The (Strong) Dynamical Subadditivity for Quantum Channels

Department of Mathematics, Zhejiang University

ZHANG Lin

E-mail: linyz@zju.edu.cn; godyalin@163.com

Contents

- ♦ 1. Preliminaries and Notations
- **2.** Introduction
- **3**. Motivation
- 4. Main Results
- **§** 5. Proofs
- § 6. Concluding Remarks

访问主页

标 题 页

目录页

1 +

第 2 页 共 15 页

返回

全屏显示

关 闭

1 Preliminaries and Notations

- Quantum system: $\mathcal{H}(\dim \mathcal{H} = N < +\infty)$, $L(\mathcal{H})$, $L(\mathcal{H})^+$
- \square Quantum state: ρ , $D(\mathcal{H})$
- Linear super-operator: Φ, $\mathsf{T}(\mathcal{H})$, $\mathsf{T}_{cp}(\mathcal{H})$, $\mathsf{T}_{cptp}(\mathcal{H})$, $\mathsf{T}_{bcptp}(\mathcal{H})$
- \square vec mapping: vec : $L(\mathcal{H}) \longrightarrow \mathcal{H} \otimes \mathcal{H}$

$$\mathbf{vec}(M) := \sum_{\mu,\nu} m_{\mu\nu} \operatorname{vec}(|\mu\rangle\langle\nu|) = \sum_{\mu,\nu} m_{\mu\nu} |\mu\nu\rangle,$$

where $M := \sum_{\mu,\nu} m_{\mu\nu} |\mu\rangle\langle\nu|$ is the matrix representation of operator $M \in \mathbf{L}(\mathcal{H})$ w.r.t. a chosen orthonormal basis for \mathcal{H} .

 \square Choi-Jiamiołkowski isomorphism: $J: T(\mathcal{H}) \longrightarrow L(\mathcal{H} \otimes \mathcal{H})$

$$J: \Phi \mapsto J(\Phi) := (\Phi \otimes \mathbb{1}_{\mathbf{L}(\mathcal{H})})(\operatorname{vec}(\mathbb{1}_{\mathcal{H}}) \operatorname{vec}(\mathbb{1}_{\mathcal{H}})^{\dagger}), \rho(\Phi) := \frac{1}{N} J(\Phi)$$

- \Box Map entropy: S^{map}(Φ) := −Tr (ρ (Φ) log ρ (Φ))

访问主页

标 题 页

目 录 页

44 | >>

4 **>**

第3页共15页

返回

全屏显示

关 闭

2 Introduction: Two well-known entropic inequalities

 \square Subadditivity of entropy of bipartite quantum state ρ^{AB} :

$$S(\rho^{AB}) \leq S(\rho^A) + S(\rho^B).$$

- $S(\rho^A) + S(\rho^B) S(\rho^{AB}) \ge \frac{1}{2 \ln 2} \left(\left\| \rho^{AB} \rho^A \otimes \rho^B \right\|_1 \right)^2$ (Pinsker's inequality).
- $S(\rho^{AB}) = S(\rho^A) + S(\rho^B) \iff \rho^{AB} = \rho^A \otimes \rho^B$.
- ☐ Strong subadditivity of entropy of tripartite quantum state ρ^{ABC} (Lieb-Ruskai):

$$S(\rho^{ABC}) + S(\rho^B) \leq S(\rho^{AB}) + S(\rho^{BC}).$$

- $S(\rho^{AB}) + S(\rho^{BC}) = S(\rho^{ABC}) + S(\rho^{B})$ iff the following conditions hold:
- (i) $\mathcal{H}^B = \bigoplus_k \mathcal{H}_k^L \otimes \mathcal{H}_k^R$,
- (ii) $\rho^{ABC} = \bigoplus_k p_k \rho_k^{AL} \otimes \rho_k^{RC}, \rho_k^{AL} \in D(\mathcal{H}^A \otimes \mathcal{H}_k^L), \rho_k^{RC} \in D(\mathcal{H}_k^R \otimes \mathcal{H}^C)$ for each index k and $\{p_k\}$ is a probability distribution (Hayden).

