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I. INTRODUCTION

Quantum computing and quantum information processing are emerging disciplines in which the principles of quan-
tum physics are employed to store and process information. We use the classical digital technology at almost every
moment in our lives: computers, mobile phones, mp3 players, just to name a few. Even though quantum mechanics is
used in the design of devices such as LSI, the logic is purely classical. This means that an AND circuit, for example,
produces definitely 1 when the inputs are 1 and 1. One of the most remarkable aspects of the principles of quantum
physics is the superposition principle by which a quantum system can take several different states simultaneously. The
input for a quantum computing device may be a superposition of many possible inputs, and accordingly the output is
also a superposition of the corresponding output states. Another aspect of quantum physics, which is far beyond the
classical description, is entanglement. Given several objects in a classical world, they can be described by specifying
each object separately. In a quantum world, however, only a very tiny fraction of all possible states can be described
by such separate specifications. In other words, most quantum states cannot be described by such individual specifi-
cations, thereby being called “entangled”. Why and how these two features give rise to the enormous computational
power in quantum computing ane quantum information processing will be explained in this contribution.
A part of this lecture note is based on our book [1]. General references are [2–4].

II. QUANTUM PHYSICS

A. Notation and conventions

We will exclusively work with a finite-dimensional complex vector space Cn with an inner product 〈 , 〉 (Hilbert
spaces). A vector in Cn is called a ket vector or a ket and is denoted as

|x〉 =

⎛
⎜⎝
x1
...
xn

⎞
⎟⎠ xi ∈ C

while a vector in the dual space C
n∗ is called a bra vector or a bra and denoted 〈α| = (α1, . . . , αn), αi ∈ C. Index i

sometimes runs from 0 to n− 1. The inner product of |x〉 and 〈α| is

〈α|x〉 =
n∑

i=1

αixi.

This inner product naturally introduces a correspondence |x〉 = (x1, . . . , xn)
t ↔ 〈x| = (x∗1, . . . , x∗n), by which an inner

product of two vectors are defined as 〈x|y〉 =
∑n

i=1 x
∗
i yi. The inner product naturally defines the norm of a vector |x〉

as ‖|x〉‖ =
√
〈x|x〉.

Pauli matrices are generators of su(2) and denoted

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

in the basis in which σz is diagonalized. Symbols X = σx, Y = −iσy and Z = σz are also employed.
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Let A be an m× n matrix and B be a p× q matrix. Then

A⊗B =

⎛
⎜⎝

a11B, a12B, . . . , a1nB
a21B, a22B, . . . , a2nB

. . .
am1B, am2B, . . . , amnB

⎞
⎟⎠

is an (mp) × (nq) matrix called the tensor product of A and B. As a special case, the tensor product of two vectors
|x〉 = (x1, x2, . . . , xp)

t and |y〉 = (y1, y2, . . . , yq)
t is given by

|x〉 ⊗ |y〉 = (x1y1, . . . , x1yq, x2y1, . . . , x2yq, . . . , xpy1, . . . xpyq)
t .

The tensor product |x〉 ⊗ |y〉 is often abbreviated as |x〉|y〉 or |xy〉. Note however that the tensor product of two
matrices A and B cannot be written as AB for an obvious reason.

B. Axioms of quantum mechanics

Quantum mechanics was discovered roughly a century ago [5–10]. In spite of its long history, the interpretation of the
wave function remains an open question. Here we adopt the most popular one, called the Copenhagen interpretation.

A 1 A pure state in quantum mechanics is represented by a normalized vector |ψ〉 in a Hilbert spaceH associated with
the system. If two states |ψ1〉 and |ψ2〉 are physical states of the system, their linear superposition c1|ψ1〉+c2|ψ2〉
(ck ∈ C), with

∑2
i=1 |ci|2 = 1, is also a possible state of the same system (superposition principle).

A 2 For any physical quantity (observable) a, there exists a corresponding Hermitian operator A acting on H. When
a measurement of a is made, the outcome is one of the eigenvalues λj of A. Let λ1 and λ2 be two eigenvalues
of A: A|λi〉 = λi|λi〉. Consider a superposition state c1|λ1〉 + c2|λ2〉. If we measure a in this state, the state
undergoes an abrupt change (wave function collapse) to one of the eigenstates |λi〉 corresponding to the observed
eigenvalue λi. Suppose we prepare many copies of the state c1|λ1〉 + c2|λ2〉. The probability of collapsing to
the state |λi〉 is given by |ci|2 (i = 1, 2). The complex coefficient ci is called the probability amplitude in
this sense. It should be noted that a measurement produces one outcome λi and the probability of obtaining
it is experimentally evaluated only after repeating measurements with many copies of the same state. These
statements are easily generalized to superposition states of more than two states.

A 3 The time dependence of a state is governed by the Schrödinger equation

i�
∂|ψ〉
∂t

= H |ψ〉, (1)

where � is a physical constant known as the Planck constant and H is a Hermitian operator (matrix) corre-
sponding to the energy of the system and is called the Hamiltonian.

Several comments are in order.

• In Axiom A 1, the phase of the vector may be chosen arbitrarily; |ψ〉 in fact represents the “ray” {eiα|ψ〉 |α ∈ R}.
This is called the ray representation. The overall phase is not observable and has no physical meaning.

• Axiom A 2 may be formulated in a different but equivalent way as follows. Suppose we would like
to measure an observable a. Let the spectral decomposition of the corresponding operator A be A =∑

i λi|λi〉〈λi|, where A|λi〉 = λi|λi〉. Then the expectation value 〈A〉 of a after measurements with respect
to many copies of |ψ〉 is

〈A〉 = 〈ψ|A|ψ〉. (2)

Let us expand |ψ〉 in terms of |λi〉 as |ψ〉 =
∑

i ci|λi〉. According to A 2, the probability of observing λi
upon measurement of a is |ci|2 and therefore the expectation value after many measurements is

∑
i λi|ci|2.

If, conversely, Eq. (2) is employed, we will obtain the same result since 〈ψ|A|ψ〉 =
∑

i,j c
∗
jci〈λj |A|λi〉 =∑

i,j λic
∗
jciδij =

∑
i λi|ci|2. This measurement is called the projective measurement. Any particular outcome λi

will be found with the probability |ci|2 = 〈ψ|Pi|ψ〉, where Pi = |λi〉〈λi| is the projection operator and the state

immediately after the measurement is |λi〉 or equivalently Pi|ψ〉/
√
〈ψ|Pi|ψ〉.
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• The Schrödinger equation (1) in Axiom A 3 is formally solved to yield

|ψ(t)〉 = e−iHt/�|ψ(0)〉, (3)

if the Hamiltonian H is time-independent, while

|ψ(t)〉 = T exp

[
− i

�

∫ t

0

H(t)dt

]
|ψ(0)〉 (4)

if H depends on t, where T is the time-ordering operator. The state at t > 0 is |ψ(t)〉 = U(t)|ψ(0)〉. The
operator U(t) : |ψ(0)〉 �→ |ψ(t)〉, called the time-evolution operator, is unitary. Unitarity of U(t) guarantees that
the norm of |ψ(t)〉 is conserved: 〈ψ(0)|U †(t)U(t)|ψ(0)〉 = 〈ψ(0)|ψ(0)〉 = 1 (∀t > 0).

Two mutually commuting operators A and B have simultaneous eigenstates. If, in contrast, they do not com-
mute, the measurement outcomes of these operators on any state |ψ〉 satisfy the following uncertainty relations.

Let 〈A〉 = 〈ψ|A|ψ〉 and 〈B〉 = 〈ψ|B|ψ〉 be their respective expectation values and ΔA =
√
〈(A− 〈A〉)2〉 and

ΔB =
√
〈(B − 〈B〉)2〉 be respective standard deviations. Then they satisfy

ΔAΔB ≥ 1

2
|〈ψ|[A,B]|ψ〉|. (5)

C. Simple example

Examples to clarify the axioms introduced in the previous subsection are given. They are used to controll quantum
states in physical realizations of a quantum computer. A spin-1/2 particle has two states, which we call spin-up state
| ↑〉 and spin-down state | ↓〉. It is common to assign components | ↑〉 = (1, 0)t and | ↓〉 = (0, 1)t. They form a basis
of a vector space C2.
Let us consider a time-independent Hamiltonian

H = −�

2
ωσx (6)

acting on the spin Hilbert space C2. Suppose the system is in the eigenstate of σz with the eigenvalue +1 at time
t = 0; |ψ(0)〉 = | ↑〉. The wave function |ψ(t)〉 (t > 0) is then found from Eq. (3) as

|ψ(t)〉 = exp
(
i
ω

2
σxt

)
|ψ(0)〉 =

(
cosωt/2 i sinωt/2

i sinωt/2 cosωt/2

)(
1
0

)
=

(
cosωt/2

i sinωt/2

)
= cos

ω

2
t| ↑〉+ i sin

ω

2
t| ↓〉. (7)

Suppose we measure σz in |ψ(t)〉. The spin is found spin-up with probability P↑(t) = cos2(ωt/2) and spin-down with

probability P↓(t) = sin2(ωt/2).
Consider a more general Hamiltonian

H = −�

2
ωn̂ · σ, (8)

where n̂ is a unit vector in R
3. The time-evolution operator is readily obtained, by making use of a well known

formula

eiα(n̂·σ) = cosαI + i(n̂ · σ) sinα (9)

as

U(t) = exp(−iHt/�) = cosωt/2 I + i(n̂ · σ) sinωt/2. (10)

Suppose the initial state is |ψ(0)〉 = (1, 0)t for example. Then we find, at a later time t > 0,

|ψ(t)〉 = U(t)|ψ(0)〉 =
(

cos(ωt/2) + inz sin(ωt/2)
i(nx + iny) sin(ωt/2)

)
. (11)
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D. Multipartite system, tensor product and entangled state

So far, we have implictly assumed that the system is made of a single component. Suppose a system is made of two
components, one lives in a Hilbert space H1 and the other in H2. A system composed of two separate components is
called bipartite. The system as a whole lives in a Hilbert space H = H1 ⊗H2, whose general vector is written as

|ψ〉 =
∑
i,j

cij |e1,i〉 ⊗ |e2,j〉, (12)

where {|ea,i〉} (a = 1, 2) is an orthonormal basis in Ha and
∑

i,j |cij |2 = 1.

A state |ψ〉 ∈ H written as a tensor product of two vectors as |ψ〉 = |ψ1〉 ⊗ |ψ2〉, (|ψa〉 ∈ Ha) is called a separable
state or a tensor product state. A separable state admits a classical interpretation “The first system is in the state
|ψ1〉 while the second system is in |ψ2〉”. It is clear that the set of separable state has dimension dimH1 + dimH2.
Note, however, that the total space H has different dimension than this: dimH = dimH1 dimH2. This number is
considerably larger than the dimension of the sparable states when dimHa (a = 1, 2) are large. What are the missing
states then? Let us consider a spin state

|ψ〉 = 1√
2
(| ↑〉 ⊗ | ↑〉+ | ↓〉 ⊗ | ↓〉) (13)

of two electrons. Suppose |ψ〉 may be decomposed as

|ψ〉 = (c1| ↑〉+ c2| ↓〉)⊗ (d1| ↑〉+ d2| ↓〉) = c1d1| ↑〉 ⊗ | ↑〉+ c1d2| ↑〉 ⊗ | ↓〉+ c2d1| ↓〉 ⊗ | ↑〉+ c2d2| ↓〉 ⊗ | ↓〉.

However this decomposition is not possible since we must have c1d2 = c2d1 = 0, c1d1 = c2d2 = 1/
√
2 simultaneously

and it is clear that the above equations have no common solution, showing |ψ〉 is not separable.
Such non-separable states are called entangled. Entangled states refuse classical descriptions. Entanglement is used

extensively as a powerful computational resource in the following.
Suppose a bipartite state (12) is given. We are interested in when the state is separable and when entangled. The

criterion is given by the Schmidt decomposition of |ψ〉.

Theorem II.1 Let H = H1⊗H2 be the Hilbert space of a bipartite system. Then a vector |ψ〉 ∈ H admits the Schmidt
decomposition

|ψ〉 =
r∑

i=1

√
si|f1,i〉 ⊗ |f2,i〉, (14)

where si > 0 are called the Schmidt coefficients satisfying
∑

i si = 1 and {|fa,i〉} is an orthonormal set of Ha. The
number r ∈ N is called the Schmidt number of |ψ〉.

It follows from the above theorem that a bipartite state |ψ〉 is separable if and only if its Schmidt number r is 1.
See [1] for the proof.

E. Mixed states and density matrices

It might happen in some cases that a quantum system under considertation is in the state |ψi〉 with a probability
pi. In other words, we cannot say definitely which state the system is in. Therefore some random nature comes into
the description of the system. Such a system is said to be in a mixed state while a system whose vector is uniquely
specified is in a pure state. A pure state is a special case of a mixed state in which pi = 1 for some i and pj = 0 (j �= i).
A particular state |ψi〉 ∈ H appears with probability pi in an ensemble of a mixed state, in which case the expectation

value of an observable a is 〈ψi|A|ψi〉. The mean value of a averaged over the ensemble is then given by

〈A〉 =
N∑
i=1

pi〈ψi|A|ψi〉, (15)

where N is the number of available states. Let us introduce the density matrix by

ρ =

N∑
i=1

pi|ψi〉〈ψi|. (16)
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Then Eq. (15) is rewritten in a compact form as 〈A〉 = Tr(ρA).
Let A be a Hermitian matrix. A is called positive-semidefinite if 〈ψ|A|ψ〉 ≥ 0 for any |ψ〉 ∈ H. It is easy to show

all the eigenvalues of a positive-semidefinite Hermitian matrix are non-negative. Conversely, a Hermitian matrix A
whose every eigenvalue is non-negative is positive-semidefinite.
Properties which a density matrix ρ satisfies are very much like axioms for pure states.

A 1’ A physical state of a system, whose Hilbert space is H, is completely specified by its associated density matrix
ρ : H → H. A density matrix is a positive-semidefinite Hermitian operator with tr ρ = 1, see remarks below.

A 2’ The mean value of an observable a is given by

〈A〉 = tr (ρA). (17)

A 3’ The temporal evolution of the density matrix follows the Liouville-von Neumann equation

i�
d

dt
ρ = [H, ρ] (18)

where H is the system Hamiltonian, see remarks below.

Several remarks are in order.

• The density matrix (16) is Hermitian since pi ∈ R. It is positive-semidefinite since 〈ψ|ρ|ψ〉 =
∑

i pi|〈ψi|ψ〉|2 ≥ 0.

• Each |ψi〉 follows the Schrödinger equation i� d
dt |ψi〉 = H |ψi〉 in a closed quantum system. Its Hermitian

conjugate is −i� d
dt 〈ψi| = 〈ψi|H. We prove the Liouville-von Neumann equation from these equations as

i�
d

dt
ρ = i�

d

dt

∑
i

pi|ψi〉〈ψi| =
∑
i

piH |ψi〉〈ψi| −
∑
i

pi|ψi〉〈ψi|H = [H, ρ].

We denote the set of all possible density matrices as S(H).

Example II.2 A pure state |ψ〉 is a special case in which the corresponding density matrix is ρ = |ψ〉〈ψ|. There-
fore ρ is nothing but the projection operator onto the state. Observe that 〈A〉 = tr ρA =

∑
i〈ei|ψ〉〈ψ|A|ei〉 =

〈ψ|A
∑

i |ei〉〈ei|ψ〉 = 〈ψ|A|ψ〉, where {|ei〉} is an orthonormal set.
Let us consider a beam of photons. We take a horizontally polarized state |e1〉 = | ↔〉 and a vertically polarized

state |e2〉 = | �〉 as orthonormal basis vectors. If the photons are a totally uniform mixture of two polarized states, the
density matrix is given by

ρ =
1

2
|e1〉〈e1|+

1

2
|e2〉〈e2| =

1

2

(
1 0
0 1

)
=

1

2
I.

This state is called a maximally mixed state.
If photons are in a pure state |ψ〉 = (|e1 〉+ |e2〉)/

√
2, the density matrix, with {|ei〉} as basis, is

ρ = |ψ〉〈ψ| = 1

2

(
1 1
1 1

)
.

We are interested in when ρ represents a pure state or a mixed state.

Theorem II.3 A state ρ is pure if and only if tr ρ2 = 1.

