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A. In the paper, firstly, by using the methods of entropy-preserving extensions of

quantum states, the dynamical additivity of bi-stochastic quantum operations is characterized.

Next, we show that if quantum operations are local operations and have some orthogonality,

then the strong dynamical additivity is true, too.
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1. I

In this paper, we always assume that H is an N-dimensional complex Hilbert space. Let

L(H) be the set of all linear operators from H to H . A state ρ of some quantum system,

described by H , is a positive semi-definite operator of trace one, in particular, for each unit

vector |ψ〉 ∈ H , the operator ρ = |ψ〉〈ψ| is said to be a pure state. The set of all states onH is

denoted by D(H). If X,Y ∈ L(H), then 〈X,Y〉 = Tr(X†Y) defines an inner product on L(H),

which is called the Hilbert-Schmidt inner product. The following fact is often used:

If X,Y ∈ L(H) are two positive semi-definite operators, it follows from 〈X,Y〉 = Tr(X†Y) =

Tr(XY) = Tr(X
1
2 YX

1
2 ) that 〈X,Y〉 = 0 if and only if XY = 0, that is, X and Y are orthogonal if

and only if XY = 0.

Let S ,T ∈ L(H ⊗ H) be two positive semi-definite operators. Denote S 1 = Tr2(S ),

T1 = Tr2(T ), S 2 = Tr1(S ) and T2 = Tr1(T ). Then S 1,T1, S 2,T2 ∈ L(H) are all positive

semi-definite operators. If S 1T1 = S 2T2 = 0, then S and T is said to be bi-orthogonal (see

[7]).

Let {|i〉} be the standard basis ofH . For each P =
∑

i, j pi j|i〉〈 j| ∈ L(H), we denote vec(P) =∑
i j pi j|i j〉, then vec defined a linear map from L(H) to H ⊗ H . Moreover, if HA and HB

are two Hilbert spaces, {|m〉} and {|µ〉} are their standard bases, respectively, then we can

also define a map vec that describes a change of the standard basis from L(HA ⊗ HB) to

HA ⊗ HA ⊗ HB ⊗ HB, that is, vec(|m〉〈n| ⊗ |µ〉〈ν|) = |mn〉 ⊗ |µν〉. Moreover, if X ∈ L(HA),

Z ∈ L(HB), then vec(X ⊗ Z) = vec(X) ⊗ vec(Z) (see [14]).
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Let T(H) denote the set of all linear super-operators from L(H) to L(H). For each Φ ∈
T(H), it follows from the Hilbert-Schmidt inner product of L(H) that there is a linear super-

operator Φ† ∈ T(H) such that 〈Φ(X),Y〉 = 〈X,Φ†(Y)〉 for any X,Y ∈ L(H). Φ† is said to be

the dual super-operator of Φ.

We say that Φ ∈ T(H) is completely positive (CP) if for each k ∈ N, Φ ⊗ 1Mk(C) : L(H) ⊗
Mk(C)→ L(H) ⊗ Mk(C) is positive, where Mk(C) is the set of all k × k complex matrices. It

follows from the famous theorems of Choi [2] and Kraus [9] that Φ can be represented in the

following form: Φ =
∑

j AdM j , where {M j}nj=1 ⊆ L(H), that is, Φ(X) =
∑n

j=1 M jXM†
j , X ∈

L(H). Throughout this paper, † means the adjoint operation of an operator. Moreover, if

{M j}nj=1 is pairwise orthogonal, then Φ =
∑

j AdM j is said to be a canonical representation of

Φ. In [2, 8], it was proved that each quantum operation has a canonical representation.

The so-called quantum operation ofH is just a CP trace non-increasing Φ ∈ T(H), more-

over, if Φ is CP and trace-preserving, then it is called stochastic; if Φ is stochastic and unit-

preserving, then it is called bi-stochastic.

The famous Jamiołkowski isomorphism J : T(H) −→ L(H ⊗ H) transforms each Φ ∈
T(H) into an operator J(Φ) ∈ L(H ⊗ H), where J(Φ) = Φ ⊗ 1L(H)(vec(1H ) vec(1H )†). If

Φ ∈ T(H) is CP, then J(Φ) is a positive semi-definite operator, in particular, if Φ is stochastic,

then 1
N J(Φ) is a state onH ⊗H , we denote the state by ρ(Φ) (see [1]).