访问主页

标 题 页

目 录 页

44 **>>**

第 4 页 共 15 页

返回

全屏显示

关 闭

3 Motivation

- **□** Theorem(Roga08): $\Phi, \Lambda, \Psi \in \mathsf{T}_{cptp}(\mathcal{H})$.
 - Dynamical Subadditivity:

$$S^{map}(\Phi \circ \Psi) \leqslant S^{map}(\Phi) + S^{map}(\Psi)$$

for $\Phi \in \mathsf{T}_{bcptp}(\mathcal{H})$;

• Strong Dynamical Subadditivity:

$$\mathsf{S}^{\mathsf{map}}(\Phi \circ \Lambda \circ \Psi) + \mathsf{S}^{\mathsf{map}}(\Lambda) \leqslant \mathsf{S}^{\mathsf{map}}(\Phi \circ \Lambda) + \mathsf{S}^{\mathsf{map}}(\Lambda \circ \Psi)$$

for $\Phi, \Lambda, \Psi \in \mathsf{T}_{bcptp}(\mathcal{H})$.

访问主页

标 题 页

目 录 页

44 b

4 →

第 5 页 共 15 页

返回

全屏显示

关 闭

4 Main Results

Theorem I: Let Φ, Ψ ∈ $\mathsf{T}_{bcptp}(\mathcal{H})$. $\Phi(\rho) = \sum_{m=1}^{N^2} Ad_{S_m}$ and $\Psi = \sum_{\mu=1}^{N^2} Ad_{T_\mu}$ be their canonical representations, respectively. Then

$$S^{\text{map}}(\Phi \circ \Psi) = S^{\text{map}}(\Phi) + S^{\text{map}}(\Psi)$$

$$\iff \operatorname{Tr}(S_{m}T_{\mu}(S_{n}T_{\nu})^{\dagger}) = \frac{1}{N}\operatorname{Tr}(S_{m}S_{n}^{\dagger})\operatorname{Tr}(T_{\mu}T_{\nu}^{\dagger})$$

$$\iff \langle S_{n}T_{\nu}, S_{m}T_{\mu} \rangle = \frac{1}{N}\langle S_{n}, S_{m} \rangle \langle T_{\nu}, T_{\mu} \rangle, \forall m, n, \mu, \nu = 1, \dots, N^{2}.$$

访问主页

标 题 页

目 录 页

4 >>

4

第6页共15页

返回

全屏显示

关 闭

Theorem II: Φ, Λ, Ψ ∈ $\mathsf{T}_{bcptp}(\mathcal{H})$. And following conditions hold:

(i)
$$\mathcal{H} = \bigoplus_{k=1}^K \mathcal{H}_k^L \otimes \mathcal{H}_k^R$$
, $\dim \mathcal{H}_k^L = d_k^L$, $\dim \mathcal{H}_k^R = d_k^R$, $\sum_{k=1}^K d_k^L d_k^R = N$;

(ii)
$$\Phi = \bigoplus_{k=1}^K \Phi_k^L \otimes Ad_{U_k^R}, \Lambda = \bigoplus_{k=1}^K \Lambda_k^L \otimes \Lambda_k^R, \Psi = \bigoplus_{k=1}^K Ad_{V_k^L} \otimes \Psi_k^R.$$

That is, $\Phi|_{\mathbf{L}(\mathcal{H}_k^L \otimes \mathcal{H}_k^R)} = \Phi_k^L \otimes Ad_{U_k^R}, \Psi|_{\mathbf{L}(\mathcal{H}_k^L \otimes \mathcal{H}_k^R)} = Ad_{V_k^L} \otimes \Psi_k^R, \Lambda|_{\mathbf{L}(\mathcal{H}_k^L \otimes \mathcal{H}_k^R)} = \Lambda_k^L \otimes \Lambda_k^R$, where $\Phi_k^L, \Lambda_k^L \in \mathsf{T}_{bcptp}(\mathcal{H}_k^L), V_k^L \in \mathbf{L}(\mathcal{H}_k^L)$ are unitary operators, $U_k^R \in \mathbf{L}(\mathcal{H}_k^R)$ are unitary operators and $\Psi_k^R, \Lambda_k^R \in \mathsf{T}_{bcptp}(\mathcal{H}_k^R)$.