Proof: Since ρ is Hermitian, all its eigenvalues λi (1 ≤ i ≤ dimH) are real and the corresponding eigenvectors {|λi〉}
are made orthonormal. Then ρ2 =

∑
i,j λiλj |λi〉〈λi|λj〉〈λj | =

∑
i λ

2
i |λi〉〈λi|. Therefore tr ρ2 =

∑
i λ

2
i ≤ λmax

∑
i λi =

λmax ≤ 1, where λmax is the largest eigenvalue of ρ. Therefore tr ρ2 = 1 implies λmax = 1 and all the other eigenvalues
are zero. The converse is trivial.

We classify mixed states into two classes, similarly to the classification of pure states into separable states and
entangled states. We use a bipartite system in the definition but generalization to multipartitle systems should be
obvious.

Definition II.4 A state ρ is called separable if it is written in the form

ρ =
∑
i

piρ1,i ⊗ ρ2,i, (19)

where 0 ≤ pi ≤ 1 and
∑

i pi = 1. It is called inseparable, if ρ does not admit the decompostion (19).

In the next subsection, we discuss how to find whether a given bipartite density matrix is separable or inseparable.
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F. Negativity

Let ρ be a bipartite state and define the partial transpose ρpt of ρ with respect to the second Hilbert space as

ρij,kl → ρil,kj , (20)

where ρij,kl = (〈e1,i|⊗ 〈e2,j |) ρ (|e1,k〉⊗ |e2,l〉). Here {|e1,k〉} is the orthonormal basis of the first system while {|e2,k〉}
of the second system. Suppose ρ takes a separable form (19). Then the partial transpose yields

ρpt =
∑
i

piρ1,i ⊗ ρt2,i. (21)

Note here that ρt for any density matrix ρ is again a density matrix since it is still positive semi-definite Hermitian
with unit trace. Therefore the partial transposed density matrix (21) is another density matrix. It was conjectured
by Peres [12] and subsequently proved by the Horodecki family [13] that positivity of the partially transposed density
matrix is necessary and sufficient condition for ρ to be separable in the cases of C2⊗C2 systems and C2⊗C3 systems.
Conversely, if the partial transpose of ρ of these systems is not a density matrix, then ρ is inseparable. Instead of
giving the proof, we look at the following example.

Example II.5 Let us consider the Werner state

ρ =

⎛
⎜⎜⎝

1−p
4 0 0 0
0 1+p

4 − p
2 0

0 − p
2

1+p
4 0

0 0 0 1−p
4

⎞
⎟⎟⎠ , (22)

where 0 ≤ p ≤ 1. Here the basis vectors are arranged in the order

|e1,1〉|e2,1〉, |e1,1〉|e2,2〉, |e1,2〉|e2,1〉, |e1,2〉|e2,2〉.
Partial transpose of ρ yields

ρpt =

⎛
⎜⎜⎝

1−p
4 0 0 − p

2

0 1+p
4 0 0

0 0 1+p
4 0

− p
2 0 0 1−p

4

⎞
⎟⎟⎠ .

ρpt must have non-negative eigenvalues to be a physically acceptable state. The characteristic equation of ρpt is

D(λ) = det(ρpt − λI) =

(
λ− p+ 1

4

)3(
λ− 1− 3p

4

)
= 0.

There are threefold degenerate eigenvalue λ = (1 + p)/4 and nondegenerate eigenvalue λ = (1 − 3p)/4. This shows
that ρpt is an unphysical state for 1/3 < p ≤ 1. If this is the case, ρ is inseparable.

From the above observation, entangled states are characterized by nonvanishing negativity defined as

N(ρ) ≡ 1

2
(
∑
i

|λi| − 1). (23)

Note that negativity vanishes if and only if all the eigenvalues of ρpt are nonnegative.

Exercise II.6 (1) Show that

ρ =

⎛
⎜⎜⎝

p
2 0 0 p

2

0 1−p
2

1−p
2 0

0 1−p
2

1−p
2 0

p
2 0 0 p

2

⎞
⎟⎟⎠ (0 ≤ p ≤ 1) (24)

is a density matrix. Show also that the negativity of ρ vanishes only for p = 1/2.
(2) Show that

ρ1 =

⎛
⎜⎜⎝

1+p
4 0 0 p

2

0 1−p
4 0 0

0 0 1−p
4 0

p
2 0 0 1+p

4

⎞
⎟⎟⎠ (0 ≤ p ≤ 1) (25)

is a density matrix. Show also that the negativity does not vanish for p > 1/3.
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G. Partial trace and purification

Let H = H1 ⊗H2 be a Hilbert space of a bipartite system made of components 1 and 2 and let A be an arbitrary
operator acting on H. The partial trace of A over H2 generates an operator acting on H1 defined as

A1 = tr 2A ≡
∑
k

(I ⊗ 〈k|)A(I ⊗ |k〉). (26)

We will be concerned with the partial trace of a density matrix in practical applications. Let ρ = |ψ〉〈ψ| ∈ S(H)
be a density matrix of a pure state |ψ〉. Suppose we are interested only in the first system and have no access to the
second system. Then the partial trace allows us to “forget” about the second system.

To be concrete, consider a pure state |ψ〉 = 1√
2
(|e1〉|e1〉+ |e2〉|e2〉), where {|ei〉} is an orthonormal basis of C2. The

corresponding density matrix is

ρ =
1

2

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠ ,

where the basis vectors are ordered as {|e1〉|e1〉, |e1〉|e2〉, |e2〉|e1〉, |e2〉|e2〉}. The partial trace of ρ is

ρ1 = tr 2ρ =
∑
i=1,2

(I ⊗ 〈ei|)ρ(I ⊗ |ei〉) =
1

2

(
1 0
0 1

)
. (27)

Note that a pure state |ψ〉 is mapped to a maximally mixed state ρ1.
We have seen above that the partial trace of a pure-state density matrix of a bipartite system over one of the

constituent Hilbert spaces yields a mixed state. How about the converse? Given a mixed state density matrix, is
it always possible to find a pure state density matrix whose partial trace over the extra Hilbert space yields the
given density matrix? The answer is yes and the process to find the pure state is called the purification. Let
ρ1 =

∑
k pk|ψk〉〈ψk| be a general density matrix of a system 1 with the Hilbert space H1. Now let us introduce the

second Hilbert space H2 whose dimension is the same as that of H1. Then formally introduce a normalized vector

|Ψ〉 =
∑
k

√
pk|ψk〉 ⊗ |φk〉, (28)

where {|φk〉} is an orthonormal basis of H2. We find

tr 2|Ψ〉〈Ψ| =
∑
i,j,k

(I ⊗ 〈φi|)
[√
pjpk|ψj〉|φj〉〈ψk|〈φk|

]
(I ⊗ |φi〉) =

∑
k

pk|ψk〉〈ψk| = ρ1. (29)

It is always possible to purify a mixed state by tensoring an extra Hilbert space of the same dimension as that of the
original Hilbert space. Purification is far from unique.

Exercise II.7 (1) Let

ρ1 =
1

4

(
1 0
0 3

)

be a density matrix with a basis {|ψi〉}. Find a purification of ρ1.
(2) Let

|Ψ〉 =
∑
k

√
pk|ψk〉 ⊗ |φk〉

be a purification of ρ1 =
∑

k pk|ψk〉〈ψk| ∈ S(H). Show that

|Ψ′〉 =
∑
k

√
pk|ψk〉 ⊗ U |φk〉

is another purification of ρ1, where U is an arbitrary unitary matrix in U(dimH).
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H. von Neumann Entropy

1. Shannon Entropy

Entropy is a measure of randomness of a probability distribution. It also quantifies information gained when
measurement is made on the random variable. Let us start with classical entropy also know as the Shannon entropy.
Let p(x) be a probability distribution for some random variable X . Then the entropy of this distribution is defined as

S = −
∑
x

p(x) log2 p(x).

We drop the base 2 in log2 and simply write log hereafter. There must be a minus sign to make S non-negative. Let
us consider two special cases. (i) p(x) = 1 for x = x0 and p(x) = 0 for x �= x0. Then

S = −1 log 1 = 0.

(ii) There are N possibilities for x and p(x) = 1/N independently of x. The distribution is maximally uniform in this
case. Then

S = −N 1

N
log

1

N
= logN.

This is the maximal possible value for S. In fact, let us maximize S with respect to p(x). We introduce the Lagrange
multiplier λ and optimize −

∑
x p(x) log p(x) − λ(

∑
x p(x)− 1) to obtain

δS = −(log p(x) + 1 + λ)δp(x) = 0,

from which we find p(x) = 2−1−λ is independent of x. The normalization condition fixes λ to logN − 1 so that
p(x) = 1/N . The entropy S takes an intermediate value between 0 and logN for a general distribution function p(x).

Example II.8 (1) Let us consider a coin toss. The outcome is either H (head) or T (tail) with probability 1/2. The
entropy for this process is S = −2 × (1/2) log(1/2) = log 2 = 1. It also implies that the number of bits required to
store this information is one.
(2) Let us consider throwing a die. The outcome is one of the numbers 1, 2, . . . , 6 each with probability 1/6. The
entropy for this process is S = −6 × (1/6) log(1/6) = log 6 = 2.58 . . .. he number of bits required to store this
information is three.

log function in the definition of entropy makes S additive. Let X,Y be two indepenedent random variables and let
p(x) and q(y) be their respetive probability distributions. The measurement of X and Y produces outomes x and y
with probability p(x)q(y) by definition. Then the entropy of this process is

S = −
∑
x,y

p(x)q(y) log p(x)q(y) = −
∑
x,y

p(x)q(y)[log p(x) + log q(y)] = −
∑
x

p(x) log p(x) −
∑
y

q(y) log q(y),

which is a sum of two entropies associated with X and Y .
Entropy is also regarded as the average number of bits to record the outcome. The following example is taken

from [2]. Suppose some source produces one of four numbers 1, 2, 3 and 4. If they appear with equal probability 1/4,
the entropy of this process is S = −4 × (1/4) log 4 = 2. Clearly we need two bits to record the outcome. Let us
consider another case in which p(1) = 1/2, p(2) = 1/4 and p(3) = p(4) = 1/8. The entropy is S = −(1/2) log(1/2)−
(1/4) log(1/4) + 2× (1/8) log(1/8) = 7/4. This shows that there is a scheme under which the outcome can be stored
with a number of bits less than 2. This can be realized if a small number of bits is assigned for a frequent outcome,
1 in our case. In fact, let the outcome 1 be stored as a bit string 0, 2 as 10, 3 as 110 and 4 as 111. Then the average
number of bits required to store N such outcomes is N/2 + 2N/4 + 2× 3N/8 = N(4/7).
In view of the additivity mentioned above, the statement of the previous paragraph claims that two pages of a

newspaper contains twice as much information as a page of the same newspaper in average.

Exercise II.9 Let X be a two-valued random variable. Let us call the outcomes 0 and 1, which appear with probabilities
p and 1− p, respectively. Then the “binary entropy” of X is S(p) = −p log p− (1− p) log(1 − p).
(1) Show that S(p) takes its maximum value 1 at p = 1/2.
(2) Show that S(p) is a concave function, that is,

S(px+ (1 − p)y) ≥ pS(x) + (1 − p)S(y) (0 ≤ x, y, p ≤ 1).

Show also that the equality is true only when x = y or p = 0 or p = 1.
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Let a random variable X have two probability distributions p(x) and q(x). The relative entropy of p(x) to q(x) is
defined as

H(p(x)‖q(x)) =
∑
x

p(x) log
p(x)

q(x)
= −S(p)−

∑
x

p(x) log q(x).

The relative entropy vanishes whe p(x) = q(x) and is positive if p(x) �= q(x). In this sense, it measures the distance
between two distributions p(x) and q(x) corresponding to the same random variable X .

Exercise II.10 Let us prove the positivity mentioned above.
(1) Show that − log x ≥ (1 − x)/ ln 2 for x > 0, where the quality is satisfied if and only if x = 1. (Hint: Prove
log x ln 2 = lnx ≤ x− 1 for x > 0.)
(2) Use this fact to prove

H(p(x)‖q(x)) ≥ 0

where the equality is satisfied if and only if p(x) = q(x). (Hint: Fix p(x) and find the variation of H with respect to
δq(x). Do not forget to take the constraint

∑
x q(x) = 1 into account.)

Let X be a random variable with n outcomes. Then the entropy S(p) is maximized when p(x) is a uniform
distribution q(x) = 1/d as was proved before. As an application of the positivity of the relative entropy, we give an
another proof of this fact. We find

H(p(x)‖q(x) = 1/d) = −S(p)−
∑
x

p(x) log(1/d) = log d− S(p) ≥ 0,

which shows verifies S(p) ≤ log d for any p(x).

2. von Neumann Entropy

A natural generalization of the Shannon entropy to a quantum system is the von Neumann entropy. We drop the
base 2 in log hereafter unless otherwise stated explicitly. Let us consider a single quantum system with the Hilbert
space Cn. Suppose the state is described by a density matrix ρ. The von Neumann entropy is defined as

S(ρ) = −tr (ρ log ρ).

Again two extremal cases deserve special study. (i) A pure state ρ = |ψ〉〈ψ|. If |ψ〉 is taken to be one of the basis vectors
of the Hilbert space Cn, the state ρ take the form ρ = diag (1, 0, . . . , 0) and S is evaluated as S(ρ) = −tr (ρ log ρ) = 0.
(ii) The maximally mixed state is expressed as ρ = In/n, where In is the unit matrix of dimension n and S(ρ)

is evaluated as S(ρ) = logn. This is the maximal possible value S may take. In fact, let us extermize S̃(ρ) =

−tr (ρ log ρ) − λ(tr ρ − 1). We obtain δS̃(ρ) = −tr [(log ρ + 1 + λ)δρ] = 0, from which we obtain ρ = 2−1−λIn. The
Lagrange multiplier is fixed as λ = logn − 1 from the normalization condition tr ρ = 1, for which ρ = In/n. For a
general state ρ in Cn, the entropy takes an intermediate value between 0 and logn.
Let ρ =

∑
i λi|λi〉〈λi| be a spectral decomposition of ρ. Then the von Neumann entropy is expressed as

S(ρ) = −
∑
i

λi logλi.

Note that λi ≥ 0 due to non-negativity of ρ.

Exercise II.11 Calculate the entropy of the following states.

ρ1 =
1

2

(
1 1
1 1

)
, ρ2 =

1

5

(
1 2
2 4

)
, ρ3 =

1

2

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠ .

Quantum relative entropy is defined similarly to the classical case. We define the relative entropy by

S(ρ‖σ) = tr (ρ log ρ)− tr (ρ log σ).

S(ρ‖σ) is also non-negative and it vanishes if and only if ρ = σ as we now prove.
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Theorem II.12 S(ρ‖σ) satisfies
S(ρ‖σ) ≥ 0,

where the equality is satisfied if and only if ρ = σ.

Proof: Let us consider the variation of S(ρ‖σ)− λ(tr ρ− 1) under δρ for a fixed σ,

δS(ρ‖σ)− λtr δρ = tr (δρ log ρ+ δρ− δρ log σ − λδρ) = tr δρ(log ρ+ 1− log σ − λ) = 0,

from which we find log ρ− log σ = (λ− 1)In. By exponentiating both sides, we obtain ρ = eλ−1σ. Then we find λ = 1
since tr ρ = tr σ = 1. Now we find the relative entropy takes its extremum value 0 if and only if ρ = σ. This is a
minumum since S(ρ‖σ = In/n) = logn− S(ρ) ≥ 0, where the equality is satified iff ρ is maximally mixed.

I. Nonclassical Correlation other than Entanglement

It is important to realize that only inseparable states have quantum correlations analogous to entangled pure states.
It does not necessarily imply all separable states have no non-classical correlation though. It is pointed out that useful
non-classical correlation exists in a subset of separable states.
Let us consider a bipartite system with two subsystems A and B of dimensions m and n, respectively. A state ρAB is

called (properly) classically correlated if it has a biproduct eigenvectors. If this is the case, the spectral decomposition
of ρAB is

ρAB =
∑

1≤i≤m,1≤j≤n

cij |i〉A〈i| ⊗ |j〉B〈j|.

If ρAB has no such eigenvectors, it is called nonclassically correlated. Obviously, entangled state or inseparable state
is nonclassically correlated but the converse is not true. There are nonclassically correlated separable states.

III. QUBITS

A (Boolean) bit assumes two distinct values, 0 and 1, and it constitutes the building block of the classical information
theory. Quantum information theory, on the other hand, is based on qubits.