The information encoded in a quantum state ρ ∈ D(H) is quantified by its von Neumann

entropy S(ρ) = −Tr(ρ log2 ρ). If Φ ∈ T(H) is a stochastic quantum operation, we denote the

von Neumann entropy S(ρ(Φ)) of ρ(Φ) by S(Φ) and call it the map entropy, S(Φ) describes

the decoherence induced by the quantum operation Φ.

Let Φ, Λ and Ψ be three stochastic quantum operations of H . Studying the behavior of

map entropy of composition of stochastic quantum operations is an important and interesting

problem. In [12], Roga et. al. showed that if Φ is bi-stochastic, then ones have the dynamical

subadditivity:

S(Φ ◦ Ψ) 6 S(Φ) + S(Ψ).

Moreover, if Φ, Λ and Ψ are all bi-stochastic, then the strong dynamical subadditivity holds:

S(Φ ◦ Λ ◦ Ψ) + S(Λ) 6 S(Φ ◦ Λ) + S(Λ ◦ Ψ).

In [6], the main results described the structure of states that saturate the inequality of

strong subadditivity of quantum entropy. Now, we study the saturation problems of the dy-

namical subadditivity and the strong dynamical subadditivity. Firstly, by using the methods

of entropy-preserving extensions of quantum states, a nice characterization of dynamical ad-

ditivity of bi-stochastic quantum operations is obtained. Next, we show that if Φ, Λ and Ψ are

some special local operations [3, 4] and have some orthogonality, then the strong dynamical

additivity is true, too.
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2. E- E  Q S    

The technique of quantum state extension without changing entropy is a very important

and useful tool. It is employed by Datta to construct an example which shows equivalence of

the positivity of quantum discord and strong subadditivity for quantum mechanical systems.

Based on this fact, Datta obtained that zero discord states are precisely those states which

satisfy the strong additivity for quantum mechanical systems. For the details, it is referred to

[5]. In what follows, we will use it to give a characterization of dynamical additivity of map

entropy.

For each state ρ onH , we entropy-preserving extend ρ to a state onH ⊗H , that is, if {|i〉}
is a basis of H and ρ =

∑N
i, j=1 ρi, j|i〉〈 j|, then ρ̃ =

∑N
i, j=1 ρi, j|ii〉〈 j j| is a state on H ⊗ H , and

S(̃ρ) = S(ρ).

In fact, by the spectral decomposition theorem, ρ =
∑

k λk|xk〉〈xk|, where λk > 0, {|xk〉} is an

orthonormal set ofH . This implies that ρi, j = 〈i|ρ| j〉 =
∑

k λk〈i|xk〉〈xk| j〉 =
∑

k λkx(i)
k x̄( j)

k . Note

that {|xk〉} is an orthonormal set ofH , so
∑N

i=1 x(i)
m x̄(i)

n = δmn. Now

ρ̃ =

N∑

i, j=1

(
∑

k

λkx(i)
k x̄( j)

k )|i〉〈 j| ⊗ |i〉〈 j| =
∑

k

λk(
N∑

i, j=1

x(i)
k x̄( j)

k |i〉〈 j| ⊗ |i〉〈 j|)

=
∑

k

λk(
N∑

i=1

x(i)
k |ii〉)(

N∑

i=1

x(i)
k |ii〉)† =

∑

k

λk vec(Xk) vec(Xk)†,

where vec(Xk) =
∑N

i=1 x(i)
k |ii〉 ∈ H ⊗ H . Moreover, it is easy to show that vec(Xm)† vec(Xn) =

δmn, thus ρ̃ is a state onH ⊗H . That S(̃ρ) = S(ρ) is clear.

Let Λ ∈ T(H) be stochastic. If Λ has two Kraus representations Λ =
∑d1

p=1 AdS p =∑d2
q=1 AdTq , ρ ∈ D(H), take two Hilbert spaces H1 and H2 such that dim H1 = d1, dim

H2 = d2, {|m〉} and {|µ〉} are the bases ofH1 andH2, respectively. Define

γ1(Λ) =

d1∑

m,n=1

Tr(S mρS †n)|m〉〈n|, γ2(Λ) =

d2∑

µ,ν=1

Tr(TµρT †ν )|µ〉〈ν|,

then γ1 and γ2 are the states onH1 andH2, respectively, and S(γ1(Λ)) = S(γ2(Λ)).