Then we have the following strong dynamical additivity:

$$S^{map}(\Phi \circ \Lambda) + S^{map}(\Lambda \circ \Psi) = S^{map}(\Lambda) + S^{map}(\Phi \circ \Lambda \circ \Psi).$$

访问主页

标题页

目 录 页

4 >>

↓ | **→**

第7页共15页

返回

全屏显示

关 闭

5 Proofs

Definition 1. $S, T \in \mathbf{L}(\mathcal{H}_1 \otimes \mathcal{H}_2)^+$ are said to be *bi-orthogonal* if

$$Tr_1(S) Tr_2(S) = Tr_1(T) Tr_2(T) = 0.$$

- **Definition 2(Herbut).** $\rho^{AB} \in D(\mathcal{H}^A \otimes \mathcal{H}^B)$. The following state decomposition $\rho^{AB} = \sum_k p_k \rho_k^{AB}$, $\forall k : \rho_k^{AB} \in D(\mathcal{H}^A \otimes \mathcal{H}^B)$ and $\{p_k\}$ is a probability distribution, is called *bi-orthogonal* if, in terms of the reductions of ρ_k^{AB} , $\rho_k^X \rho_{k'}^X = 0(X = A, B; \forall k \neq k')$.
- **Definition 3.** $(\mathcal{H}^A, \{|m\rangle\}), (\mathcal{H}^B, \{|\mu\rangle\})$. **vec** mapping may be defined over a bipartite space $\mathcal{H}^A \otimes \mathcal{H}^B$, that describes a change of bases from the standard basis of $\mathbf{L}(\mathcal{H}^A \otimes \mathcal{H}^B)$ to the standard basis of $\mathcal{H}^A \otimes \mathcal{H}^A \otimes \mathcal{H}^B \otimes \mathcal{H}^B$:

$$\mathbf{vec}(|m\rangle\langle n|\otimes |\mu\rangle\langle \nu|) = |mn\rangle\otimes |\mu\nu\rangle = |mn\mu\nu\rangle.$$

访问主页

标 题 页

目 录 页

4

第8页共15页

返回

全屏显示

关 闭

- ☐ The following properties of the vec map are easily verified:
 - The **vec** map is a linear bijection. It is also an isometry, in the sense that

$$\langle X, Y \rangle = \langle \text{vec}(X), \text{vec}(Y) \rangle$$

for all $X, Y \in \mathbf{L}(\mathcal{H}_1, \mathcal{H}_2)$.

• For every choice of operators $A \in \mathbf{L}(\mathcal{H}_1, \mathcal{K}_1), B \in \mathbf{L}(\mathcal{H}_2, \mathcal{K}_2)$, and $X \in \mathbf{L}(\mathcal{H}_2, \mathcal{H}_1)$, it holds that

$$(A \otimes B) \operatorname{vec}(X) = \operatorname{vec}(AXB^{\mathsf{T}}).$$

• For every choice of operators $A, B \in \mathbf{L}(\mathcal{H}_1, \mathcal{H}_2)$, the following equations hold:

$$\operatorname{Tr}_1(\operatorname{vec}(A)\operatorname{vec}(B)^{\dagger}) = AB^{\dagger},$$

 $\operatorname{Tr}_2(\operatorname{vec}(A)\operatorname{vec}(B)^{\dagger}) = (B^{\dagger}A)^{\mathsf{T}}.$

• If $X \in \mathbf{L}(\mathcal{H}_A)$, $Z \in \mathbf{L}(\mathcal{H}_B)$, then $\text{vec}(X \otimes Z) = \text{vec}(X) \otimes \text{vec}(Z)$.