A. One qubit

A qubit is a (unit) vector in the vector space C2, whose basis vectors are denoted as

|0〉 = (1, 0)t and |1〉 = (0, 1)t. (30)

What these vectors physically mean depends on the physical realization employed for quantum information processing.
They might represent spin states of an electron, |0〉 = | ↑〉 and |1〉 = | ↓〉. Electrons are replaced by nuclei with spin

1/2 in NMR (Nuclear Magnetic Resonance).
In some cases, |0〉 stands for a vertically polarized photon | �〉 while |1〉 represents a horizontally polarized photon

| ↔〉. Alternatively they might correspond to photons polarized in different directions. For example, |0〉 may represent
a polarization state | ↔〉 = 1√

2
(| �〉+ | ↔〉) while |1〉 represents a state |↔ 〉 = 1√

2
(| �〉 − | ↔〉).

Truncated two states from many levels may be employed as a qubit. We may assign |0〉 to the ground state and |1〉
to the first excited state of an atom or an ion.
In any case, we have to fix a set of basis vectors when we carry out quantum information processing. In the

following, the basis is written in an abstract form as {|0〉, |1〉}, unless otherwise stated.
It is convenient to assume the vector |0〉 corresponds to the classical bit 0, while |1〉 to 1. Moreover a qubit may be

in a superposition state: |ψ〉 = a|0〉+ b|1〉 with |a|2 + |b|2 = 1. If we measure |ψ〉 to see whether it is in |0〉 or |1〉, the
outcome will be 0 (1) with the probability |a|2 (|b|2) and the state immediately after the measurement is |0〉 (|1〉).
Although a qubit may take infinitely many different states, it should be kept in mind that we can extract from it as

the same amount of information as that of a classical bit. Information can be extracted only through measurements.
When we measure a qubit, the state vector ‘collapses’ to the eigenvector that corresponds to the eigenvalue observed.
Suppose a spin is in the state a|0〉 + b|1〉. If we observe that the z-component of the spin is +1/2, the system
immediately after the measurement is in |0〉. This happens with probability 〈ψ|0〉〈0|ψ〉 = |a|2. The measurement
outcome of a qubit is always one of the eigenvalues, which we call abstractly 0 and 1.
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B. Bloch sphere

It is useful, for many purposes, to express a state of a single qubit graphically. Let us parameterize a one-qubit
pure state |ψ〉 with θ and φ as

|ψ(θ, φ)〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (31)

The phase of |ψ〉 is fixed in such a way that the coefficient of |0〉 is real. It is easy to verify that (n̂(θ, φ) ·σ)|ψ(θ, φ)〉 =
|ψ(θ, φ)〉, where σ = (σx, σy, σz) and n̂(θ, φ) is a real unit vector called the Bloch vector with components n̂(θ, φ) =
(sin θ cosφ, sin θ sinφ, cos θ)t. It is therefore natural to assign n̂(θ, φ) to a state vector |ψ(θ, φ)〉 so that |ψ(θ, φ)〉 is
expressed as a unit vector n̂(θ, φ) on the surface of the unit sphere, called the Bloch sphere. This correspondence is
one-to-one if the ranges of θ and φ are restricted to 0 ≤ θ ≤ π and 0 ≤ φ < 2π.
It is verified that state (31) satisfies

〈ψ(θ, φ)|σ|ψ(θ, φ)〉 = n̂(θ, φ). (32)

A density matrix ρ of a qubit can be represented as a point on a unit ball. Since ρ is a positive semi-definite
Hermitian matrix with unit trace, its most general form is

ρ =
1

2

⎛
⎝I + ∑

i=x,y,z

uiσi

⎞
⎠ , (33)

where u ∈ R
3 satisfies |u| ≤ 1. The reality follows from the Hermiticity requirement and tr ρ = 1 is obvious. The

eigenvalues of ρ are λ± = 1
2

(
1±

√
|u|
)
/2 and therefore non-negative. The eigenvalue λ− vanishes in case |u| = 1,

for which rank ρ = 1. Therefore the surface of the unit sphere corresponds to pure states. The converse is also shown
easily. In contrast, all the points u inside a unit ball correspond to mixed states. The ball is called the Bloch ball
and the vector u is also called the Bloch vector.
It is easily verified that ρ given by Eq. (33) satisfies

〈σ〉 = tr (ρσ) = u. (34)

Exercise III.1 Prove Eqs. (32) and (34).

C. Multi-qubit systems and entangled states

Let us consider a group of many (n) qubits next. Such a system behaves quite differently from a classical one
and this difference gives a distinguishing aspect to quantum information theory. An n-qubit system is often called a
(quantum) register in the context of quantum computing.
As an example, let us consider an n-qubit register. Suppose we specify the state of each qubit separately like a

classical case. Each of the qubit is then described by a 2-d complex vector of the form ai|0〉 + bi|1〉 and we need 2n
complex numbers {ai, bi}1≤i≤n to specify the state. This corresponds the a tensor product state (a1|0〉+ b1|1〉)⊗ . . .⊗
(an|0〉+ bn|1〉) ∈ C2n. If the system is treated in a fully quantum-mechanical way, however, a general state vector of
the register is represented as

|ψ〉 =
∑

ik=0,1

ai1i2...in |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉 ∈ C
2n .

Note that 2n � 2n for a large number n. The ratio 2n/2n is ∼ 10298 for n = 1000. Most quantum states in a Hilbert
space with large n are entangled having no classical analogues. Entanglement is an extremely powerful resource for
quantum computation and quantum communication.
Let us consider a 2-qubit system for definiteness. The system has a binary basis {|00〉, |01〉, |10〉, |11〉}. More

generally, a basis for a system of n qubits may be {|bn−1bn−2 . . . b0〉}, where bn−1, bn−2, . . . , b0 ∈ {0, 1}. It is also
possible to express the basis in terms of the decimal system. We write |x〉, instead of |bn−1bn−2 . . . b0〉, where
x = bn−12

n−1 + bn−22
n−2 + . . .+ b0. The basis for a 2-qubit system may be written also as {|0〉, |1〉, |2〉, |3〉} with this

decimal notation.
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The set

{|Φ+〉 = 1√
2
(|00〉+ |11〉), |Φ−〉 = 1√

2
(|00〉 − |11〉),

|Ψ+〉 = 1√
2
(|01〉+ |10〉), |Ψ−〉 = 1√

2
(|01〉 − |10〉)}

(35)

is an orthonormal basis of a two-qubit system and is called the Bell basis. Each vector is called the Bell state or the
Bell vector. Note that all the Bell states are entangled.

IV. QUANTUM GATES, QUANTUM CIRCUIT AND QUANTUM COMPUTATION

A. Introduction

Now that we have introduced qubits to store information, it is time to consider operations acting on them. If they
are simple, these operations are called gates, or quantum gates, in analogy with those in classical logic circuits. More
complicated quantum circuits are composed of these simple gates. A collection of quantum circuits for executing a
complicated algorithm, a quantum algorithm, is a part of a quantum computation.

Definition IV.1 (Quantum Computation) A quantum computation is a collection of the following three elements:

(1) A register or a set of registers,

(2) A unitary matrix u, which is taylored to execute a given quantum algorithm and

(3) Measurements to extract information we need.

More formally, a quantum computation is the set {H, U, {Mm}}, where H = C2n is the Hilbert space of an n-qubit
register, U ∈ U(2n) represents a quantum algorithm and {Mm} is the set of measurement operators. The hardware
(1) is called a quantum computer.

Suppose the register is set to a fiducial initial state, |ψin〉 = |00 . . .0〉 for example. A unitary matrix Ualg is generated
by an algorithm which we want to execute. Operation of Ualg on |ψin〉 yields the output state |ψout〉 = Ualg|ψin〉.
Information is extracted from |ψout〉 by appropriate measurements.

B. Quantum gates

We have so far studied the change of a state upon measurements. When measurements are not made, the time
evolution of a state is described by the Schrödinger equation. The time evolution operator U is unitary: UU † =
U †U = I. We will be free from the Schrödinger equation in the following and assume there always exist unitary
matrices which we need.
One of the important conclusions derived from the unitarity of gates is that the computational process is reversible.

1. Simple quantum gates

Examples of quantum gates which transform a one-qubit state are given below. We call them one-qubit gates in
the following. Linearity guarantees that the action of a gate is completely specified if its action on the basis {|0〉, |1〉}
is given. Consider the gate I whose action on the basis vectors is I : |0〉 → |0〉, |1〉 → |1〉. The matrix expression of
this gate is

I = |0〉〈0|+ |1〉〈1| =
(

1 0
0 1

)
. (36)
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Similarly we introduce X : |0〉 → |1〉, |1〉 → |0〉, Y : |0〉 → −|1〉, |1〉 → |0〉 and Z : |0〉 → |0〉, |1〉 → −|1〉 by

X = |1〉〈0|+ |0〉〈1| =
(

0 1
1 0

)
= σx, (37)

Y = |0〉〈1| − |1〉〈0| =
(

0 −1
1 0

)
= −iσy, (38)

Z = |0〉〈0| − |1〉〈1| =
(

1 0
0 −1

)
= σz . (39)

The transformation I is the identity transformation, while X is the negation (NOT), Z the phase shift and Y = XZ
the combination thereof.
CNOT (controlled-NOT) gate is a 2-qubit gate, which plays an important role. The gate flips the second qubit (the

target qubit) when the first qubit (the control qubit) is |1〉, while leaving the second bit unchanged when the first bit
is |0〉. Let {|00〉, |01〉, |10〉, |11〉} be a basis for the 2-qubit system. We use the standard basis vectors with components

|00〉 = (1, 0, 0, 0)t , |01〉 = (0, 1, 0, 0)t , |10〉 = (0, 0, 1, 0)t , |11〉 = (0, 0, 0, 1)t .

The action of CNOT gate, whose matrix expression will be written as UCNOT, is UCNOT : |00〉 �→ |00〉, |01〉 �→
|01〉, |10〉 �→ |11〉, |11〉 �→ |10〉. It has two equivalent expressions

UCNOT = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11| = |0〉〈0| ⊗ I + |1〉〈1| ⊗X, (40)

having a matrix form

UCNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (41)

Let {|i〉} be the basis vectors, where i ∈ {0, 1}. The action of CNOT on the input state |i, j〉 is written as |i, i⊕ j〉,
where i⊕ j is an addition mod2.
A 1-qubit gate whose unitary matrix is U is graphically depicted as

The left horizontal line is the input qubit while the right horizontal line is the output qubit: time flows from the left
to the right.
A CNOT gate is expressed as

where • denotes the control bit, while
⊕

denotes the conditional negation. There may be many control bits (see
CCNOT gate below). More generally, we consider a controlled-U gate, V = |0〉〈0|⊗ I+ |1〉〈1|⊗U , in which the target
bit is acted on by a unitary transformation U only when the control bit is |1〉. This gate is denoted graphically as

CCNOT (Controlled-Controlled-NOT) gate has three inputs and the third qubit flips only when the first two qubits
are both in the state |1〉. The explicit form of the CCNOT gate is

UCCNOT = (|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I + |11〉〈11| ⊗X. (42)

This gate is graphically expressed as
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2. Walsh-Hadamard transformation

The Hadamard gate or the Hadamard transformation H is an important unitary transformation defined by

UH : |0〉 → 1√
2
(|0〉+ |1〉)

: |1〉 → 1√
2
(|0〉 − |1〉).

(43)

The matrix representation of H is

UH =
1√
2
(|0〉+ |1〉)〈0|+ 1√

2
(|0〉 − |1〉)〈1| = 1√

2

(
1 1
1 −1

)
. (44)

A Hadamard gate is depicted as

There are numerous important applications of the Hadamard transformation. All possible 2n states are generated
when UH is applied on each qubit of the state |00 . . . 0〉:

(UH ⊗ UH ⊗ . . .⊗ UH)|00 . . . 0〉

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ . . .

1√
2
(|0〉+ |1〉) = 1√

2n

2n−1∑
x=0

|x〉. (45)

Therefore, we produce a superposition of all the states |x〉 with 0 ≤ x ≤ 2n − 1 simultaneously. The transformation
U⊗n
H is called the Walsh transformation, or Walsh-Hadamard transformation and denoted as Wn.

Exercise IV.2 Show that the quantum circuit

generates Bell states from inputs |q1q2〉 = |00〉, |01〉, |10〉 and |11〉.

3. SWAP gate and Fredkin gate

The SWAP gate acts on a tensor product state as

USWAP|ψ1, ψ2〉 = |ψ2, ψ1〉. (46)

The explict form of USWAP is given by

USWAP = |00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11| =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ . (47)

The SWAP gate is expressed as
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Note that the SWAP gate is a special gate which maps an arbitrary tensor product state to a tensor product state.
In contrast, most 2-qubit gates map a tensor product state to an entangled state.
The controlled-SWAP gate

is also called the Fredkin gate. It flips the second (middle) and the third (bottom) qubits only when the first (top)
qubit is in the state |1〉. Its explicit form is UFredkin = |0〉〈0| ⊗ I4 + |1〉〈1| ⊗ USWAP.

C. No-cloning theorem

Theorem IV.3 (Wootters and Zurek [14]) An unknown quantum system cannot be cloned by unitary transformations.

Proof: Suppose there would exist a unitary transformation U that makes a clone of a quantum system. Namely,
suppose U acts, for any state |ϕ〉, as U : |ϕ0〉 → |ϕϕ〉. Let |ϕ〉 and |φ〉 be two states that are linearly independent.

Then we should have U |ϕ0〉 = |ϕϕ〉 and U |φ0〉 = |φφ〉 by definition. Then the action of U on |ψ〉 = 1√
2
(|ϕ〉+ |φ〉)

yields

U |ψ0〉 = 1√
2
(U |ϕ0〉+ U |φ0〉) = 1√

2
(|ϕϕ〉 + |φφ〉).

If U were a cloning transformation, we must also have

U |ψ0〉 = |ψψ〉 = 1

2
(|ϕϕ〉+ |ϕφ〉 + |φϕ〉 + |φφ〉),

which contradicts the previous result. Therefore, there does not exist a unitary cloning transformation.

Note however that the theorem does not apply if the states to be cloned are limited to |0〉 and |1〉. For these cases,
the copying operator U should work as U : |00〉 �→ |00〉, : |10〉 �→ |11〉. We can assign arbitrary action of U on a
state whose second input is |1〉 since this case will never happen. What we have to keep in our mind is only that U
be unitary. An example of such U is U = (|00〉〈00|+ |11〉〈10|) + (|01〉〈01|+ |10〉〈11|), where the first set of operators
renders U the cloning operator and the second set is added just to make U unitary. We immediately notice that U is
nothing but the CNOT gate.
Therefore, if the data under consideration is limited within |0〉 and |1〉, we can copy the qubit states even in a

quantum computer. This fact is used to construct quantum error correcting codes.

D. Quantum teleportation

The purpose of quantum teleportation is to transmit an unknown quantum state of a qubit using two classical bits
in such a way that the recipient reproduces the same state as the original qubit state. Note that the qubit itself is
not transported but the information required to reproduce the quantum state is transmitted. The original state is
destroyed such that quantum teleportation is not in contradition with the no-cloning theorem.
Alice: Alice has a qubit, whose state she does not know. She wishes to send Bob the quantum state of this qubit

through a classical communication channel. Let |φ〉 = a|0〉+ b|1〉 be the state of the qubit. Both of them have been

given one of the qubits of the entangled pair |Φ+〉 = 1√
2
(|00〉+ |11〉) in advance. They start with the state

|φ〉 ⊗ |Φ+〉 =
1√
2
(a|000〉+ a|011〉+ b|100〉+ b|111〉) , (48)
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FIG. 1: In quantum teleportation, Alice sends Bob two classical bits so that Bob reproduces a qubit state Alice initially had.

where Alice possesses the first two qubits while Bob has the third. Alice applies UCNOT ⊗ I followed by UH ⊗ I ⊗ I
to this state, which results in

(UH ⊗ I ⊗ I)(UCNOT ⊗ I)(|φ〉 ⊗ |Φ+〉)

=
1

2
[|00〉(a|0〉+ b|1〉) + |01〉(a|1〉+ b|0〉) + |10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉)]. (49)

If Alice measures the 2 qubits in her hand, she will obtain one of the states |00〉, |01〉, |10〉 or |11〉 with equal probability
1/4. Bob’s qubit (one of the EPR pair previously) collapses to a|0〉 + b|1〉, a|1〉 + b|0〉, a|0〉 − b|1〉 or a|1〉 − b|0〉,
respectively, depending on the result of Alice’s measurement. Alice then sends Bob her result of the measurement
using two classical bits.
Bob: After receiving two classical bits, Bob knows the state of the qubit in his hand;

received bits Bob’s state decoding
00 a|0〉+ b|1〉 I
01 a|1〉+ b|0〉 X
10 a|0〉 − b|1〉 Z
11 a|1〉 − b|0〉 Y

(50)

Bob reconstructs the intial state |φ〉 by applying the decoding process shown above. Suppose Alice sends Bob classical
bits 10, for example. Then Bob applies Z on his qubit to reconstruct |φ〉 as Z : (a|0〉 − b|1〉) �→ (a|0〉+ b|1〉) = |φ〉.
Figure 2 shows the actual quantum circuit for quantum teleportation.