In fact, without loss of generality, we may assume d1 = d2 = d. Then there exists a d × d

unitary matrix U = [umµ] such that for each 1 ≤ m ≤ d, S m =
∑d
µ=1 umµTµ. Thus

d∑

m,n=1

Tr(S mρS †n)|m〉〈n| =

d∑

m,n=1

Tr((
d∑

µ=1

umµTµ)ρ(
d∑

µ=1

unµTµ)†)|m〉〈n|

= U


d∑

µ,ν=1

Tr(TµρT †ν )|m〉〈n|
 U†.
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Let V : H1 −→ H2 be a unitary operator such that V |m〉 = |µ〉. Then

d∑

m,n=1

Tr(S mρS †n)|m〉〈n| = UV


d∑

µ,ν=1

Tr(TµρT †ν )|µ〉〈ν|
 V†U†,

which implied that γ1 and γ2 are unitary equivalent and thus the conclusion follows (see [11]).

For each stochastic Λ ∈ T(H) and ρ ∈ D(H), we denote S(ρ; Λ) by S(γ1(Λ)), it follows

from the above discussion that S(ρ; Λ) is well-defined [10]. Moreover, it is easy to see that if

ρ = 1
N1, then S(ρ; Λ) = S(Λ) (see [12]).

It follows from above that if Φ,Ψ ∈ T (H) are two bi-stochastic quantum operations, Φ =∑N2

m=1 AdS m and Ψ =
∑N2

µ=1 AdTµ are their canonical representations, respectively. Take a N2

dimensional complex Hilbert spaceH0, for each ρ ∈ D(H), we define

γ(Φ ◦ Ψ) =

N2∑

m,n,µ,ν=1

Tr(S mTµρ(S nTν)†)|mµ〉〈nν|,

then γ(Φ ◦ Ψ) is a state on H0 ⊗ H0, and when ρ = 1
N1, S(γ(Φ ◦ Ψ)) = S(Φ ◦ Ψ), that is,

S(ρ,Φ ◦ Ψ) = S(Φ ◦ Ψ).

Our mail result in this section is the following:

Theorem 2.1. Let Φ,Ψ ∈ T (H) be two bi-stochastic quantum operations, Φ(ρ) =
∑N2

m=1 AdS m

and Ψ =
∑N2

µ=1 AdTµ be their canonical representations, respectively. Then S(Φ ◦ Ψ) =

S(Φ) + S(Ψ) if and only if Tr(S mTµ(S nTν)†) = 1
N Tr(S mS †n) Tr(TµT

†
ν ); i.e., 〈S nTν, S mTµ〉 =

1
N 〈S n, S m〉〈Tν,Tµ〉 for all m, n, µ, ν = 1, . . . ,N2.

Proof. The Jamiołkowski isomorphisms of Φ and Ψ are J(Φ) =
∑N2

m=1 vec(S m) vec(S m)†

and J(Ψ) =
∑N2

µ=1 vec(Tµ) vec(Tµ)†, respectively, where 〈vec(S m), vec(S n)〉 = smδmn and

〈vec(Tµ), vec(Tν)〉 = tmδµν. For each ρ ∈ D(H), let

γ(Φ ◦ Ψ) =

N2∑

m,n,µ,ν=1

Tr(S mTµρ(S nTν)†)|mµ〉〈nν| =
N2∑

m,n,µ,ν=1

Tr(S mTµρ(S nTν)†)|m〉〈n| ⊗ |µ〉〈ν|.

Then we have

γ(Ψ) =

N2∑

µ,ν=1

Tr(TµρT †ν )|µ〉〈ν| = Tr1(γ(Φ ◦ Ψ)),

γ(Φ) =

N2∑

m,n=1

Tr(S mρS †n))|m〉〈n| = Tr2(γ(Φ ◦ Ψ)).
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Note that when ρ = 1
N1, S(γ(Φ ◦ Ψ)) = S(Φ ◦ Ψ), S(γ(Ψ)) = S(Ψ) and S(γ(Φ)) = S(Φ).