访问主页

标 题 页

目 录 页

44 b

← | →

第9页共15页

返回

全屏显示

关 闭

Theorem(Choi75): Φ ∈ $\mathsf{T}_{cp}(\mathcal{H})$ can be represented in the following form:

$$\Phi = \sum_{k=1}^{K} \mathbf{Ad}_{M_k}, M_k \in \mathbf{L}(\mathcal{H}), K \leq (\dim \mathcal{H})^2,$$

where $\mathbf{Ad}_{M_k}(X) := M_k X M_k^{\dagger}$.

When M_k is a collection of orthogonal operators, the above expression is referred to a *canonical representation* for Φ .

访问主页

标 题 页

目 录 页

44 **>>**

1 +

第 10 页 共 15 页

返回

全屏显示

关 闭

- Entropy-Preserving Extensions of Quantum States and the Dynamical Additivity
 - $\Lambda \in \mathsf{T}_{\mathrm{cptp}}(\mathcal{H})$. If Λ has two Kraus representations $\Lambda = \sum_{p=1}^{d_1} A d_{S_p} = \sum_{q=1}^{d_2} A d_{T_q}$, $\rho \in \mathsf{D}(\mathcal{H})$, take two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 such that dim $\mathcal{H}_1 = d_1$, dim $\mathcal{H}_2 = d_2$, $\{|m\rangle\}$ and $\{|\mu\rangle\}$ are the base of \mathcal{H}_1 and \mathcal{H}_2 , respectively. Define

$$\gamma_1(\Lambda) = \sum_{m,n=1}^{d_1} \operatorname{Tr}(S_m \rho S_n^{\dagger}) |m\rangle \langle n| \text{ and } \gamma_2(\Lambda) = \sum_{\mu,\nu=1}^{d_2} \operatorname{Tr}(T_{\mu} \rho T_{\nu}^{\dagger}) |\mu\rangle \langle \nu|.$$

Then $\gamma_k \in D(\mathcal{H}_k)(k = 1, 2)$, and $S(\gamma_1(\Lambda)) = S(\gamma_2(\Lambda))$.

If we denote $S(\rho; \Lambda)$ by $S(\gamma_1(\Lambda))$, then $S(\rho; \Lambda)$ is well-defined. Moreover, it is easy to see that if $\rho = \frac{1}{N} \mathbb{I}$, then $S(\rho; \Lambda) = S^{map}(\Lambda)$.

访问主页

标 题 页

目 录 页

4 **>>**

4 →

第11页共15页

返回

全屏显示

关 闭

• $\Phi, \Psi \in \mathsf{T}_{\mathsf{bcptp}}(\mathcal{H})$. $\Phi = \sum_{m=1}^{N^2} Ad_{S_m}$ and $\Psi = \sum_{\mu=1}^{N^2} Ad_{T_{\mu}}$ are their canonical representations, respectively. Taking a N^2 dimensional complex Hilbert space \mathcal{H}_0 , for each $\rho \in \mathsf{D}(\mathcal{H})$, we define

$$\gamma(\Phi \circ \Psi) = \sum_{m,n,\mu,\nu=1}^{N^2} \operatorname{Tr}(S_m T_\mu \rho(S_n T_\nu)^\dagger) |m\mu\rangle\langle n\nu|,$$

then $\gamma(\Phi \circ \Psi)$ is a state on $\mathcal{H}_0 \otimes \mathcal{H}_0$, and when $\rho = \frac{1}{N} \mathbb{I}$, $S(\gamma(\Phi \circ \Psi)) = S^{\text{map}}(\Phi \circ \Psi)$, that is, $S(\rho, \Phi \circ \Psi) = S^{\text{map}}(\Phi \circ \Psi)$.

