2)(n−3)/2 ⊗G1,

where F̃1 = In−2 ⊗ F1 and Ẽ1 = In−2 ⊗ E1.

For the generator σk ∈ Bn, we have the following proposition to state

how many block matrices in its representation. The proof is directly from

the representation matrix σ1 above.

Proposition 3.1. The representations with spins of b(S) = 2 for σk ∈ Bn

have one block of Dk, n−2 blocks of Fk, n−2 blocks of Ek, and (n−2)(n−3)/2

blocks of Gk.

For spins with negative index b(S) = b ≥ 2, the matrix representations

of the generator σk have the following proposition.

Proposition 3.2. For any matrix representation of the generator σk with

spins of b(S) = b, it is a
(
n
b

)
×

(
n
b

)
block matrix. There are

(
n−2
b−2

)
blocks of

Dk,
(
n−2
b−1

)
blocks of Ek,

(
n−2
b−1

)
blocks of Fk, and

(
n−2

n−b−2

)
blocks of Gk in this

block matrix.
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Proof. Consider the first two components of the maximal torus S1×S1×· · ·×

S1 with n copies, for given negative index b, there are
(
n−2
b−2

)
possibility where

both of them have negative signs,
(

n−2
n−b−2

)
possibility where both of them

have positive signs,
(
n−2
b−1

)
possibility where one of them has negative sign and

the other has positive sign. For each of these possible position, we compute

the derivative map of σ∗1, and count them as blocks in the representation

matrix of σ1. For σk, we just consider k and k+1 components of the maximal

torus, and will get the numbers. It is clear that the representation matrix

of σk has size
(
n
b

)
×

(
n
b

)
since there are

(
n
b

)
different points on the maximal

torus.

3.5 Spins and the Weyl group

Spins actually come up naturally with the action of the Weyl group. Con-

sider SU(2, C), its maximal torus is S1. The Weyl group of SU(2, C) is the

quotient group, the normalizer N(S1, SU(2, C)) of S1 over S1 itself. Here,

N(S1, SU(2, C)) = {g ∈ SU(2, C) :gS1g−1 = S1} = {

 0 b

−b 0

 ,

 a 0

0 a

 :

aa = bb = 1}. So, the Weyl group is W (SU(2, C)) = {S1,

 0 1

−1 0

 S1} =

Z2. The W (SU(2, C)) acts on the maximal torus S1, also on the Lie algebra

G. For example, check the action of

 0 1

−1 0

 S1 on Λθ:

 0 1

−1 0

 S1.Λθ =

 0 1

−1 0

  eiθ 0

0 e−iθ

  0 1

−1 0

−1

= Λ−1
θ ,
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so, we get a negative sign. Also it is easy to see that S1.Λθ = Λθ. For

simplicity, denote elements of W (SU(2, C)) as S1 = 0 and

 0 1

−1 0

 S1 =

1, then Z2 = {0, 1}. Now we look at R = SU(2, C)n. The Weyl group

W (R) of R is Zn
2 . For any spin S = (s1, s2, · · · , sn), and a point pθ =

(Λθ, Λθ, · · · , Λθ) on the maximal torus S1 × S1 × · · · × S1, as before pS
θ =

(Λs1
θ , Λs2

θ , · · · , Λsn
θ ). We choose an element of W (R) for the spin S, denote

it as π(S) = (π1,π2,· · · ,πn), according to the following rules:

πj =

 0, if sj = 1

1, if sj = −1.

It is easy to check that this is a 1-1 and onto map between the Wely group

W (R) and the set of all spins with n components. From the action of the

Weyl group W (SU(2, C)) on S1, we can easy get the following property,

which tells us spins naturally come from the action of the Weyl group.

Proposition 3.3.

pS
θ = π(S).pθ.

Since the Weyl group W (SU(2, C)) can also act on the Lie algebra G,

the different types of block matrices in representations are naturally coming

from this action. It is enough to check with σ1. We write it as a proposition.

Proposition 3.4. Let π = (π1,π2,· · ·πn,) ∈ Zn and pθ = (Λθ,Λθ,· · · ,Λθ),

for any element w ∈ G,

dσ∗1 π.pθ
(w,0, · · · ,0) = (w − π2.Λθ · w · (π2.Λθ)−1,w,0, · · · ,0),

and

dσ∗1 π.pθ
(0,w,0, · · · ,0) = (π1.Λθ · w · (π1.Λθ)−1,0, · · · ,0).
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The proof is a similar calculation as we did in previous subsections.

We can see that, when π1 = 0 and π2 = 0, we get a Burau block G; when

π1 = 1 and π2 = 1, we get a block matrix D; when π1 = 1 and π2 = 0, we get

a block matrix F ; π1 = 0 and π2 = 1, we get a block matrix E. There are

only four different elements in the first two components in the Weyl group

Zn, so we only can have four types of representation building blocks.

4 Multi-parameter Burau representations

We now mark each component of the maximal torus S1 × S1 × · · ·S1 of

SU(2, C)n = R with different parameters, or colors, say, t = (t1,t2,· · · ,tn),

where t ∈ < the real number field. Still using Λθ =

 eiθ 0

0 e−iθ

 and

pθ = (Λθ, Λθ, · · · , Λθ), then denote pt
θ = (Λt1

θ , Λt2
θ , · · · , Λtn

θ ). It is easy

to see that pt
θ ∈ SU(2, C). Let Σn be the symmetry group, for any fixed θ

and t, there are n! points on the maximal torus. So we define a linear space,

which is a summation of all tangent spaces of R at these points and each of

them is marked by its base points,

Vt = ⊕
τ∈Σn

T
p

τ(t)
θ

(R),

where τ acts on t in the obvious way. For any braid β ∈ Bn, β∗ ∈ Diff(R),

and

β∗(pt
θ) = β∗(Λt1

θ , Λt2
θ , · · · , Λtn

θ )

= (Λ
tτβ(1)

θ , Λ
tτβ(2)

θ , · · · , Λ
tτβ(n)

θ )

=: p
τβ(t)
θ .
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Define a map from Bn to GL(Vt), for each β ∈ Bn, define its image to be

β = ⊕
τ∈Σn

dβ∗
p

τ(t)
θ

.