Thus, we have

S(Φ ◦ Ψ) = S(Φ) + S(Ψ) ⇔ S(γ(Φ)) + S(γ(Ψ)) = S(γ(Φ ◦ Ψ))

⇔ γ(Φ ◦ Ψ) = γ(Φ) ⊗ γ(Ψ)

⇔ Tr(S mTµ(S nTν)†) =
1
N

Tr(S mS †n) Tr(TµT †ν )

=
smtµ
N

δmnδµν(∀m, n, µ, ν = 1, . . . ,N2).

�

3. B- D  S D A

In order to study the strong dynamical additivity, we need the following bi-orthogonality

and the bi-orthogonal decomposition of quantum operations.

Let Φ,Ψ ∈ T(H) be CP maps. If their Jamiołkowski isomorphisms J(Ψ) and J(Ψ) are

bi-orthogonal, then Φ and Ψ are said to be bi-orthogonal. If J(Φ) can be represented as a

sum
∑

k Dk of pairwise bi-orthogonal positive semi-definite operator Dk, then we say that Φ

has a bi-orthogonal decomposition.

If Φ =
∑
µ AdMµ

, Ψ =
∑
ν AdNν

, then Φ and Ψ are bi-orthogonal if and only if M†
µNν = 0 and

MµN†ν = 0 for all µ and ν if and only if Φ ◦ Ψ† = 0 and Φ† ◦ Ψ = 0 if and only if Ψ ◦ Φ† = 0

and Ψ† ◦ Φ = 0.

In fact, note that J(Φ) =
∑
µ vec(Mµ) vec(Mµ)†, J(Ψ) =

∑
ν vec(Nν) vec(Nν)†, it follows

from

Tr2(J(Φ)) Tr2(J(Ψ)) =


∑

µ

MµMµ
†



∑

ν

NνNν
†
 =

∑

µ,ν

MµMµ
†NνNν

† = 0,

Tr1(J(Φ)) Tr1(J(Ψ)) =


∑

µ

[Mµ
†Mµ]T




∑

ν

[Nν
†Nν]T

 =
∑

µ,ν

[Mµ
†Mµ]T[Nν

†Nν]T = 0

that both J(Φ) and J(Ψ) are bi-orthogonal if and only if MµMµ
†NνNν

† = 0 and Mµ
†MµNν

†Nν =

0 for all µ and ν if and only if M†
µNν = 0 and MµN†ν = 0 for all µ and ν.

Moreover, if J(Φ) can be represented as a sum
∑

k Dk of pairwise bi-orthogonal positive

semi-definite operators, now, we decompose each Dk by the spectral decomposition theorem

as

Dk =
∑

i

d(i)
k vec(M̃(i)

k ) vec(M̃(i)
k )† =

∑

i

vec(M(i)
k ) vec(M(i)

k )†,

where M(i)
k ∈ L(H), vec(M(i)

k ) =

√
d(i)

k vec(M̃(i)
k ) and 〈M(i)

k ,M
( j)
k 〉 = d(i)

k δi j, then Φk =
∑

i AdM(i)
k

is obtained from J(Φk) = Dk. Since Tr2 Dk =
∑

i M(i)
k M(i)

k
†

and Tr1 Dk =
∑

i[M(i)
k
†
M(i)

k ]T, it
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follows form the bi-orthogonality of {Dk} that M(i)
s
†
M( j)

t = 0 and M(i)
s M( j)

t
†

= 0 for any s , t

and all sub-indices i, j. This implies that Φm
† ◦ Φn = 0 and Φm ◦ Φn

† = 0 if m , n.

Hence Φ has a bi-orthogonal decomposition if and only if Φ =
∑

k Φk, where {Φk} is a

collection of CP maps in T(H) and Φm
† ◦ Φn = 0 and Φm ◦ Φn

† = 0 for all m , n.

By Proposition 1 in [13], it follows from above that

(i) Let Φi,Ψi ∈ T(H) be all CP maps, i = 1, 2, Φ1 and Φ2 be bi-orthogonal, Ψ1 and Ψ2 be

bi-orthogonal. Then for any CP map Λ ∈ T(H), Φ1 ◦ Λ ◦ Ψ1 and Φ2 ◦ Λ ◦ Ψ2 are also

bi-orthogonal.

(ii) If Φ,Ψ ∈ T(H) are CP and bi-orthogonal, then for any positive semi-definite operators

X,Y ∈ L(H), Φ(X) and Ψ(Y) are orthogonal.

