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Professor S. Luo in [Phys. Rev. A 82, 052122(2010)] proposed two conjectures on the classical correlation

and quantum correlation in a bipartite state ρAB, respectively. In this paper, we prove the conjecture on the

classical correlation completely. Moreover, we show that Q(ρAB) 6 S(ρB) is always valid, and the conjecture on

quantum correlation is true if S(ρB) 6 S(ρA) or ρAB is separable. We obtain also a class of states ρAB satisfies

that S(ρA) 6 S(ρB), but Q(ρAB) 6 S(ρA), so the conjecture on quantum correlation is also true for them.
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I. INTRODUCTION

In quantum information theory, each realizable physical set-up that processes states of quantum system is described by a
quantum operation [1] which is mathematically represented by a linear, completely positive super-operator from a set of quantum
states to another. The information encoded in a given quantum state is quantified by its von Neumann entropy. In general, the
decoherence will be induced in the quantum system when the quantum state is acted by a quantum operation. There are few
general and quantitative investigation on the decorrelating capabilities of quantum operations although the decoherent effects of
quantum operations are popularly realized.

In order to investigate the decorrelating capabilities of quantum operations, Luo [2] suggested that the decorrelating capabili-
ties of quantum operations should be separated into classical and quantum parts, and the decoherence involved should be related
to the quantum part. By the duality of quantum operations and quantum states, each quantum operation can be identified with
a bipartite state via the well-known Choi-Jamiołkowski isomorphism [3]. Thus the study of the decorrelating capabilities of
quantum operations may be transformed into the investigation of correlations of its corresponding Choi-Jamiołkowski bipartite
states. In view of this, the total correlations in a bipartite state play an essential role in the study of the decorrelating capabilities
of quantum operations. In order to get some finer quantitative results, after the total correlation was separated into classical and
quantum parts, two related conjectures were proposed by Luo in [2] with some supporting examples. In this paper, we studied
the two conjectures.

II. CLASSICAL AND QUANTUM CORRELATIONS IN BIPARTITE STATES

Let H 1 be a finite dimensional complex Hilbert space. A quantum operation Φ on H 1 is a completely positive linear super-
operator defined on the set of the quantum states on H 1. It follows from ([4], Prop. 5.2 and Coro. 5.5) that there exists linear
operators {Mµ}Kµ=1 on H 1 such that

∑K
µ=1 M†µMµ = 11 and for each quantum state ρ on H 1, we have the Kraus representation

Φ(ρ) =

K∑

µ=1

MµρM†µ.

Moreover, let H 2 = CK and {|µ〉}Kµ=1 be the standard orthonormal basis of H 2. If we define V : H 1 −→H 1 ⊗H 2 by

V |ψ〉 =

K∑

µ=1

Mµ|ψ〉 ⊗ |µ〉, |ψ〉 ∈H 1,
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then V is an isometry and for each quantum state ρ on H 1, we have the Stinespring representation

Φ(ρ) = Tr2(VρV†).

It is easy to see that

VρV† =
∑

µ,ν

MµρM†ν ⊗ |µ〉〈ν|.

On the other hand, note that for each state ρ on H 1, Tr1(VρV†) is a state on H 2, thus, the map

Φ̂ : ρ 7→ Tr1(VρV†) =
∑

µ,ν

Tr(MµρM†ν )|µ〉〈ν|

is a quantum operation from quantum system H 1 to quantum system H 2, we call it complementary to Φ.
If we consider H 2 to be the environment and denote the state Φ̂(ρ) by σ̂(Φ, ρ), then σ̂(Φ, ρ) is the state of the environment

after the interaction and is called a correlation matrix. If the initial state ρ is pure, then the von Neumann entropy S(σ̂(Φ, ρ)) =