FIG. 2: Quantum circuit implementation of quantum teleportation.

E. LOCC

LOCC is the set of manipulations in quantum information processing. It can be defined for any multipartite systems
but we concentrate on a bipartite system for definiteness. Suppose Alice has a subsystem A and Bob has a subsystem
B of a given bipartite system AB. Each of them is allowed to make unitary operations on his/her own subsystem and
make measurements on own subsystem (Local Operations) and they are allowed to communicate classically (Classical
Communication) using telephone or internet, hence the name LOCC. Let Alice’s Hilber space be C

m and Bob’s be
Cn. Then local operations are elements of U(m) ⊗ U(n). By using the second manipulation, Alice can reflect data
Bob supplies on her subsystem, and vice versa, but possible operations are still restricted within U(m) ⊗ U(n). An
important operation ruled out from LOCC is to entangle two remote qubits in a tensor product state.
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Alice Bob

FIG. 3: Entanglement distillation of the first kind. Alice and Bob share a Bell state |Φ+〉 when their measurement outcomes
of the third and the fourth qubits are 11.

Example IV.4 Suppose Alice and Bob share one of two Bell states

|Φ+〉 =
1√
2
(|00〉+ |11〉), |Ψ+〉 =

1√
2
(|01〉+ |10〉).

Alice has the first qubit while Bob has the second. They have picked up one of the state. Then they can tell which state
they have chosen by LOCC. Alice measures her qubit and send the result to Bob by classical communication. Then
Bob measures his own qubit. Suppose Alice measured 1 on her qubit and told Bob that she got 1. If Bob’s readout is
1, the state they have shared was |Φ+〉, while Bob’s readout is 0, their state was ‖Psi+〉.
Let us consider SU(4), the set of two-qubit operations. It will be shown later that any element U ∈ SU(4) can be

decomposed as U = K1HK2, where Ki ∈ SU(2)⊗ SU(2) and H = exp[−i(cxσx ⊗ σx + cyσy ⊗ σy + czσz ⊗ σz). Since

(U1 ⊗ U2)|ψ1〉|ψ2〉 = (U1|ψ1〉)⊗ (U2|ψ2〉),
any element of SU(2) ⊗ SU(2) fails to entangle tensor product states. The element H of SU(4) is in charge of
entanglement. Due to the same reason, LOCC cannot increase or decrease entanglement. It is interesting to note
that SU(2)⊗ SU(2) is isomorhic to O(4).
We look at an interesting example of LOCC protocol in the next subsection.

F. Entenglement Distillation I

Entanglement distillation is an LOCC protocol for distributing an EPR pair between two parties, Alice and Bob.
There are two types of entanglement distillation. The second one requires knowledge of a quantum channel and will
be explained after a quantum channel is introduced.
The first one creates a maximally entangled state |Φ+〉 = 1√

2
(|00〉 + |11〉) from a pair of less entangled state

|φ〉 = √
p|00〉+

√
1− p|11〉. Suppose Alice and Bob share two |φ〉 states. Alice keeps the first qubit while Bob has the

second qubit of each pair. Now the initial state is

|Ψ1〉 = p|00〉|00〉+
√
p(1− p)(|00〉|11〉+ |11〉|00〉) + (1− p)|11〉|11〉.

Alice has the first and the third qubits while Bob has the second and the fourth. After the two pairs are distributed,
both Alice and Bob applies CNOT gate on their qubits. The first (second) qubit is the control bit while the third
(fourth) qubit is the target bit, see Fig. 3. The resulting state is

|Ψ2〉 = p|00〉|00〉+
√
p(1− p)(|00〉+ |11〉)|11〉+ (1− p)|11〉|00〉.

Subsequently, Alice and Bob measure the third and the fourth qubits and exchange their measurement outcomes
using classical communication, such as telephone or email. When the measurement outcomes are 00, they discard the
qubits and start again from distribution of a pair of |ψ〉. This happens with a probability p2+(1−p)2 = 1− 2p+2p2.
When the measurment outcomes are 11, the state of the first and the second qubits is

|Φ+〉 =
1√
2
(|00〉+ |11〉)

as promised. This happens with a probability 2p(1 − p) = 2p − 2p2. We have learned that a maximally entangled
state |Φ+〉 is obtained from a pair of less entangled states under entanglement distillation.
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G. Universal quantum gates

It can be shown that any classical logic gate can be constructed by using a small set of gates, AND, NOT and
XOR for example. Such a set of gates is called the universal set of gates. It can be shown that the CCNOT gate
simulates these classical gates, and hence quantum circuits simulate any classical circuits. The set of quantum gates
is, however, much larger than those classical gates. Thus we want to find a universal set of quantum gates from which
any quantum circuits can be constructed.
It can be shown that
(1) the set of single qubit gates and
(2) CNOT gate

form a universal set of quantum circuits (universality theorem). The proof is highly technical and is not given here
[1, 2, 16]. We, instead, sketch the proof in several lines.
It can be shown that any U ∈ U(n) is written as a product of N two-level unitary matrices, where N ≤ n(n− 1)/2

and a two-level unitary matrix is a unit matrix In in which only four components Vaa, Vab, Vba and Vbb are different
from In. Moreover V = (Vij) is an element of U(2). An example of a two-level unitary matrix is

V =

⎛
⎜⎝

α∗ 0 0 β∗

0 1 0 0
0 0 1 0
−β 0 0 α

⎞
⎟⎠ , (|α|2 + |β|2 = 1)

where a = 1 and b = 4.
Now we need to prove the universality theorem for two-level unitary matrices, which is certainly simpler than the

general proof. By employing CNOT gates and their generalizations, it is possible to move the elements Vaa, Vab, Vba
and Vbb so that they acts on a single qubit in the register. We need to implement the controlled-V gate whose target
qubit is the one on which V acts. Implementation of the controlled-V gate requires generalized CNOT gates and
several U(2) gates [1, 2, 16].

H. Quantum parallelism and entanglement

Given an input x, a typical quantum computer “computes” f(x) as

Uf : |x〉|0〉 �→ |x〉|f(x)〉, (51)

where Uf is a unitary matrix which implements the function f .
Suppose Uf acts on an input which is a superposition of many |x〉. Since Uf is a linear operator, it acts on all the

constituent vectors of the superposition simultaneously. The output is also a superposition of all the results;

Uf :
∑
x

|x〉|0〉 �→
∑
x

|x〉|f(x)〉. (52)

This feature, called the quantum parallelism, gives quantum computer an enormous power. A quantum computer is
advantageous over a classical counterpart in that it makes use of this quantum parallelism and also entanglement.
A unitary transformation acts on a superposition of all possible states in most quantum algorithms. This super-

position is prepared by the action of the Walsh-Hadamard transformation on an n-qubit register in the initial state

|00 . . . 0〉 = |0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉 resulting in
∑2n−1

x=0 |x〉/
√
2n. This state is a superposition of vectors encoding all the

integers between 0 and 2n − 1. Then the linearlity of Uf leads to

Uf

(
1√
2n

2n−1∑
x=0

|x〉|0〉
)

=
1√
2n

2n−1∑
x=0

Uf |x〉|0〉 =
1√
2n

2n−1∑
x=0

|x〉|f(x)〉. (53)

Note that the superposition is made of 2n = en ln 2 states, which makes quantum computation exponentially faster
than classical counterpart in a certain kind of computation.
What about the limitation of a quantum computer[3]? Let us consider the CCNOT gate for example. This gate

flips the third qubit if and only if the first and the second qubits are both in the state |1〉 while it leaves the third qubit
unchanged otherwise. Let us fix the third input qubit to |0〉. The third output qubit state is |x∧y〉, where |x〉 and |y〉
are the first and the second input qubits respectively. Suppose the input state of the first and the second qubits is a
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superposition of all possible states while the third qubit is fixed to |0〉. This can be achieved by the Walsh-Hadamard
transformation as

UH|0〉 ⊗ UH|0〉 ⊗ |0〉 =
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ |0〉

=
1

2
(|000〉+ |010〉+ |100〉+ |110〉). (54)

By operating CCNOT on this state, we obtain

UCCNOT(UH|0〉 ⊗ UH|0〉 ⊗ |0〉) = 1

2
(|000〉+ |010〉+ |100〉+ |111〉). (55)

This output may be thought of as the truth table of AND: |x, y, x ∧ y〉. It is extremely important to note that the
output is an entangled state and the measurement projects the state to one line of the truth table, i.e., a single term
in the RHS of Eq. (55).
There is no advantage of quantum computation over classical one at this stage. This is because only one result may

be obtained by a single set of measurements. What is worse, we cannot choose a specific vector |x, y, x∧y〉 at our will!
Thus any quantum algorithm should be programmed so that the particular vector we want to observe should have
larger probability to be measured compared to other vectors. The programming strategies to deal with this feature
are

1. to amplify the amplitude, and hence the probability, of the vector that we want to observe. This strategy is
employed in the Grover’s database search algorithm.

2. to find a common property of all the f(x). This idea was employed in the quantum Fourier transform to find
the order[81] of f in the Shor’s factoring algorithm.

Now we consider the power of entanglement. Suppose we have an n-qubit register, whose Hilbert space is 2n-
dimensional. Since each qubit has two basis states {|0〉, |1〉}, there are 2n basis states, i.e., n |0〉’s and n |1〉’s, involved
to span this Hilbert space. Imagine that we have a single quantum system, instead, which has the same Hilbert space.
One might think that the system may do the same quantum computation as the n-qubit register does. One possible
problem is that one cannot “measure the kth digit” leaving other digits unaffected. Even worse, consider how many
different basis vectors are required for this system. This single system must have an enormous number, 2n, of basis
vectors! Multipartite implementation of a quantum algorithm requires exponentially smaller number of basis vectors
than monopartite implementation since the former makes use of entanglement as a computational resource.

V. SIMPLE QUANTUM ALGORITHMS

Let us introduce a few simple quantum algorithms which will be of help to understand how quantum algorithms
are different from and superior to classical algorithms.

A. Deutsch algorithm

The Deutsch algorithm is one of the first quantum algorithms which showed quantum algorithms may be more effi-
cient than their classical counterparts. In spite of its simplicty, full usage of superposition principle and entanglement
has been made here.
Let f : {0, 1} → {0, 1} be a binary function. Note that there are only four possible f , namely

f1 : 0 �→ 0, 1 �→ 0, f2 : 0 �→ 1, 1 �→ 1,

f3 : 0 �→ 0, 1 �→ 1, f4 : 0 �→ 1, 1 �→ 0.

First two cases, f1 and f2, are called constant, while the rest, f3 and f4, are balanced. If we only have classical
resources, we need to evaluate f twice to tell if f is constant or balanced. There is a quantum algorithm, in contrast,
with which it is possible to tell if f is constant or balanced with a single evaluation of f , as was shown by Deutsch
[18].
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Let |0〉 and |1〉 correspond to classical bits 0 and 1, respectively, and consider the state |ψ0〉 = 1
2 (|00〉− |01〉+ |10〉−

|11〉). We apply f on this state in terms of the unitary operator Uf : |x, y〉 �→ |x, y ⊕ f(x)〉, where ⊕ is an addition
mod 2. To be explicit, we obtain

|ψ1〉 = Uf |ψ0〉 =
1

2
(|0, f(0)〉 − |0,¬f(0)〉+ |1, f(1)〉 − |1,¬f(1)〉),

where ¬ stands for negation. Therefore this operation is nothing but the CNOT gate with the control bit f(x); the
target bit y is flipped if and only if f(x) = 1 and left unchanged otherwise. Subsequently we apply the Hadamard
gate on the first qubit to obtain

|ψ2〉 = UH|ψ1〉

=
1

2
√
2
[(|0〉+ |1〉)(|f(0)〉 − |¬f(0)〉) + (|0〉 − |1〉)(|f(1)〉 − |¬f(1)〉)]

The wave function reduces to

|ψ2〉 =
1√
2
|0〉(|f(0)〉 − |¬f(0)〉) (56)

in case f is constant, for which |f(0)〉 = |f(1)〉, and

|ψ2〉 =
1√
2
|1〉(|f(0)〉 − |f(1)〉) (57)

if f is balanced, for which |¬f(0)〉 = |f(1)〉. Therefore the measurement of the first qubit tells us whether f is constant
or balanced.
Let us consider a quantum circuit which implements the Deutsch algorithm. We first apply the Walsh-Hadamard

transformationW2 = UH⊗UH on |01〉 to obtain |ψ0〉. We need to introduce a conditional gate Uf , i.e., the controlled-
NOT gate with the control bit f(x), whose action is Uf : |x, y〉 → |x, y ⊕ f(x)〉. Then the Hadamard gate is applied
on the first qubit before it is measured. Figure 4 depicts this implementation.

FIG. 4: Implementation of the Deutsch algorithm.

In the quauntum circuit, we assume the gate Uf is a black box for which we do not ask the explicit implementation.
We might think it is a kind of subroutine. Such a black box is often called an oracle. The gate Uf is called the
Deutsch oracle. Its implementation is given only after f is specified.
Then what is the merit of the Deutsch algorithm? Suppose your friend gives you a unitary matrix Uf and asks you

to tell if f is constant or balanced. Instead of applying |0〉 and |1〉 separately, you may contruct the circuit in Fig. 4
with the given matrix Uf and apply the circuit on the input state |01〉. Then you can tell your friend whether f is
constant or balanced with a single use of Uf .

B. Deutsch-Jozsa algorithm

The Deutsch algorithm introduced in the previous section may be generalized to the Deutsch-Jozsa algorithm [19].
Let us first define the Deutsch-Jozsa problem. Suppose there is a binary function

f : Sn ≡ {0, 1, . . . , 2n − 1} → {0, 1}. (58)

We require f be either constant or balanced as before. When f is constant, it takes a constant value 0 or 1 irrespetive
of the input value x. When it is balanaced the value f(x) for a half of x ∈ Sn is 0 while it is 1 for the rest of x.
Although there are functions which are neither constant nor balanced, we will not consider such cases here. Our task
is to find an algorithm which tells if f is constant or balanced with the least possible number of evaluations of f .
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It is clear that we need at least 2n−1 +1 steps, in the worst case with classical manipulations, to make sure if f(x)
is constant or balanced with 100 % confidence. It will be shown below that the number of steps reduces to a single
step if we are allowed to use a quantum algorithm.
The algorithm is divided into the following steps:

1. Prepare an (n+ 1)-qubit register in the state |ψ0〉 = |0〉⊗n ⊗ |1〉. First n qubits work as input qubits while the
(n + 1)st qubit serves as a “scratch pad”. Such qubits, which are neither input qubits nor output qubits, but
work as a scratch pad to store temporary information are called ancillas or ancillary qubits.

2. Apply the Walsh-Hadamard transforamtion to the register. Then we have the state

|ψ1〉 = U⊗n+1
H |ψ0〉 =

1√
2n

(|0〉+ |1〉)⊗n ⊗ 1√
2
(|0〉 − |1〉)

=
1√
2n

2n−1∑
x=0

|x〉 ⊗ 1√
2
(|0〉 − |1〉). (59)

3. Apply the f(x)-controlled-NOT gate on the register, which flips the (n+1)st qubit if and only if f(x) = 1 for the
input x. Therefore we need a Uf gate which evaluates f(x) and acts on the register as Uf |x〉|c〉 = |x〉|c⊕ f(x)〉,
where |c〉 is the one-qubit state of the (n + 1)st qubit. Observe that |c〉 is flipped if and only if f(x) = 1 and
left unchanged otherwise. We then obtain a state

|ψ2〉 = Uf |ψ1〉 =
1√
2n

2n−1∑
x=0

|x〉 1√
2
(|f(x)〉 − |¬f(x)〉)

=
1√
2n

∑
x

(−1)f(x)|x〉 1√
2
(|0〉 − |1〉). (60)

Although the gate Uf is applied once for all, it is applied to all the n-qubit states |x〉 simultaneously.