Our main result in this section is the following:

Theorem 3.1. Assume that Φ,Λ,Ψ ∈ T(H) are all bi-stochastic, and the following conditions

hold:

(i) H =
⊕K

k=1HL
k ⊗HR

k , where dimHL
k = dL

k , dimHR
k = dR

k and
∑K

k=1 dL
k dR

k = N;

(ii) Φ =
⊕K

k=1 ΦL
k ⊗ AdUR

k
,Λ =

⊕K
k=1 ΛL

k ⊗ ΛR
k , and Ψ =

⊕K
k=1 AdVL

k
⊗ ΨR

k ,

that is, Φ|L(HL
k ⊗HR

k ) = ΦL
k ⊗ AdUR

k
,Ψ|L(HL

k ⊗HR
k ) = AdVL

k
⊗ ΨR

k , and Λ|L(HL
k ⊗HR

k ) = ΛL
k ⊗ ΛR

k ,

ΦL
k ,Λ

L
k ∈ T(HL

k ) are bi-stochastic, VL
k ∈ L(HL

k ) are unitary operators, UR
k ∈ L(HR

k ) are

unitary operators and ΨR
k ,Λ

R
k ∈ T(HR

k ) are bi-stochastic.

Then we have the following strong dynamical additivity, that is

S(Φ ◦ Λ) + S(Λ ◦ Ψ) = S(Λ) + S(Φ ◦ Λ ◦ Ψ).

Proof. Since

Φ ◦ Λ ◦ Ψ =

K∑

k=1

ΦL
k ◦ ΛL

k ◦ AdVL
k
⊗ AdUR

k
◦ ΛR

k ◦ ΨR
k

is a bi-orthogonal decomposition of Φ ◦ Λ ◦ Ψ, so we have

ρ(Φ ◦ Λ ◦ Ψ) =

K∑

k=1

λkρ(ΦL
k ◦ ΛL

k ◦ AdVL
k
) ⊗ ρ(AdUR

k
◦ ΛR

k ◦ ΨR
k ),

where λk = 1
N dL

k dR
k for each k and

∑K
k=1 λk = 1. Thus,

S(Φ ◦ Λ ◦ Ψ) = H(λ) +

K∑

k=1

λkS(ΦL
k ◦ ΛL

k ◦ AdVL
k
) +

K∑

k=1

λkS(AdUR
k
◦ ΛR

k ◦ ΨR
k )

= H(λ) +

K∑

k=1

λkS(ΦL
k ◦ ΛL

k ) +

K∑

k=1

λkS(ΛR
k ◦ ΨR

k ).

Similarly,
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S(Φ ◦ Λ) = H(λ) +

K∑

k=1

λkS(ΦL
k ◦ ΛL

k ) +

K∑

k=1

λkS(ΛR
k ),

S(Λ ◦ Ψ) = H(λ) +

K∑

k=1

λkS(ΛL
k ) +

K∑

k=1

λkS(ΛR
k ◦ ΨR

k ),

S(Λ) = H(λ) +

K∑

k=1

λkS(ΛL
k ) +

K∑

k=1

λkS(ΛR
k ),

where H(λ) = −∑K
k=1 λk log2 λk is the Shannon entropy of λ = (λ1, λ2, . . . , λK). It follows

from these equalities that S(Φ ◦ Λ) + S(Λ ◦ Ψ) = S(Λ) + S(Φ ◦ Λ ◦ Ψ). �

4. C R

If the entropy S(Φ) of a stochastic quantum operation Φ is used to describe the capability

of inducing noise induced by Φ, then Theorem 2.1 showed that the capability of inducing

noise by the composite operation Φ◦Ψ can be separated into two parts induced by operations

Φ and Ψ if and only if the conditions of Theorem 2.1 are satisfied. In general, the dynamical

subadditivity inequality is strictly, for example, let dim (H) = 3, P is a project operator

and dim (P(H)) = 2, Φ = Ψ = AdP + Ad1−P, then the conditions of Theorem 2.1 are not

satisfied, so S(Φ ◦ Ψ) < S(Φ) + S(Ψ). Moreover, ones can use the nonnegative quantity

S(Φ) + S(Ψ) − S(Φ ◦ Ψ) to express some correlation between Φ and Ψ, we will discuss this

problem later.
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