−Tr(σ̂(Φ, ρ) log2 σ̂(Φ, ρ)) of σ̂(Φ, ρ) describes the entropy exchanged between the system and the environment. Therefore,
S(σ̂(Φ, ρ)) is called the exchange entropy. The relationship among the S(Φ(ρ)),S(ρ), and S(σ̂(Φ, ρ)) is connected by the well-
known Lindblad’s entropy inequality [5]:

|S(σ̂(Φ, ρ)) − S(ρ)| 6 S(Φ(ρ)) 6 S(σ̂(Φ, ρ)) + S(ρ). (1)

It follows from
∑K
µ=1 M†µMµ = 11 that {Mµ}Kµ=1 describes a measurement which transforms the initial state ρ into one of the output

states

ρ′µ =
1
qµ

MµρM†µ

with probability qµ = Tr(MµρM†µ). Thus, {qµ, ρ′µ} is a quantum ensemble and its Holevo quantity is defined by

χ({qµ, ρ′µ}) = S(
∑

µ

qµρ′µ) −
∑

µ

qµS(ρ′µ).

Let H({qµ}) = −∑k
µ=1 qµ log2 qµ be the Shannon entropy of the probability distribution {qµ}. Then we have the following nice

inequality [6]:

χ({qµ, ρ′µ}) 6 S(σ̂(Φ, ρ)) 6 H({qµ}). (2)

Let H R and H Q be two finite dimensional complex Hilbert spaces. If ΦQ is a quantum operation on H Q, then 1R ⊗ΦQ is a
quantum operation on H R ⊗H Q, moreover, if ρRQ is a state on H R ⊗H Q and ρQ = TrR(ρRQ), then we have [7]:

S(σ̂(1R ⊗ ΦQ, ρRQ)) = S(σ̂(ΦQ, ρQ)). (3)

Let H A and H B be two finite dimensional complex Hilbert spaces, ρAB is a state on H A⊗H B, ρA = TrB(ρAB), ρB = TrA(ρAB).
Then the total correlation in ρAB is usually quantified by the quantum mutual information

I(ρAB) = S(ρA) + S(ρB) − S(ρAB).

In [2], Professor Luo separated the total correlation I(ρAB) into classical correlation C(ρAB) and quantum correlation I(ρAB) −
C(ρAB), where the classical correlation C(ρAB) was defined by

C(ρAB) = sup
ΠB

I[ΠB(ρAB)],
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the sup is taken over all von Neumann measurements ΠB = {ΠB
j } on H B, and

ΠB(ρAB) =
∑

j

(1A ⊗ ΠB
j )ρAB(1A ⊗ ΠB

j )

is the output state after executing the nonselective measurement ΠB = {ΠB
j }; 1A is the identity operator on H A.

The quantum correlation Q(ρAB) was also called quantum discord [8].
In [2], Professor Luo proposed the following conjectures:

C(ρAB) 6 min{S(ρA),S(ρB)}, (I)

Q(ρAB) 6 min{S(ρA),S(ρB)}. (II)

In this paper, we prove the conjecture (I) completely. Moreover, we show that Q(ρAB) 6 S(ρB) is always valid, and the
conjecture (II) is true if S(ρB) 6 S(ρA) or ρAB is separable. We obtain also a class of states ρAB satisfies that S(ρA) 6 S(ρB), but
Q(ρAB) 6 S(ρA), so the conjecture on quantum correlation is also true for them.

III. THE PROOF OF THE CONJECTURE

Our main results are the following:

Theorem III.1. Let ρAB be a quantum state on H A ⊗H B. Then we have

(i) C(ρAB) 6 min{S(ρA),S(ρB)},

(ii) Q(ρAB) 6 S(ρB), and Q(ρAB) 6 min{S(ρA),S(ρB)} whenever S(ρB) 6 S(ρA) or ρAB is separable.