$$\gamma(\Psi) = \sum_{\mu,\nu=1}^{N^2} \operatorname{Tr}(T_{\mu}\rho T_{\nu}^{\dagger})|\mu\rangle\langle\nu| = \operatorname{Tr}_1(\gamma(\Phi \circ \Psi)),$$

$$\gamma(\Phi) = \sum_{m n=1}^{N^2} \operatorname{Tr}(S_m \rho S_n^{\dagger})) |m\rangle \langle n| = \operatorname{Tr}_2(\gamma(\Phi \circ \Psi)).$$

$$\mathsf{S}^{\mathsf{map}}(\Phi \circ \Psi) = \mathsf{S}^{\mathsf{map}}(\Phi) + \mathsf{S}^{\mathsf{map}}(\Psi) \Leftrightarrow \gamma(\Phi \circ \Psi) = \gamma(\Phi) \otimes \gamma(\Psi)$$

访问主页

标 题 页

目 录 页

44 **>>**

←

第 12 页 共 15 页

返回

全屏显示

关 闭

- ☐ Bi-orthogonal Decomposition and Strong Dynamical Additivity
 - $\Phi, \Psi \in \mathsf{T}_{cp}(\mathcal{H})$. If $J(\Phi)$ and $J(\Psi)$ are bi-orthogonal, then Φ and Ψ are said to be *bi-orthogonal*.
 - **Definition.** $\Phi \in \mathsf{T}_{cp}(\mathcal{H})$ has a *bi-orthogonal decomposition* if $J(\Phi)$ has a bi-orthogonal decomposition: $J(\Phi) = \sum_k D_k$, where $\{D_k\}$ is a family of pairwise bi-orthogonal positive semi-definite operators.
 - If $\Phi = \sum_{\mu} A d_{M_{\mu}}$, $\Psi = \sum_{\nu} A d_{N_{\nu}}$, then Φ and Ψ are bi-orthogonal if and only if $M_{\mu}^{\dagger} N_{\nu} = 0$ and $M_{\mu} N_{\nu}^{\dagger} = 0$ for all μ and ν , if and only if $\Phi \circ \Psi^{\dagger} = 0$ and $\Phi^{\dagger} \circ \Psi = 0$, if and only if $\Psi \circ \Phi^{\dagger} = 0$ and $\Psi^{\dagger} \circ \Phi = 0$.
 - $\Phi \in \mathsf{T}_{cp}(\mathcal{H})$ has a bi-orthogonal decomposition if and only if $\Phi = \sum_k \Phi_k$, where $\{\Phi_k\}$ is a collection of super-operators from $\mathsf{T}_{cp}(\mathcal{H})$ and $\Phi_m^{\dagger} \circ \Phi_n = 0$ and $\Phi_m \circ \Phi_n^{\dagger} = 0$ for all $m \neq n$.

访问主页

标 题 页

目 录 页

44 | 55

← →

第 13 页 共 15 页

返回

全屏显示

关 闭

6 Concluding Remarks

- The References can be referred to [Zhang and Wu, arXiv:1104.2193(to appear in J. Phys. A)].
- ☐ Q: What is a necessary condition for Theorem II?
- ☐ Comparison with the *Squashed Entanglement* proposed recently by Christandl:

$$E_{sq}(\rho^{AB}) = \inf_{E} \{ \frac{1}{2} I(A; B|E) : \rho^{ABE} \text{ extension of } \rho^{AB} \},$$

where

$$I(A; B|E) = S(\rho^{AE}) + S(\rho^{BE}) - S(\rho^{ABE}) - S(\rho^{E})$$

is the quantum conditional mutual information of ρ^{ABE} , which measures the correlations of two quantum systems relative to a third one.

Consider the following quantity:

$$I(\Phi; \Psi | \Lambda) = S(\Phi \circ \Lambda) + S(\Lambda \circ \Psi) - S(\Phi \circ \Lambda \circ \Psi) - S(\Lambda)$$

访问主页

标 题 页

目 录 页

4 >>

← | →

第 14 页 共 15 页

返回

全屏显示

关 闭

Thank you!

访问主页

标题页

目 录 页

44

↓ | →

 \triangleright

第 15 页 共 15 页

返 回

全屏显示

关 闭