So,

β : Vt −→ Vt,

if X ∈ Tpt
θ
(R) ⊂ Vt, then β(X) = dβ∗

pt
θ
(X) ∈ T

p
τβ(t)

θ

(R) ⊂ Vt. For any two

braids β1 and β2 in Bn, it is obvious that

dβ∗
p

τ(t)
θ

· dβ∗
p

τ(t′)
θ

=

 d(β1β2)∗pt′
θ

, if t = τβ2(t
′),

0, otherwise.

Now we have a statement that the map we define is a group homomorphism.

Theorem 4.1. The map from Bn to GL(Vt) given by β for each β ∈ Bn is

a group homomorphism. That is β1β2 = β1β2.

Proof. The proof is a simple check.

β1β2 = ⊕
τ∈Σn

dβ∗
1 p

τ(t)
θ

· ⊕
τ∈Σn

dβ∗
2 p

τ(t)
θ

= ⊕
τ∈Σn

dβ∗
1 p

τβ2
(τ(t))

θ

· dβ∗
2 p

τ(t)
θ

= β1β2.

Let’s compute the matrix representation for any given braid. Consider

the generator σ1. We know that σ1 = ⊕τ∈Σn dσ∗
1 p

τ(t)
θ

. Since σ∗1(Λ
t1
θ ,Λt2

θ ,· · · ,Λtn
θ ) =

(Λt2
θ ,Λt1

θ ,Λt3
θ ,· · · ,Λtn

θ ), for a tangent curve, we need to put its image at base

point. That is,

σ∗1(w(s)Λt1
θ ,Λt2

θ ,· · · ,Λtn
θ ) = (w(s)Λt1

θ · Λt2
θ · (w(s)Λt1

θ )−1,w(s)Λt1
θ ,Λt3

θ ,· · · ,Λtn
θ )

= (w(s)Λt2
θ w(s)−1Λ−t2

θ · Λt2
θ ,w(s)Λt1

θ ,Λt3
θ ,· · · ,Λtn

θ ),
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where w(s) is a tangent curve to the identity of SU(2, C) defined as before.

Taking derivative, d
ds(w(s)Λt2

θ w(s)−1Λ−t2
θ )|s=0 = w − Λt2

θ wΛ−t2
θ , so we have

dσ∗1 pt
θ
(w, 0, · · · , 0) = (w − Λt2

θ wΛ−t2
θ , w, 0, · · · , 0).

To compute the second component of the image under the tangent map

dσ∗
1 pt

θ
, similarly, consider the tangent curve (Λt1

θ ,w(s)Λt2
θ ,Λt3

θ ,· · · ,Λtn
θ ), and

we get

dσ∗1 pt
θ
(0, w, 0, · · · , 0) = (Λt1

θ wΛ−t1
θ , 0, · · · , 0).

If w is in the complex part of the Lie algebra G, we see its matrix represen-

tation is  1− λt2 λt1

1 0

⊕ In−2,

where we set e2iθ = λ. We similarly compute the matrix representations of

other tangent maps dσ∗
1 p

τ(t)
θ

, denote

M1(ti,tj) =

 1− λtj λti

1 0

⊕ In−2.

Then we have a matrix representation for σ1, which is

Mσ1 = ⊕
i6=j

M1(ti,tj).

Generally, for σk, 1 ≤ k ≤ n− 1, we have

Mk(ti,tj) = Ik−1 ⊕

 1− λtj λti

1 0

⊕ In−k−1,

and the matrix representation for σk is

Mσk
= ⊕

i6=j
Mk(ti,tj).

27



Remark 1. Eigenvalues of representations

For spin representations, when the positive index a(S) = n, which is

the Burau representation, it is easy to show that the matrix representation

of each generator of Bn satisfies the characteristic polynomial, here it is

also minimal polynomial, x2 = (1 − λ2)x + λ2. If b(S) = n, they satisfy

x2 = (1 − λ−2)x + λ−2. Both of them have two distinct eigenvalues. Jones

studied all representations ρ : Bn −→ GLn(C) which have at most two

distinct eigenvalues [3]. His Heche algebra is a complex algebra defined by

generators g1, g2, · · · , gn with defining relations,

gigj = gjgi if |i− j| ≥ 2, gigi+1gi = gi+1gigi+1, g2 = (1− t)gi + t.

The last quadratic equation is a version of the minimal polynomial for Burau.

By using Cayley-Hamilton theorem with Frobenius theorem, we get the

minimal polynomial for spin representations with the negative index b(S) =

1, which is

(x2 + (λ2 − 1)x− λ2)(x2 − 1)2.

It has a degree of six and four distinct eigenvalues. For spin representations

with the negative index b(S) ≥ 2, the minimal polynomial is

(x2 + (λ2 − 1)x− λ2)(x2 + (λ−2 − 1)x− λ−2)(x2 − 1)2,

it has a degree of eight and six distinct eigenvalues. It is little bit difficult

to compute the minimal polynomial of the multi-parameter Burau represen-

tations. But it is sure that the minimal polynomial of the multi-parameter

Burau representations will have at least 4 distinct eigenvalues, and a de-

gree of at least six. We may conclude that these representations can not

arise from any Hecke algebra, and may hope that they can encode more

information about the braid group.
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