Proof. (i). Let {|ψB
j 〉}kj=1 be a orthonormal basis of H B and ΠB

j = |ψB
j 〉〈ψB

j |. Then Tr((1A⊗ΠB
j )ρAB(1A⊗ΠB

j )) = 〈ψB
j |ρB|ψB

j 〉.
If we denote 〈ψB

j |ρB|ψB
j 〉 by p j, then p j > 0 and

∑
j p j = 1. Without loss of generality, we assume that all p j > 0. Now, we

define

ρA
j =

(1A ⊗ 〈ψB
j |)ρAB(1A ⊗ |ψB

j 〉)
p j

,

then ρA
j is a state on H A ⊗H B and

ΠB(ρAB) =
∑

j

p jρ
A
j ⊗ ΠB

j ,

ΠB(ρB) =
∑

j

ΠB
j ρ

BΠB
j =

∑

j

p jΠ
B
j ,

ρA =
∑

j

p jρ
A
j .

Thus,

S(ΠB(ρAB)) = H({p j}) +
∑

j

p jS(ρA
j ),

S(ΠB(ρB)) = H({p j}),



4

and

I[ΠB(ρAB)] = S(ρA) + S(ΠB(ρB)) − S(ΠB(ρAB))

= S(ρA) −
∑

j

p jS(ρA
j )

= χ({p j, ρ
A
j }).

Note that
∑

j p jS(ρA
j ) > 0. Hence I[ΠB(ρAB)] 6 S(ρA). Thus C(ρAB) = supΠB I[ΠB(ρAB)] 6 S(ρA).

On the other hand, it follows from C(ρAB) = supΠB I[ΠB(ρAB)] and I[ΠB(ρAB)] = χ({p j, ρ
A
j } that in order to prove C(ρAB) 6

S(ρB), we only need to prove χ({p j, ρ
A
j }) 6 S(ρB). Note that the quantum ensemble {p j, ρ

A
j } is obtained from the quantum

operation of taking partial trace over HB from the quantum state ρAB, this inspired us to define the following quantum
operation Ψ on the quantum system H A ⊗H B:

Let |ωB〉 ∈H B be a fixed unit vector, for each quantum state σAB on H A ⊗H B,

Ψ(σAB) =
∑

j

(1A ⊗ |ωB〉〈ψB
j |)σAB(1A ⊗ |ψB

j 〉〈ωB|)

= TrB(σAB) ⊗ |ωB〉〈ωB|.

Let H C = Ck and {|i〉}ki=1 be the standard orthonormal basis of H C . Then the correlation matrix σ̂(Ψ, ρAB) is given by

σ̂(Ψ, ρAB) =
∑

i, j

Tr((1A ⊗ |ωB〉〈ψB
i |)ρAB(1A ⊗ |ψB

j 〉〈ωB|))|i〉〈 j|

=
∑

i, j

〈ψB
i |ρB|ψB

j 〉|i〉〈 j|,

If we define W =
∑

j | j〉〈ψB
j |, then W†W = 1B,WW† = 1C , that is, W is an unitary operator from HB to HC . It follows

from σ̂(Ψ, ρAB) = WρBW† that S(σ̂(Ψ, ρAB)) = S(ρB). Note that the quantum ensemble {p j, ρ
A
j ⊗ |ωB〉〈ωB|} can be obtained

by the quantum operation Ψ and χ({p j, ρ
A
j }) = χ({p j, ρ

A
j ⊗ |ωB〉〈ωB|}). By using the inequality (2) we have

χ({p j, ρ
A
j }) = χ({p j, ρ

A
j ⊗ |ωB〉〈ωB|}) 6 S(σ̂(Ψ, ρAB)) = S(ρB).

Thus, we have proved C(ρAB) 6 min{S(ρA),S(ρB)}.
(ii). Note that equality (3) shows that S(σ̂(ΠB, ρAB)) = S(σ̂(ΠB, ρB)). Hence it follows from inequality (1) that

S(ΠB(ρAB)) − S(ρAB) 6 S(σ̂(ΠB, ρAB)) = S(σ̂(ΠB, ρB)) = H({p j}) = S(ΠB(ρB)). (4)

On the other hand, note that I(ΠB(ρAB) = S(ρA) + S(ΠB(ρB)−S(ΠB(ρAB), by the definition of Q(ρAB) and inequality (4) we
have

Q(ρAB) = I(ρAB) −C(ρAB) 6 S(ΠBρAB) − S(ρAB) − S(ΠBρB) + S(ρB) 6 S(ρB).