4. The Walsh-Hadamard transformation (45) is applied on the first n qubits next. We obtain

|ψ3〉 = (Wn ⊗ I)|ψ2〉 =
1√
2n

2n−1∑
x=0

(−1)f(x)U⊗n
H |x〉 1√

2
(|0〉 − |1〉). (61)

It is instructive to write the action of the one-qubit Hadamard gate as

UH|x〉 =
1√
2
(|0〉+ (−1)x|1〉) = 1√

2

∑
y∈{0,1}

(−1)xy|y〉,

where x ∈ {0, 1}, to find the resulting state. The action of the Walsh-Hadamard transformation on |x〉 =
|xn−1 . . . x1x0〉 yields

Wn|x〉 = (UH|xn−1〉)(UH|xn−2〉) . . . (UH|x0〉)

=
1√
2n

∑
yn−1,yn−2,...,y0∈{0,1}

(−1)xn−1yn−1+xn−2yn−2+...+x0y0

×|yn−1yn−2 . . . y0〉 =
1√
2n

2n−1∑
y=0

(−1)x·y|y〉, (62)

where x · y = xn−1yn−1 ⊕ xn−2yn−2 ⊕ . . .⊕ x0y0. Substituting this result into Eq. (61), we obtain

|ψ3〉 =
1

2n

(
2n−1∑
x,y=0

(−1)f(x)(−1)x·y|y〉
)

1√
2
(|0〉 − |1〉). (63)

5. The first n qubits are measured. Suppose f(x) is constant. Then |ψ3〉 is put in the form

|ψ3〉 =
1

2n

∑
x,y

(−1)x·y|y〉 1√
2
(|0〉 − |1〉)
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up to an overall phase. Let us consider the summation 1
2n

∑2n−1
x=0 (−1)x·y for a fixed y ∈ Sn. Clearly it vanishes

since x · y is 0 for half of x and 1 for the other half of x unless y = 0. Therefore the summation yields δy0.
Now the state reduces to |ψ3〉 = |0〉⊗n 1√

2
(|0〉 − |1〉) and the measurement outcome of the first n qubits is

always 00 . . .0. Suppose f(x) is balanced next. The probability amplitude of |y = 0〉 in |ψ3〉 is proportional

to
∑2n−1

x=0 (−1)f(x)(−1)x·y =
∑2n−1

x=0 (−1)f(x) = 0. Therefore the probability of obtaining measurement outcome
00 . . .0 for the first n qubits vanishes. In conclusion, the function f is constant if we obtain 00 . . .0 upon the
meaurement of the first n qubits in the state |ψ3〉 and it is balanced otherwise.

VI. DECOHERENCE

A quantum system is always in interaction with its environment. This interaction inevitably alter the state of the
quantum system, which causes loss of information encoded in this system. The system under consideration is not a
closed system when interaction with outside world is in action. We formulate the theory of open quantum system in
this section by regarding the combined system of the quantum system and its environment as a closed system and
subsequently trace out the environment degrees of freedom. Let ρS and ρE be the initial density matrices of the
system and the environment, respectively. Even when the initial state is an uncorrelated state ρS ⊗ ρE , the system-
environment interaction entangles the total system so that the total state develops to an inseparable entangled state
in general. Decoherence is a process in which environment causes various changes in the quantum system, which
manifests itself as undesirable noise.

A. Open quantum system

Let us start our exposition with some mathematical background materials [1, 2, 24].
We deal with general quantum states described by density matrices. We are interested in a general evolution of a

quantum system, which is described by a powerful tool called a quantum operation. One of the simplest quantum
operations is a unitary time evolution of a closed system. Let ρS be a density matrix of a closed system at t = 0 and
let U(t) be the time evolution operator. Then the corresponding quantum map E is defined as

E(ρS) = U(t)ρSU(t)†. (64)

One of our primary aims in this section is to generalize this map to cases of open quantum systems.

1. Quantum operations and Kraus operators

Suppose a system of interest is coupled with its environment. We must specify the details of the environment
and the coupling between the system and the environment to study the effect of the environment on the behavior of
the system. Let HS , HE and HSE be the system Hamiltonian, the environment Hamiltonian and their interaction
Hamiltonian, respectively. We assume the system-environment interaction is weak enough so that this separation into
the system and its environment makes sense. To avoid confusion, we often call the system of interest the principal
system. The total Hamiltonian HT is then

HT = HS +HE +HSE . (65)

Correspondingly, we denote the system Hilbert space and the environment Hilbert space as HS and HE , respectively,
and the total Hilbert space as HT = HS ⊗HE . The condition of weak system-environment interaction may be lifted
in some cases. Let us consider a qubit propagating through a noisy quantum channel, for example. “Propagating”
does not necessarily mean propagating in space. The qubit may be spatially fixed and subject to time-dependent
noise. When the noise is localized in space and time, the input and the output qubit states belong to a well defined
Hilbert space HS and the above separation of the Hamiltonian is perfectly acceptable even for strongly interacting
cases. We consider, in the following, how the principal system state ρS at t = 0 evolves in time in the presence of its
environment. A map which describes a general change of the state from ρS to E(ρS) is called a quantum operation. We
have already noted that the unitary time evolution is an example of a quantum operation. Other quantum operations
include state change associated with measurement and state change due to noise. The latter quantum map is our
primary interest in this section.
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The state of the total system is described by a density matrix ρ. Suppose ρ is uncorrelated initally at time t = 0,

ρ(0) = ρS ⊗ ρE , (66)

where ρS (ρE) is the initial density matrix of the principal system (environment). The total system is assumed to be
closed and to evolve with a unitary matrix U(t) as

ρ(t) = U(t)(ρS ⊗ ρE)U(t)†. (67)

Note that the resulting state is not a tensor product state in general. We are interested in extracting information on
the state of the principal system at some later time t > 0.
Even under these circumstances, however, we may still define the system density matrix ρS(t) by taking partial

trace of ρ(t) over the environment Hilbert space as

ρS(t) = trE [U(t)(ρS ⊗ ρE)U(t)†]. (68)

We may forget about the environment by taking a trace over HE . This is an example of a quantum operation,
E(ρS) = ρS(t). Let {|ej〉} be a basis of the system Hilbert space while {|εa〉} be that of the environment Hilbert
space. We may take the basis of HT to be {|ej〉 ⊗ |εa〉}. The initial density matrices may be written as ρS =∑

j pj |ej〉〈ej |, ρE =
∑

a ra|εa〉〈εa|.
Action of the time evolution operator on a basis vector of HT is explicitly written as

U(t)|ej , εa〉 =
∑
k,b

Ukb;ja|ek, εb〉, (69)

where |ej , εa〉 = |ej〉 ⊗ |εa〉 for example. Using this expression, the density matrix ρ(t) is written as

U(t)(ρS ⊗ ρE)U(t)† =
∑
j,a

pjraU(t)|ej , εa〉〈ej , εa|U(t)†

=
∑

j,a,k,b,l,c

pjraUkb;ja|ek, εb〉〈el, εc|U∗
lc;ja. (70)

The partial trace over HE is carried out to yield

ρS(t) = trE [U(t)(ρS ⊗ ρE)U(t)†] =
∑

j,a,k,b,l

pjraUkb;ja|ek〉〈el|U∗
lb;ja

=
∑
j,a,b

pj

(∑
k

√
raUkb;ja|ek〉

)(∑
l

√
ra〈el|U∗

lb;ja

)
. (71)

To write down the quantum operation in a closed form, we assume the initial environment state is a pure state, which
we take, without loss of generality, ρE = |ε0〉〈ε0|. Even when ρE is a mixed state, we may always complement HE

with a fictitious Hilbert space to “purify” ρE , see § IIG. With this assumption, ρS(t) is written as

ρS(t) = trE [U(t)(ρS ⊗ |ε0〉〈ε0|)U(t)†]

=
∑
a

(I ⊗ 〈εa|)U(t)(ρS ⊗ |ε0〉〈ε0|)|U(t)†(I ⊗ |εa〉)

=
∑
a

(I ⊗ 〈εa|)U(t)(I ⊗ |ε0〉)ρS(I ⊗ 〈ε0|)U(t)†(I ⊗ |εa〉).

We will drop I⊗ from I ⊗ 〈εa| hereafter, whenever it does not cause confusion. Let us define the Kraus operator
Ea(t) : HS → HS by

Ea(t) = 〈εa|U(t)|ε0〉. (72)

Then we may write

E(ρS) = ρS(t) =
∑
a

Ea(t)ρSEa(t)
†. (73)
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This is called the operator-sum representation (OSR) of a quantum operation E . Note that {Ea} satisfies the com-
pleteness relation [∑

a

Ea(t)
†Ea(t)

]
kl

=

[∑
a

〈ε0|U(t)†|εa〉〈εa|U(t)|ε0〉
]
kl

= δkl, (74)

where I is the unit matrix in HS . This is equivalent with the trace-preserving property of E as 1 = trSρS(t) =
trS(E(ρS)) = trS

(∑
aE

†
aEaρS

)
for any ρS ∈ S(HS). Completeness relation and trace-preserving property are satisfied

since our total system is a closed system. A general quantum map does not necessarily satisfy these properties [25].
At this stage, it turns out to be useful to relax the condition that U(t) be a time evolution operator. Instead,

we assume U be any operator including an arbitrary unitary gate. Let us consider a two-qubit system on which the
CNOT gate acts. Suppose the principal system is the control qubit while the environment is the target qubit. Then
we find

E0 = (I ⊗ 〈0|)UCNOT(I ⊗ |0〉) = P0, E1 = (I ⊗ 〈1|)UCNOT(I ⊗ |0〉) = P1,

where Pi = |i〉〈i|, and consequently

E(ρS) = P0ρSP0 + P1ρSP1 = ρ00P0 + ρ11P1 =

(
ρ00 0
0 ρ11

)
, (75)

where ρS =

(
ρ00 ρ01
ρ10 ρ11

)
. Unitarity condition may be relaxed when measurements are included as quantum operations,

for example.
Tracing out the extra degrees of freedom makes it impossible to invert a quantum operation. Given an initial

principal system state ρS , there are infinitely many U that yield the same E(ρS). Therefore even though it is possible
to compose two quantum operations, the set of quantum operations is not a group but merely a semigroup. [82]

2. Operator-sum representation and noisy quantum channel

Operator-sum representation (OSR) introduced in the previous subsection seems to be rather abstract. Here we
give an interpretation of OSR as a noisy quantum channel. Suppose we have a set of unitary matrices {Ua} and a set
of non-negative real numbers {pa} such that

∑
a pa = 1. By choosing Ua randomly with probability pa and applying

it to ρS , we define the expectation value of the resulting density matrix as

M(ρS) =
∑
a

paUaρSU
†
a , (76)

which we call a mixing process [26]. This occurs when a flying qubit is sent through a noisy quantum channel which
transforms the density matrix by Ua with probability pa, for example. Note that no enviroment has been introduced
in the above definition, and hence no partial trace is involved.
Now the correspondence between E(ρS) and M(ρS) should be clear. Let us define Ea ≡ √

paUa. Then Eq. (76) is
rewritten as

M(ρS) =
∑
a

EaρSE
†
a (77)

and the equivalence has been shown. Operators Ea are identified with the Kraus operators. The system transforms,
under the action of Ua, as

ρS → EaρSE
†
a/tr

(
EaρSE

†
a

)
. (78)

Conversely, given a noisy quantum channel {Ua, pa} we may introduce an “environment” with the Hilbert space HE

as follows. Let HE = Span(|εa〉) be a Hilbert space with the dimension equal to the number of the unitary matrices
{Ua}, where {|εa〉} is an orthonormal basis. Define formally the environment density matrix ρE =

∑
a pa|εa〉〈εa| and

U ≡
∑
a

Ua ⊗ |εa〉〈εa| (79)
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which acts on HS ⊗ HE . It is easily verified from the orthonormality of {|εa〉} that U is indeed a unitary matrix.
Partial trace over HE then yields

E(ρS) = trE [U(ρS ⊗ ρE)U
†]

=
∑
a

(I ⊗ 〈εa|)
(∑

b

Ub ⊗ |εb〉〈εb|
)(

ρS ⊗
∑
c

pc|εc〉〈εc|
)

×
(∑

d

Ud ⊗ |εd〉〈εd|
)
(I ⊗ |εa〉)

=
∑
a

paUaρSU
†
a = M(ρS) (80)

showing that the mixing process is also decribed by a quantum operation with a fictitious environment.

3. Completely positive maps

All linear operators we have encountered so far map vectors to vectors. A quantum operation maps a density
matrix to another density matrix linearly.[83] A linear operator of this kind is called a superoperator. Let Λ be a
superoperator acting on the system density matrices, Λ : S(HS) → S(HS). The operator Λ is easily extended to an
operator acting on HT by ΛT = Λ⊗ IE , which acts on S(HS ⊗HE). Note, however, that ΛT is not necessarily a map
S(HT ) → S(HT ). It may happen that ΛT (ρ) is not a density matrix any more. We have already encountered this
situation when we have introduced partial transpose operation in § IIG. Let HT = H1 ⊗H2 be a two-qubit Hilbert
space, where Hk is the kth qubit Hilbert space. It is clear that the transpose operation Λt : ρ1 → ρt1 on a single-qubit
state ρ1 preserves the density matrix properties. For a two-qubit density matrix ρ12, however, this is not always the
case. In fact, we have seen that Λt ⊗ I : ρ12 → ρpt12 defined by Eq. (20) maps a density matrix to a matrix which is
not a density matrix when ρ12 is inseparable.
A map Λ which maps a positive operator acting on HS to another positive operator on HS is said to be positive.

Moreover, it is called a completely positive map (CP map), if its extension ΛT = Λ ⊗ In remains a positive operator
for an arbitrary n ∈ N.

Theorem VI.1 A linear map Λ is CP if and only if there exists a set of operators {Ea} such that Λ(ρS) can be
written as

Λ(ρS) =
∑
a

EaρSE
†
a. (81)

We require not only that Λ be CP but also Λ(ρ) be a density matrix:

tr Λ(ρS) = tr

(∑
a

EaρE
†
a

)
= tr

(∑
a

E†
aEaρ

)
= 1. (82)

This condition is satisfied for any ρ if and only if ∑
a

E†
aEa = IS . (83)

Therefore, any quantum operation obtained by tracing out the environment degrees of freedom is CP and preserves
trace.

B. Measurements as quantum operations

We have already seen that a unitary evoluation ρS → UρSU
† and a mixing process ρS →

∑
i piUiρSU

†
i are quantum

operations. We will see further examples of quantum operations in this section and the next. This section deals with
measurements as quantum operations.
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1. Projective measurements

Suppose we measure an observable A =
∑

i λiPi, where Pi = |λi〉〈λi| is the projection operator corresponding to
the eigenvector |λi〉. We have seen in Chapter 2 that the probability of observing λi upon a measurement of A in a
state ρ is

p(i) = 〈λi|ρ|λi〉 = tr (Piρ) (84)

and the state changes as ρ → PiρPi/p(i). This process happens with a probability p(i). Thus we may regard the
measurement process as a quantum operation

ρS →
∑
i

p(i)
PiρSPi

p(i)
=
∑
i

PiρSPi, (85)

where the set {Pi} satisifes the completeness relation
∑

i PiP
†
i = I.

The projective measurement is a special case of a quantum operation in which the Kraus operators are Ei = Pi.

2. POVM

We have been concerned with projective measurements so far. However, it should be noted that they are not unique
type of measurements. Here we will deal with the most general framework of measurement and show that it is a
quantum operation.
Suppose a system and an environment, prepared initially in a product state |ψ〉|e0〉, are acted by a unitary operator

U , which applies an operator Mi on the system and, at the same time, put the environment to |ei〉 for various i. It
is written explicitly as

|Ψ〉 = U |ψ〉|e0〉 =
∑
i

Mi|ψ〉|ei〉. (86)

The system and its environment are correlated in this way. This state must satisfy the normalization condition since

U is unitary; 〈ψ|〈e0|U †U |ψ〉|e0〉 =
∑

i,j〈ψ|〈ei|M
†
iMj ⊗ I|ψ〉|ej〉 = 〈ψ|

∑
iM

†
iMi|ψ〉 = 1. Since |ψ〉 is arbitrary, we

must have ∑
i

M †
iMi = IS , (87)

where IS is the unit matrix acting on the system Hilbert space HS . Operators {M †
iMi} are said to form a POVM

(positive operator-valued measure).
Suppose we measure the environment with a measurement operator

O = IS ⊗
∑
i

λi|ei〉〈ei| =
∑
i

λi (IS ⊗ |ei〉〈ei|) .

We obtain a measurement outcome λk with a probability

p(k) = 〈Ψ|(IS ⊗ |ek〉〈ek|)|Ψ〉
=

∑
i,j

〈ψ|〈ei|M †
i (IS ⊗ |ek〉〈ek|)Mj|ψ〉|ej〉 = 〈ψ|M †

kMk|ψ〉, (88)

where |Ψ〉 = U |ψ〉|e0〉. The combined system immediately after the measurement is

1√
p(k)

(IS ⊗ |ek〉〈ek|)U |ψ〉|e0〉 =
1√
p(k)

(IS ⊗ |ek〉〈ek|)
∑
i

Mi|ψ〉|ei〉

=
1√
p(k)

Mk|ψ〉|ek〉. (89)

Let ρS =
∑

i pi|ψi〉〈ψi| be an arbitrary density matrix of the principal system. It follows from the above observation
for a pure state |ψ〉〈ψ| that the reduced density matrix immediately after the measurement is

∑
k

p(k)
MkρSM

†
k

p(k)
=
∑
k

MkρSM
†
k . (90)
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FIG. 5: Quantum circuit modelling a bit-flip channel. The gate is the inverted CNOT gate I ⊗ |0〉〈0|+ σx ⊗ |1〉〈1|.

This shows that POVMmeasurement is a quantum operation in which the Kraus operators are given by the generalized
measurement operators {Mi}. The projective measurement is a special class of POVM, in which {Mi} are the
projective operators.

C. Examples

Now we examine several important examples which have relevance in quantum information theory. Decoherence
appears as an error in quantum information processing. The next chapter is devoted to strategies to fight against
errors introduced in this section.

1. Bit-flip channel

Consider a closed two-qubit system with a Hilbert space C2 ⊗ C2. We call the first qubit the “(principal) system”
while the second qubit the “environment”. A bit-flip channel is defined by a quantum operation

E(ρS) = (1 − p)ρS + pσxρSσx, 0 ≤ p ≤ 1. (91)

The input ρS is bit-flipped with a probability p while it remains in its input state with a probability 1−p. The Kraus
operators are read off as

E0 =
√
1− pI, E1 =

√
pσx. (92)

The circuit depicted in Fig. 5 models the bit-flip channel provided that the second qubit is in a mixed state
(1 − p)|0〉〈0| + p|1〉〈1|. The circuit is nothing but the inverted CNOT gate V = I ⊗ |0〉〈0|+ σx ⊗ |1〉〈1|. The output
of this circuit is

V (ρS ⊗ [(1− p)|0〉〈0|+ p|1〉〈1|])V †

= (1− p)ρS ⊗ |0〉〈0|+ pσxρSσx|1〉〈1|, (93)

from which we obtain

E(ρS) = (1 − p)ρS + pσxρSσx (94)

after tracing over the environment Hilbert space.
The choice of the second qubit input state is far from unique and so is the choice of the circuit. Suppose the initial

state of the environment is a pure state |ψE〉 =
√
1− p|0〉 + √

p|1〉, for example. Then the output of the circuit in
Fig. 5 is

E(ρS) = trE [V ρS ⊗ |ψE〉〈ψE |V †] = (1− p)ρS + pσxρSσx, (95)

producing the same result as before.
Let us see what transformation this quantum operation brings about in ρS . We parametrize ρS using the Bloch

vector as

ρS =
1

2

⎛
⎝I + ∑

k=x,y,z

ckσk

⎞
⎠ , (ck ∈ R) (96)



28

-1
-0.5

0
0.5

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

FIG. 6: Bloch sphere of the input state ρS (a) and output states of (b) bit-flip channel and (c) phase-flip channel. The
probability p = 0.2 is common to both channels.

FIG. 7: Quantum circuit modelling a phase-flip channel. The gate is the inverted controlled-σz gate.

where
∑

k c
2
k ≤ 1. We obtain

E(ρS) = (1− p)ρS + pσxρSσx

=
1− p

2
(I + cxσx + cyσy + czσz) +

p

2
(I + cxσx − cyσy − czσz)

=
1

2

(
1 + (1− 2p)cz cx − i(1− 2p)cy
cx + i(1− 2p)cy 1− (1 − 2p)cz

)
. (97)

Observe that the radius of the Bloch sphere is reduced along the y- and the z-axes so that the radius in these
directions is |1 − 2p|. Equation (97) shows that the quantum operation has produced a mixture of the Bloch vector
states (cx, cy, cz) and (cx,−cy,−cz) with weights 1− p and p respectively. Figure 6 (a) shows the Bloch sphere which
represents the input qubit states. The Bloch sphere shrinks along the y- and z-axes, which results in the ellipsoid
shown in Fig. 6 (b).

2. Phase-flip channel

Consider again a closed two-qubit system with the “(principal) system” and its “environment”.
The phase-flip channel is defined by a quantum operation

E(ρS) = (1− p)ρS + pσzρSσz , 0 ≤ p ≤ 1. (98)

The input ρS is phase-flipped (|0〉 �→ |0〉 and |1〉 �→ −|1〉) with a probability p while it remains in its input state with
a probability 1− p. The corresponding Kraus operators are

E0 =
√
1− pI, E1 =

√
pσz . (99)

A quantum circuit which models the phase-flip channel is shown in Fig. 7. Let ρS be the first qubit input state
while (1− p)|0〉〈0|+ p|1〉〈1| be the second qubit input state. The circuit is the inverted controlled-σz gate

V = I ⊗ |0〉〈0|+ σz ⊗ |1〉〈1|.

The output of this circuit is

V (ρS ⊗ [(1 − p)|0〉〈0|+ p|1〉〈1|])V †

= (1− p)ρS ⊗ |0〉〈0|+ pσzρSσz ⊗ |1〉〈1|, (100)
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FIG. 8: Entanglement distillation of the second kind. Alice and Bob share a Bell state |Φ+〉 with a good precision if p � 1
when their measurement outcomes of the third and the fourth qubits are 00 or 11.

from which we obtain

E(ρS) = (1 − p)ρS + pσzρSσz. (101)

The second qubit input state may be a pure state

|ψE〉 =
√
1− p|0〉+√

p|1〉, (102)

for example. Then we find

E(ρS) = trE [V ρS ⊗ |ψE〉〈ψE |V †] = E0ρSE
†
0 + E1ρSE

†
1 , (103)

where the Kraus operators are

E0 = 〈0|V |ψE〉 =
√
1− pI, E1 = 〈1|V |ψE〉 =

√
pσz . (104)

Let us work out the transformation this quantum operation brings about to ρS . We parametrize ρS using the Bloch
vector as before. We obtain

E(ρS) = (1− p)ρS + pσzρSσz

=
1− p

2
(I + cxσx + cyσy + czσz) +

p

2
(I − cxσx − cyσy + czσz)

=
1

2

(
1 + cz (1− 2p)(−cx − icy)

(1− 2p)(cx + icy) 1− cz

)
. (105)

Observe that the off-diagonal components decay while the diagonal components remain the same. Equation (105)
shows that the quantum operation has produced a mixture of the Bloch vector states (cx, cy, cz) and (−cx,−cy, cz)
with weights 1 − p and p respectively. The initial state has a definite phase φ = tan−1(cy/cx) in the off-diagonal
components. The phase after the quantum operaition is applied is a mixture of states with φ and φ+ π. This process
is called the phase relaxation process, or the T2 process in the context of NMR. The radius of the Bloch sphere is
reduced along the x- and the y-axes as 1 → |1 − 2p|. Figure 6 (c) shows the effect of the phase-flip channel on the
Bloch sphere for p = 0.2.
Other examples will be found in [1, 2].

D. Entenglement Distillation II

The second entanglement distillation protocol recovers the EPR state |Φ+〉 from a pair of the EPR states on which
noisy channels are applied, see Fig. 8. Let E = {

√
1− pI,

√
pσx} be the set of error operators describing to the

channel. It is assumed that p is a small positive number. The initial state is

|Ψ1〉 =
1

2
(|00〉|00〉+ |00〉|11〉+ |11〉|00〉+ |11〉|11〉).
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The state after the error operators are applied is mixed as

ρ2 = (p2 + (1 − p)2)2|ψ00〉〈ψ00|+ (p2 + (1− p)2)(2p(1− p))|ψ0x〉〈ψ0x|
+(2p(1− p))(p2 + (1− p)2)|ψx0〉〈ψx0|+ (2p(1− p))2|ψxx〉〈ψxx|,

where

|ψ00〉 =
1

2
(|00〉|00〉+ |00〉|11〉+ |11〉|00〉+ |11〉|11〉),

|ψ0x〉 =
1

2
(|00〉|01〉+ |00〉|10〉+ |11〉|01〉+ |11〉|10〉),

|ψx0〉 =
1

2
(|01〉|00〉+ |01〉|11〉+ |10〉|00〉+ |10〉|11〉),

|ψxx〉 =
1

2
(|01〉|01〉+ |01〉|10〉+ |10〉|01〉+ |10〉|10〉).

Then CNOT gates are applied as before as shown in Fig. 8. The resulting state is

ρ3 = (p2 + (1 − p)2)2|ψ̃00〉〈ψ̃00|+ (p2 + (1− p)2)(2p(1− p))|ψ̃0x〉〈ψ̃0x|
+(2p(1− p))(p2 + (1− p)2)|ψ̃x0〉〈ψ̃x0|+ (2p(1− p))2|ψ̃xx〉〈ψ̃xx|,

where

|ψ̃00〉 =
1

2
(|00〉|00〉+ |00〉|11〉+ |11〉|11〉+ |11〉|00〉),

|ψ̃0x〉 =
1

2
(|00〉|01〉+ |00〉|10〉+ |11〉|10〉+ |11〉|01〉),

|ψ̃x0〉 =
1

2
(|01〉|01〉+ |01〉|10〉+ |10〉|10〉+ |10〉|01〉),

|ψ̃xx〉 =
1

2
(|01〉|00〉+ |01〉|11〉+ |10〉|11〉+ |10〉|00〉).

Now they measure the third and the fourth qubits and exchange there outcomes using a classical communication.
Suppose their readings are 00 or 11. Then, with probability (p2 + (1 − p)2)2, the first and the second qubits are in
the state |Φ+〉 = 1√

2
(|00〉 + |11〉). This probability ∼ 1 − 4p is close to 1 for p � 1. There is a small probability

(2p(1 − p))2 ∼ 4p2 with which the resulting state of the first and the second qubits is |Ψ+〉 = 1√
2
(|01〉 + |10〉) even

though the readouts of the third and the fourth qubits are 00 or 11.

VII. QUANTUM ERROR CORRECTING CODES

A. Introduction

It has been shown in the previous chapter that interactions between a quantum system with environment cause
undesirable changes in the state of the quantum system. In the case of qubits, they appear as bit-flip and phase-
flip errors, for example. To reduce such errors, we must implement some sort of error correcting mechanism in the
algorithm.
Before we introduce quantum error correcting codes, we have a brief look at the simplest version of error correcting

code in classical bits. Suppose we transmit a serise of 0’s and 1’s through a noisy classical channel. Each bit is
assumed to flip independently with a probability p. Thus a bit 0 sent through the channel will be received as 0 with
probability 1− p and as 1 with probability p. To reduce channel errors, we may invoke to majority vote. Namely, we
encode logical 0 by 000 and 1 by 111, for example. When 000 is sent through this channel, it will be received as 000
with probability (1−p)3, as 100, 010 or 001 with probability 3p(1−p)2, as 011, 101 or 110 with probability 3p2(1−p)
and finally as 111 with probability p3. By taking the majority vote, we correctly reproduce the desired result 0 with
probability p0 = (1− p)3+3p(1− p)2 = (1− p)2(1+2p) while fails with probability p1 = 3p2(1− p)+ p3 = (3− 2p)p2.
We obtain p0 � p1 for sufficiently small p ≥ 0. In fact, we find p0 = 0.972 and p1 = 0.028 for p = 0.1. The success
probability p0 increases as p approaches to 0, or alternatively, if we use more bits to encode 0 or 1.
This method cannot be applicable to qubits, however, due to no-cloning theorem. We have to somehow think out

the way to overcome this theorem.
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FIG. 9: Quantum circuits to (a) encode, (b) detect bit-flip error syndrome, (c) make correction to a relevant qubit and (d)
decode. The gate NX stands for the bit-flip noise.

B. Three-qubit bit-flip code: the simplest example

It is instructive to introduce a simple example of quantum error correcting codes (QECC). We closely follow Steane
[30] here.

1. Bit-flip QECC

Suppose Alice wants to send a qubit or a serise of qubits to Bob through a noisy quantum channel. Let |ψ〉 =
a|0〉 + b|1〉 be the state she wants to send. If she is to transmit a serise of qubits, she sends them one by one and
the following argument applies to each of the qubits. Let p be the probability with which a qubit is flipped and we
assume there are no other types of errors in the channel. In other words, the operator X is applied to the qubit with
probability p and consequently the state is mapped to

|ψ〉 → |ψ′〉 = X |ψ〉 = a|1〉+ b|0〉. (106)

We have already seen in the previous section that this channel is described by a quantum operation (91).

2. Encoding

To reduce the error probability, we want to mimic somehow the classical counterpart without using a clone machine.
Let us recall that the action of a CNOT gate is CNOT : |j0〉 → |jj〉, j ∈ {0, 1} and therefore it duplicates the control
bit j ∈ {0, 1} when the target bit is initially set to |0〉. We use this fact to triplicate the basis vectors as

|ψ〉|00〉 = (a|0〉+ b|1〉)|00〉 → |ψ〉E = a|000〉+ b|111〉, (107)

where |ψ〉E denotes the encoded state. The state |ψ〉E is called the logical qubit while each constituent qubit is called
the physical qubit. We borrow terminologies from classical error correcting code (ECC) and call the set

C = {a|000〉+ b|111〉|a, b ∈ C, |a|2 + |b|2 = 1} (108)

the code and each member of C a codeword. It is important to note that the state |ψ〉 is not triplicated but only the
basis vectors are triplicated. This redundancy makes it possible to detect errors in |ψ〉E and correct them as we see
below.
A quantum circuit which implements the encoding (107) is easily found from our experience in CNOT gate. Let us

consider the circuit shown in Fig. 9 (a) whose input state is |ψ〉|00〉. It is immediately found that the output of this
circuit is |ψ〉E = a|000〉+ b|111〉 as promised.
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TABLE I: State Bob receives and the probability which this may happen.

State Bob receives Probability

a|000〉 + b|111〉 (1− p)3

a|100〉 + b|011〉 p(1− p)2

a|010〉 + b|101〉 p(1− p)2

a|001〉 + b|110〉 p(1− p)2

a|110〉 + b|001〉 p2(1− p)

a|101〉 + b|010〉 p2(1− p)

a|011〉 + b|100〉 p2(1− p)

a|111〉 + b|000〉 p3

TABLE II: States after error extraction is made and the probabilities with which these states are produced.

State after error syndrome extraction Probability

(a|000〉 + b|111〉)|00〉 (1− p)3

(a|100〉 + b|011〉)|11〉 p(1− p)2

(a|010〉 + b|101〉)|10〉 p(1− p)2

(a|001〉 + b|110〉)|01〉 p(1− p)2

(a|110〉 + b|001〉)|01〉 p2(1− p)

(a|101〉 + b|010〉)|10〉 p2(1− p)

(a|011〉 + b|100〉)|11〉 p2(1− p)

(a|111〉 + b|000〉)|00〉 p3

3. Transmission

Now the state |ψ〉E is sent through a quantum channel which introduces bit-flip error with a rate p for each qubit
independently. We assume p is sufficiently small so that not many errors occur during qubit transmission. The
received state depends on in which physical qubit(s) the bit-flip error occurred. Table I lists possible received states
and the probabilities with which these states are received.