This showed that Q(ρAB) 6 S(ρB).

Clearly, when S(ρB) 6 S(ρA), it follows from Q(ρAB) 6 S(ρB) that Q(ρAB) 6 min{S(ρA),S(ρB)}.
If ρAB is a separable state, then S(ρAB) > max{S(ρA),S(ρB)} [9]. Note that I(ΠB(ρAB)) > 0, so S(ρB)−S(ρAB) 6 I(ΠB(ρAB)).
Thus, we can prove easily that Q(ρAB) 6 min{S(ρA),S(ρB)}. The theorem is proved.

�

In what follows, in order to provide a class of states ρAB satisfies that S(ρA) 6 S(ρB) and Q(ρAB) 6 S(ρA), we need the
following:
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Theorem III.2. Let H B and H C be two finite dimensional complex Hilbert spaces, ρBC be a state on H B⊗H C , ρB = TrC(ρBC),
ρC = TrB(ρBC). Then S (ρBC) = S (ρB) − S (ρC) if and only if

(i) HB can be factorized into the form H B = H L ⊗H R,

(ii) ρBC = ρL ⊗ |ΨRC〉〈ΨRC |, where |ΨRC〉 ∈H R ⊗H C .

Proof. (⇐=) It is trivially.
(=⇒) Assume that S(ρBC) = S(ρB) − S(ρC). The quantum state ρBC can be purified into a tripartite state |ΩABC〉 ∈H A ⊗H B ⊗
H C , where H A is a reference system. If we denote ρABC = |ΩABC〉〈ΩABC |, then

TrAB(ρABC) = ρC ,TrAC(ρABC) = ρB,

TrC(ρABC) = ρAB,TrA(ρABC) = ρBC .

Note that S(ρABC) = 0, so S(ρC) = S(ρAB), thus, we have

S(ρAB) + S(ρBC) = S(ρB) = S(ρB) + S(ρABC),

it follows from [10] that

(i) H B can be factorized into the form H B =
⊕K

k=1 H L
k ⊗H R

k ,

(ii) ρABC =
⊕K

k=1 λkρ
AL
k ⊗ρRC

k , where ρAL
k is a state on H A⊗H L

k , ρRC
k is a state on H R

k ⊗H C , {λk} is a probability distribution.

That S(ρBC) = S(ρB)−S(ρC) implies S(ρA)+S(ρC) = S(ρAC) is clear, and S(ρA)+S(ρC) = S(ρAC) if and only if ρAC = ρA⊗ρC

holds. By the expression form of ρABC =
⊕K

k=1 λkρ
AL
k ⊗ ρRC

k , we have ρAC =
∑K

k=1 λkρ
A
k ⊗ ρC

k . Combining these facts we have
K = 1, i.e., the statement (i) of the theorem holds. Hence ρABC = ρAL ⊗ ρRC , where ρAL is a state on H A ⊗H L and ρRC is a state
on H R ⊗H C , it follows from ρABC is pure state that both ρAL and ρRC are also pure states. Therefore

ρBC = TrA(ρAL) ⊗ ρRC = ρL ⊗ |ΨRC〉〈ΨRC |.

The statement (ii) holds and the theorem is proved. �

Example III.3. Let ρAB be a bipartite state on H A ⊗ H B such that S(ρAB) = S(ρB) − S(ρA). By Theorem III.2, we have
ρAB = |ΦAL〉〈ΦAL|⊗ρR for |ΦAL〉 ∈H A⊗H L, where ρR is a state on H R and H B = H L⊗H R. It is easy to show that although
S(ρA) 6 S(ρB), but Q(ρAB) = S(ρA), so the conjecture (II) is true for this class of states.
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