4. Error syndrome dectection and correction

Now Bob has to extract from the received state which error occurred during qubits transmission. For this purpose,
Bob prepares two ancillary qubits in the state |00〉 as depicted in Fig. 9 (b) and apply four CNOT operations whose
control bits are the encoded qubits while the target qubits are Bob’s two ancillary qubits. Let |x1x2x3〉 be a basis
vectors Bob has received and let A (B) be the output state of the first (second) ancilla qubit. It is seen from Fig. 9 (b)
that A = x1 ⊕ x2 and B = x1 ⊕ x3. Let a|100〉+ b|011〉 be the received logical qubit for example. Note that the first
qubit state in both of the basis vectors is different from the second and the third qubit states. These difference are
detected by the pairs of CNOT gates in Fig. 9 (b). The error extracting sequence transforms the anicillary qubits as

(a|100〉+ b|011〉)|00〉 → a|10011〉+ b|01111〉 = (a|100〉+ b|011〉)|11〉.

Both of the ancillary qubits are flipped since x1⊕x2 = x1⊕x3 = 1 for both |100〉 and |011〉. It is important to realize
that (i) the syndrome is independent of a and b and (ii) the received state a|100〉 + b|011〉 remains intact; we have
detected an error without measuring the received state! These features are common to all QECC.
We list the result of other cases in Table II. Note that among eight possible states, there are exactly two states with

the same ancilla state. Does it mean this error extraction scheme does not work? Now let us compare the probabilities
associated with the same ancillary state. When the ancillary state is |10〉, for example, there are two possible reseived
states a|010〉+ b|101〉 and a|101〉+ b|010〉. Note that the former is received with probability p(1−p)2 while that latter
with p2(1− p). Therefore the latter probability is negligible compared to the former for sufficiently small p.
It is instructive to visualize what errors do to the encoded basis vectors. Consider a cube with the unit length.

The vertices of the cube have coordinates (i, j, k) where i, j, k ∈ {0, 1}. We assign a vector |ijk〉 to the vertex (i, j, k),
under which the vectors |000〉 and |111〉 correspond to diagonally separated vertices. An action of Xi, the operator
X = σx acting on the ith qubit, sends these basis vectors to the nearest neighbor vetices, which differ from the correct
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basis vectors in the ith position. The intersection of the sets of vectors obtained by a single action of Xi on |000〉 and
|111〉 is an empty set. Therefore an action of a single error operator X can be corrected with no ambiguity.
Now Bob measures his ancillary qubits and obtains two bits of classical information. The set of two bits is called

the (error) syndrome and it tells Bob in which physical qubit the error occurred during transmission. Bob applies
correcting procedure to the received state according to the error sydrome he has obtained. Ignoring extra error states
with small probabilities, we immediately find that the following action must be taken:

error syndrome correction to be made

00 identity operation (nothing is required)

01 apply σx to the third qubit

10 apply σx to the second qubit

11 apply σx to the first qubit

Suppose the syndrome is 01, for example. The state Bob received is likely to be a|001〉 + b|110〉. Bob recovers the
initial state Alice has sent by applying I ⊗ I ⊗ σx on the received state:

(I ⊗ I ⊗ σx)(a|001〉+ b|110〉) = a|000〉+ b|111〉.

If Bob receives the state a|110〉+ b|001〉, unfortunately, he will obtain

(I ⊗ I ⊗ σx)(a|110〉+ b|001〉) = a|111〉+ b|000〉.

In fact, for any error sydrome, Bob obtaines either a|000〉+ b|111〉 or a|111〉+ b|000〉. The latter case occurs if and
only if more than one qubit are flipped, and hence it is less likely to happen for sufficiently small error rate p. The
probability with which multiple error occurs is found from Table I as

P (error) = 3p2(1 − p) + p3 = 3p2 − 2p3. (109)

This error rate is less than p if p < 1/2. In contrast, success probability has been enhanced from 1−p to 1−P (error) =
1−3p2+2p3. Let p = 0.1, for example. Then the error rate is lowered to P (error) = 0.028, while the success probability
is enhanced from 0.9 to 0.972.

5. Decoding

Now that Bob has corrected an error, what is left for him is to decode the encoded state. This is nothing but the
inverse transformation of the encoding (107). It can be seen from Fig. 9 (d) that

CNOT12CNOT13(a|000〉+ b|111〉) = a|000〉+ b|100〉 = (a|0〉+ b|1〉)|00〉. (110)

6. Miracle of entanglement

This example, albeit simple, contains almost all fundamental ingredients of QECC. We prepare some redundant
qubits which somehow “triplicate” the original qubit state to be sent without violating no-cloning theorem. Then the
encoded qubits are sent through a noisy channel, which causes a bit-flip in at most one of the qubits. The received
state, which may be subject to an error, is then entangled with ancillary qubits, whose state reflects the error which
occurred during the state transmission. This results in an entangled state∑

k

|A bit-flip error in the kth qubit〉 ⊗ |corresponding error syndrome〉. (111)

The wave function, upon the measurement of the ancillary qubits, collapses to a state with a bit-flip error corresponding
to the observed error syndrome. In a sense, syndrome measurement singles out a particular error state which produces
the observed syndrome.
Once syndrome is found, it is an easy task to transform the received state back to the original state. Note that

everything is done without knowing what the origial state is.
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7. Continuous rotations

We have considered noise X so far. Suppose noise in the channel is characterized by a contiuous paramter α as

Uα = eiαX = cosαI + iX sinα, (112)

which maps a state |ψ〉 to

Uα|ψ〉 = cosα|ψ〉 + i sinαX |ψ〉. (113)

Suppose Uα acts on the first qubit, for example. Bob then receives

(Uα ⊗ I ⊗ I)(a|000〉+ b|111〉)
= cosα(a|000〉+ b|111〉) + i sinα(a|100〉+ b|011〉).

The output of the error syndrome detection circuit, before the syndrome measurement is made, is an entangled state

cosα(a|000〉+ b|111〉)|00〉+ i sinα(a|100〉+ b|111〉)|11〉, (114)

see Table II. Measurement of the error syndrome yields either 00 or 11. In the former case the state collapses to
|ψ〉 = a|000〉+ b|111〉 and this happens with a probability cos2 α. In the latter case, on the other hand, the received
state collapses to X |ψ〉 = a|100〉+ b|011〉 and this happens with a probability sin2 α. Bob applies I (X) to the first
qubit to correct the error when the syndrome readout is 00 (11).
It is clear that error Uα may act on the second or the third qubit. Continuous rotation Uα for any α may be

corrected in this way. In general, linearity of a quantum circuit guarantees that any QECC, which corrects the bit-flip
error X , corrects continuous error Uα.

VIII. DIVINCENZO CRITERIA

We have learned so far that information may be encoded and processed in a quantum-mechanical way. This new
discipline called quantum information processing (QIP) is expected to solve a certain class of problems that current
digital computers cannot solve in a practical time scale. Although a small scale quantum information processor is
already available commercially, physical realization of large scale quantum information processors is still beyond the
scope of our currently available technology.
A quantum computer should have at least 102 ∼ 103 qubits to be able to execute algorithms that are more efficient

than their classical counterparts. DiVincenzo proposed necessary conditions, so-called the DiVincenzo criteria that
any physical system has to fulfill to be a candidate for a viable quantum computer [38]. In the next section, we outline
these conditions as well as two additional criteria for networkability.

A. DiVincenzo criteria

In his influential article [38], DiVincenzo proposed five criteria that any physical system must satisfy to be a viable
quantum computer. We summarize the relevant parts of these criteria in this section.

1. A scalable physical system with well characterized qubits.

To begin with, we need a quantum register made of many qubits to store information. Recall that a classical
computer also requires memory to store information. The simplest way to realize a qubit physically is to use a
two-level quantum system. For example, an electron, a spin 1/2 nucleus or two mutually orthogonal polarization
states (horizontal and vertical, for example) of a single photon can be a qubit. We may also employ a two-
dimensional subspace, such as the ground state and the first excited state, of a multi-dimensional Hilbert space,
such as atomic energy levels. In any case, the two states are identified as the basis vectors, |0〉 and |1〉, of the
Hilbert space so that a general single qubit state takes the form |ψ〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1. A multi-
qubit state is expanded in terms of the tensor products of these basis vectors. Each qubit must be separately
addressable. Moreover it should be scalable up to a large number of qubits. The two-dimensional vector space
of a qubit may be extended to three-dimensional (qutrit) or, more generally, d-dimensional (qudit).

A system may be made of several different kinds of qubits. Qubits in an ion trap quantum computer, for
instance, may be defined as: (1) hyperfine/Zeeman sublevels in the electronic ground state of ions (2) a ground
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state and an excited state of a weakly allowed optical transition and (3) normal mode of ion oscillation. A
similar scenario is also proposed for Josephson junction qubits, in which two flux qubits are coupled through a
quantized LC circuit. Simultaneous usage of several types of qubits may be the most promising way to achieving
a viable quantum computer.

2. The ability to initialize the state of the qubits to a simple fiducial state, such as |00 . . .0〉.

Suppose you are not able to reset your (classical) computer. Then you will never trust the output of some
computation even though processing is done correctly. Therefore initialization is an important part of both
quantum and classical information processors.

In many realizations, initialization may be done simply by cooling to bring the system into its ground state.
Let ΔE be the difference between energies of the first excited state and the ground state. The system is in
the ground state with a good precision at low temperatures satisfying kBT � ΔE. Alternatively, we may use
projective measurement to project the system onto a desired state. In some cases, we observe the system to be
in an undesired state upon such measurement. Then we may transform the system to the desired fiducial state
by applying appropriate gates.

For some realizations, such as liquid state NMR, however, it is impossible to cool the system down to extremely
low temperatures. In those cases, we are forced to use a thermally populated state as an initial state. This
seemingly difficult problem may be amended by several methods if some computational resources are sacrificed.
We then obtain an “effective” pure state, so-called the pseudopure state, which works as an initial state for most
purposes.

Continuous fresh supply of qubits in a specified state, such as |0〉, is also an important requirement for successful
quantum error correction. as we have seen in Section VII.

3. Long decoherence times, much longer than the gate operation time.

Hardware of a classical computer lasts long, for on the order of 10 years. Things are totally different for a
quantum computer, which is fragile against external disturbance called decoherence, see Section VI.

Decoherence is probably the hardest obstacle to building a viable quantum computer. Decoherence means
many aspects of quantum state degradation due to interactions of the system with the environment and sets
the maximum time available for quantum computation. Decoherence time itself is not very important. What
matters is the ratio “decoherence time/gate operation time”. For some realizations, decoherence time may be
as short as ∼ μs. This is not necessarily a big problem provided that the gate operation time, determined by
the Rabi oscillation period and the qubit-coupling strength, for example, is much shorter than the decoherence
time. If the typical gate operation time is ∼ ps, say, the system may execute 1012−6 = 106 gate operations
before the quantum state decays. We quote the number ∼ 105 of gates required to factor 21 into 3 and 7 by
using Shor’s algorithm [40].

There are several ways to effectively prolong decoherence time. A closed-loop control method incorporates
QECC, while an open-loop control method incorporates noiseless subsystem [41] and decoherence free subspace
(DFS) [42].

4. A “universal” set of quantum gates.

Suppose you have a classical computer with a big memory. Now you have to manipulate the data encoded in the
memory by applying various logic gates. You must be able to apply arbitrary logic operations on the memory
bits to carry out useful information processing. It is known that the NAND gate is universal, i.e., any logic
gates may be implemented with NAND gates.

Let H(γ(t)) be the Hamiltonian of an n-qubit system under consideration, where γ(t) collectively denotes
the control parameters in the Hamiltonian. The time-development operator of the system is U [γ(t)] =

T exp
[
− i

�

∫ T
H(γ(t))dt

]
∈ U(2n), where T is the time-ordering operator. Our task is to find the set of control

parameters γ(t), which implements the desired gate Ugate as U [γ(t)] = Ugate. Although this “inverse problem”
seems to be difficult to solve, a theorem by Barenco et al. guarantees that any U(2n) gate may be decomposed
into single-qubit gates ∈ U(2) and CNOT gates [16]. Therefore it suffices to find the control sequences to
implement U(2) gates and a CNOT gate to construct an arbitrary gate. Naturally, implementation of a CNOT
gate in any realization is considered to be a milestone in this respect. Note, however, that any two-qubit gates,
which are neither a tensor product of two one-qubit gates nor a SWAP gate, work as a component of a universal
set of gates [43].
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5. A qubit-specific measurement capability.

The result of classical computation must be displayed on a screen or printed on a sheet of paper to readout the
result. Although the readout process in a classical computer is regarded as too trivial a part of computation, it
is a vital part in quantum computing.

The state at the end of an execution of quantum algorithm must be measured to extract the result of the
computation. The measurement process depends heavily on the physical system under consideration. For most
realizations, projective measurements are the primary method to extract the outcome of a computation. In liquid
state NMR, in contrast, a projective measurement is impossible, and we have to resort to ensemble averaged
measurements.

Measurement in general has no 100% efficiency due to decoherence, gate operation error and many more reasons.
If this is the case, we have to repeat the same computation many times to achieve reasonably high reliability.

Moreover, we should be able to send and store quantum information to construct a quantum data processing
network. This “networkability” requires following two additional criteria to be satisfied.

(6) The ability to interconvert stationary and flying qubits.

Some realizations are excellent in storing quantum information while long distant transmission of quantum
information might require different physical resources. It may happen that some system has a Hamiltonian
which is easily controllable and is advantageous in executing quantum algorithms. Compare this with a current
digital computer, in which the CPU and the system memory are made of semiconductors while a hard disk drive
is used as a mass storage device. Therefore a working quantum computer may involve several kinds of qubits
and we are forced to introduce distributed quantum computing. Interconverting ability is also important in long
distant quantum teleportation using quantum repeaters.

(7) The ability to faithfully transmit flying qubits between specified locations.

Needless to say, this is an indispensable requirement for quantum communication such as quantum key distri-
bution. This condition is also important in distributed quantum computing mentioned above.

B. Physical realizations

There are numerous physical systems proposed as possible candidates for a viable quantum computer to date [44].
Here is the list of the candidates;

1. Liquid-state/Solid-state NMR and ENDOR
2. Trapped ions
3. Neutral atoms in optical lattice
4. Cavity QED with atoms
5. Linear optics
6. Quantum dots (spin-based, charge-based)
7. Josephson junctions (charge, flux, phase qubits)
8. Electrons on liquid helium surface

and other unique realizations. ARDA QIST roadmap [44] evaluates each of these realizations.

IX. NMR QUANTUM COMPUTER

In the following, a short introduction to an NMR quantum computer is given. Mathematical, rather than physical,
aspects will be emphasized.
NMR quantum computer is one of the most established systems among many physical realizations of a quantum

computer. In spite of its peculiar character associated with initialization and lack of scalability, it still works as a
prototypical quantum computer, with at most 10 qubits, on which small-scale quantum algorithms can be executed.
Qubits in this realization are spin-1/2 nuclei. Molecules with a certain number of such nuclei are employed as a
quantum register. The system is made of a macroscopic number (∼ 1020) of moleclues in thermal equilibrium, and we
have to take care of these aspects in initilization and measurements. Our exposition follows mostly [1]. Other useful
review is [47]. Interested readers may concult with there references. The symbol Ik = σk/2 (k = x, y, z) is employed
throughout this section.
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Molecules with a certain number of spin 1/2 nuclei are required to construct an NMR quantum computer. Figure
10 lists typical molecules employed in NMR QC to date.

FIG. 10: Structure of molecules listed employed in NMR QC. Nuclei working as qubits are indicated in boldface. (a) Chloro-
form. (b) Partially deuterated cytosine. (c) 13C labelled carbons in alanine. (d) Trichloroethylene. (e) Pentafluorobutadienl
cyclopentadienyldicarbonyliron complex. (f) Perfluorobutadienyl iron complex with the inner two carbons 13C-labelled.

A. NMR Spectrometer

Figure 11 shows the schematic diagram of the NMR spectrometer setup. A test tube containing molecules is placed
in an NMR spectrometer. It is under a strong magnetic field B0 on the order of 10 T, which introduces well-defined
spin-up and spin-down eigenstates of each nucleus. The energy difference between two spin states is �γB0 ≡ �ω0,
where γ is the gyromagentic ratio of the nucleus, where ω0 is called the Larmor frequency. The direction of B0 is
taken as the z-axis. A radio frequency (rf) magnetic field B1(t) along the x-axis is applied through a coil to implement
one-qubit gates as will be shown later. It selectively accesses each spin by tuning its rf frequency ωrf with the Larmor
frequency of the target nucleus. The amplitude B1, the frequency ωrf , the phase φ and the pulse shape (square-well,
Gaussian and so on) are controllable parameters. The same coil is also used to pick up signals from rotating spins
through magnetic induction when measurement is done. Several coils are introduced to control several nuclear species
simultaneously. Each coil produces rf pulses for a particular nuclear species and receives induction signals from them.

B. Hamiltonian

1. Single-Spin Hamiltonian

We are exclusively concerned with room-temperature liquid state NMR here. Due to rapid random motion of
molecules in a liquid at room temperature, both rotational and translational intermolecular interactions are averaged

FIG. 11: Test tube with a macroscopic number of molecules is placed in a strong static field B0 and an rf magnetic field B1(t)
generated by a pair of rf coils.
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to vanish, and each molecule may be regarded as being isolated from other molecules.
Let us consider a nucleus with spin 1/2 in a strong static magnetic field B0 on the order of 10 T along the z-axis.

The Hamiltonian of this nucleus is

H0 = −�γB0 · I = −�ω0Iz, (115)

where γ is the nuclear gyromagnetic ratio and ω0 = γB0 is called the Larmor frequency. The eigenvalues of the
Hamiltonian are E0 = −�ω0/2 and E1 = �ω0/2, and the corresponding eigenstates are

|0〉 =
(

1

0

)
, |1〉 =

(
0

1

)
, (116)

respectively. Note that the state |0〉 (|1〉) denotes the spin up (down) state in physicists’ terminology. Table III shows
the Larmor frequencies of several nuclei which are often employed in NMR QC.

TABLE III: Larmor frequecies of typical nuclei at B0 = 11.74 T.

Nucleus 1H 13C 19F 31P

ω0[MHz] 500 126 470 202

The spin state of a nucleus can be controlled by applying a radio frequency (rf) magnetic field in the xy-plane.
Here we take its direction along the −x-axis as

B1(t) = −B1(t) cos(ωrf t− φ)x̂, (117)

where x̂ is the unit vector along the x-axis and ωrf and −φ are the angular frequency and the initial phase of the rf
field, respectively. This field induces an extra term in the Hamiltonian of the form

Hrf = 2�ω1 cos(ωrft− φ)Ix, (118)

where 2�ω1 = �γB1. The factor 2 has been multiplied to make the corresponding Hamiltonian simpler. The total
Hamiltonian in the laboratory frame (i.e., fixed coordinate axes) is therefore

H = H0 +Hrf = −�ω0Iz + 2�ω1 cos(ωrft− φ)Ix. (119)

The parameters ω1, ωrf and φ are controllable as functions of time, while ω0 (i.e., B0) is fixed. It is always assumed
in the following that the condition ω0 � ω1 is satisfied. Therefore a nuclear spin has two well-defined eigenstates
|0〉 = | ↑〉, and |1〉 = | ↓〉 and the rf field acts as a perturbation to control the spin states.
The ratio kBT/�ω0 is on the order of 8 × 104, at room temperature of T ∼ 300 K, for ω0 ∼ 500 MHz, which is

the hydrogen Larmor frequency at B0 = 11 T. Therefore, the liquid is in a thermal mixed state. For this reason, we
use density matrices rather than wave functions to describe NMR quantum states. The one-spin density matrix of a
thermal equilibrium state is

ρ(T ) =
e−H/kBT

Z(T )
, (120)

where T is the temperature and Z(T ) = tr e−H/kBT is the partition function. The density matrix in the absence of
an rf field is

ρ(T ) =
e�ω0Iz/kBT

tr e�ω0Iz/kBT
=

1

2

[
I +

�ω0

kBT
Iz +O

(
�ω0

kBT

)2
]
. (121)

The dynamics of a density matrix is given by the Liouville-von Neumann equation

i�
dρ

dt
= [H, ρ]. (122)

The Hamiltonian (119) has explicit time-dependence through coupling with an rf field. This is inconvenient in
integrating the Liouville-von Neumann equation. This problem is solved if we change the frame of reference from the
laboratory frame to a frame rotating with the Larmor frequency around the z-axis. Let

UR = e−i�ωIzt (123)
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be a unitary transformation to a rotating frame with the angular velocity ω in general (we put ω = ω0 later). Here
we regard Iz as the generator of rotations around the z-axis. The density matrix is now transformed into

ρR = URρU
†
R. (124)

The Hamiltonian is also transformed to H̃ , whose form is derived below. The Liouville-von Neumann equation in the
rotating frame takes the same form as Eq. (122) and is given by

i�
dρR
dt

= [H̃, ρR]. (125)

We substitute Eq. (123) into the above equation to obtain

H̃ = URHU
†
R − i�UR

dU †
R

dt

= �

(
−(ω0 − ω)/2 ω1e

−iωt cos(φ− ωrft)

ω1e
iωt cos(φ − ωrft) (ω0 − ω)/2

)

=
�

2

(
−ω0 + ω ω1

[
e−i[(ω−ωrf )t+φ] + e−i[(ω+ωrf )t−φ]

]
ω1

[
ei[(ω−ωrf )t+φ] + ei[(ω+ωrf )t−φ]

]
ω0 − ω

)
. (126)

Note that the main contribution −�ω0Iz in the laboratory frame disappears under this transformation if we set
ω = ω0, which we will assume hereafter. Now we further simplify this Hamiltonian (126) by taking the “resonance
condition” ωrf = ω0. Namely, we take ωrf in resonance with the Larmor frequency ω0 of the spin. Moreover, we note
that the terms oscillating rapidly with the frequency 2ω0 are averaged to vanish if we are interested in the time scale
much longer than 1/ω0. This approximation is known as the rotating wave approximation. We will see later
that flipping a spin by angle π by making use of the Rabi oscillation takes time ∼ 1/ω1, and this is much longer
than 1/ω0 due to the assumition ω1 � ω0. Therefore it is legitimate to replace the Hamiltonian (126) with a simpler
time-independent Hamiltonian

H̃ = �ω1(cosφIx + sinφIy) = �ω1

(
0 e−iφ

eiφ 0

)
. (127)

Note that this Hamiltonian is traceless: tr H̃ = 0. A traceless Hamiltonian generates only elements of SU(2).
Therefore, the one-qubit NMR Hamiltonian generates SU(2) gates only. Note, however, that this is by no means a
restriction. Any U ∈ U(2) may be mapped to eiαU ∈ SU(2) by multiplying a proper phase factor. Since this extra

overall phase is not observable, we may replace a U(2) gate U with an equivalent SU(2) gate Ũ . This remains true
for a multi-qubit unitary gate; see the next subsection.

2. Multi-Spin Hamiltonian

Molecules with n spins are required to execute n-qubit quantum algorithms. Let us consider a linear molecule in
which each spin is coupled only to its nearest neighbor spins to simplify our argument. Although a more complicated
spin network will be advantageous in saving the number of gates and the execution time, actual implementation
requires more elabolated techniques in this case. We will take the natural unit in which � = 1 hereafter to simplify
mathematical expressions. It will be recovered whenever necessary.
Let us consider a molecule with two spins to begin with. We denote the Larmor frequency of the ith spin by ω0,i

(i = 1, 2). We assume there is a Heiseberg type interaction of the form

Hint = J
∑

k=x,y,z

Ik ⊗ Ik (128)

between spins, where J is the coupling strength. In fact there are other types of interaction including inter-molecular
interaction. These interactions are averaged out, thanks to rapid translational and rotational motions of molecules at
room temeparatures, and give no contribution to the Hamiltonian (128).
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Suppose there are two oscillating magnetic fields along the −x-axis with frequency ωrf,i and amplitude B1,i (i = 1, 2).
The Hamiltonian in the laboratory frame is

H = H0 +Hrf,1 +Hrf,2, (129)

where

H0 = −ω0,1Iz ⊗ I − ω0,2I ⊗ Iz + J
∑

k=x,y,z

Ik ⊗ Ik, (130)

while

Hrf,1 = 2ω1,1 cos(ωrf,1t− φ1)(Ix ⊗ I + gI ⊗ Ix) (131)

and

Hrf,2 = 2ω1,2 cos(ωrf,2t− φ2)(g
−1Ix ⊗ I + I ⊗ Ix), (132)

where 2ω1,i = γiB1,i and g = γ2/γ1 is the ratio of the gyromagnetic ratios of two nuclei. Here I is the unit matrix
of dimension 2. The first (second) term in the parentheses in Eqs. (131) and (132) is the interaction Hamiltonian
describing the coupling between the first (second) spin and the oscillating fields.
The transformation to a rotating frame of respective spin proceeds similarly to the single-spin case. Let us introduce

the transformation

UR = e−iω0,1Izt ⊗ e−iω0,2Izt. (133)

The Hamitonian H̃ of the spins in respective rotating frames is defined as before as

H̃ = H̃0 + H̃rf,1 + H̃rf,2, (134)

where

H̃0 = URH0U
†
R − iUR

d

dt
U †
R

= J
(
e−iω0,1Izt ⊗ e−iω0,2Izt

) ∑
k=x,y,z

Ik ⊗ Ik
(
eiω0,1Izt ⊗ eiω0,2Izt

)

= πJ

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 eiΔω0t 0

0 e−iΔω0t 0 0

0 0 0 0

⎞
⎟⎟⎟⎠+ JIz ⊗ Iz . (135)

Here Δω0 ≡ ω0,2 − ω0,1 is the difference in the Larmor frequencies of the spins. The matrix elements e±iΔω0t are
averaged to vanish for the time scale τ satisfying Δω0τ � 2π. Table IV shows relevant parameters for typical two-

TABLE IV: Physical parameters of two-spin molecules, 13C labelled chloroform and cytosine. The magnetic field is set to
B0 = 11.74[T].

ω0,1 ω0,2 Δω0 J

Chloroform 500 MHz 100 MHz 400 MHz 200 Hz

Cytosine 500 MHz 500 MHz 765 Hz 7.1 Hz

qubit molecules, 13C labelled chloroform and cytosine. 13C labelled chloroform is a heteronucleus molecule whose
qubits are hydrogen and 13C nuclei. Cytosine is a homonucleus molecule, both qubits of which are hydrogen
nuclei. It seems impossible at first glance to address a particular spin in the presence of other spins of the same
species since they have the same resonance frequency. However, selective addressing is made possible through the
so-called chemical shift. The Larmor frequency of a nucleus in a molecule depends not only on the nuclear species
but also on its position in the molecule. The electron density at each nucleus varies according to the bonds around it,
and therefore the effective magnetic field depends on where a particular nucleus sits in the molecule. This shift in the
Larmor frequency is called the chemical shift and allows us to selectively address each nucleus of a properly designed
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molecule. We cannot employ methane (CH4) as a four-qubit molecule since all the hydrogen nuclei sit in equivalent
positions and therefore have the same chemical shift. Symmetry of the molecule must be broken to produce different
chemical shifts.
The pulse width for one-qubit control is typically τ ∼ 10 μs for 13C labelled chloroform for which Δω0τ ∼ 4000 � 1.

For cytosine, the one-qubit control pulse width τ cannot be too short. Let τ be the pulse width. Then its Fourier
transform has a width ∼ 1/τ in the frequency domain. Therefore selective addressing to each spin is impossible unless
τ satisfies the condition 1/τ � Δω0, In actual implementation, the pulse width τ is taken such that the condition

Δω0τ � 1 � Jτ (136)

is satisfied. The second inequality must be satisfied for the effect of the J-coupling to be negligible during the one-qubit
operation. Due to a large ratio Δω0/J ∼ 102 for cytosine, there always exists such τ which satisfies the condition
(136). We have to resort to numerical optimization if one of the inequalities is not satified.
Now the interaction Hamiltonian takes a simple Ising form

H̃0 = JIz ⊗ Iz (137)

for both heteronucleus and homonucleus molecules, where a time scale τ � 1/Δω0 is assumed in the latter case.
Disappearance of Ix ⊗ Ix and Iy ⊗ Iy is understood intuitively as follows. Suppose the rf fields are turned off. Then
the i-th spin executes free precession with frequency ω0,i around the z-axis. Since ω0,1 and ω0,2 differ by Δω0, their
x- and y-axes in the rotating frames rotate with relative angular frequencey Δω0. Therefore, for a time scale τ such
that Δω0τ � 1, the contribution from Ix⊗ Ix and Iy ⊗ Iy is averaged out to vanish. The term Iz ⊗ Iz does not vanish
since the z-axes in the rotating frame remain the same as the laboratory frame for both spins. Application of rf fields
merely introduces slow motions of spins in the rotating framesand it does not alter this conclusion.
As for Hrf,1, we obtain

H̃rf,1 = URHrf,1U
†
R

= ω1,1

[ (
ei(ωrf,1t−φ1) + e−i(ωrf,1t−φ1)

){(
e−iω0,1IztIxe

iω0,1Izt
)
⊗ I

}
+g

(
ei(ωrf,1t−φ1) + e−i(ωrf,1t−φ1)

){
I ⊗

(
e−iω0,2IztIxe

iω0,2Izt
)} ]

.

Now we take the resonance condition ωrf,i = ω0,i (i = 1, 2). Then H̃rf,1 is simplified as

H̃rf,1 =
ω1,1

2

[(
0 e−iφ1

eiφ1 0

)
⊗ I

+gI ⊗
(

0 e−i(Δω0t+φ1) + e−i(Ω0t−φ1)

ei(Δω0t+φ1) + ei(Ω0t−φ1) 0

)]
,

where Ω0 ≡ ω0,1 + ω0,2. The second matrix vanishes for τ such that Ωτ,Δω0τ � 1, and finally we obtain

H̃rf,1 = ω1,1 [cosφ1Ix ⊗ I + sinφ1Iy ⊗ I] . (138)

Similarly we prove that

H̃rf,2 = ω1,2 [cosφ2I ⊗ Ix + sinφ2I ⊗ Iy] . (139)

In summary, the Hamiltonian for a two-qubit molecule in the rotating frames with respective Larmor frequency is

H̃ = JIz ⊗ Iz + ω1,1 [cosφ1Ix ⊗ I + sinφ1Iy ⊗ I]

+ω1,2 [cosφ2I ⊗ Ix + sinφ2I ⊗ Iy] . (140)

From a control theoretical point of view, the first term is out of our control and is called the drift term, while the
second and the third terms, altogether, are called the control terms since ω1,i and φi are controllable.
Generalization of the above two-qubit Hamiltonian to an n-qubit Hamiltonian is straightforward. For a molecule

with n spins coupled linearly, the Hamiltonian in the rotating frame of each spin with angluar frequency ω0,i takes
the form

H̃ =

n−1∑
i=1

Ji,i+1Iz,i ⊗ Iz,i+1 +

n∑
i=1

ω1i(cosφiIx,i + sinφiIy,i), (141)

where Ji,i+1 stands for the coupling strength between spins i and i + 1 and Ik,i = I ⊗ . . . ⊗ Ik ⊗ . . . ⊗ I with Ik in
the ith position. The resonance condition ωrf,i = ω0,i and linear configuration of n spins are understood in deriving
Eq. (141).
We will work exclusively with Hamiltonians in the rotating frame of each spin in the rest of this section.
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C. Implementation of Gates and Algorithms

The Hamiltonians introduced in the previous section are employed to implement quantum gates. Here we consider
one-, two-, and multi-qubit gates separately.

1. One-Qubit Gates in One-Qubit Molecule

The Hamiltonian

H̃ = ω1(cosφIx + sinφIy)

contains only Ix and Iy as SU(2) generators. This is not a problem though since rotations generated by Iz can be
implemented with Ix,y generators as we see below. Let us define SU(2) gates which are often employed as building
blocks of quantum circuits. Let X,Y, Z, X̄, Ȳ and Z̄ be rotations by π/2 around x̃-, ỹ-, z̃-, −x̃-, −ỹ- and −z̃-axes
respectively. Their explicit forms as SU(2) matrices are

X = e−i(π/2)Ix =
1√
2

(
1 −i
−i 1

)
, Y = e−i(π/2)Iy =

1√
2

(
1 −1

1 1

)
,

Z = e−i(π/2)Iz =
1√
2

(
1− i 0

0 1 + i

)
, X̄ = ei(π/2)Ix =

1√
2

(
1 i

i 1

)
,

Ȳ = ei(π/2)Iy =
1√
2

(
1 1

−1 1

)
, Z̄ = ei(π/2)Iz =

1√
2

(
1 + i 0

0 1− i

)
.

(142)

It is useful for later purposes to write down the explicit form of a gate R(θ, φ), whose rotation angle is θ and phase
angle is φ in the xy-plane,

R(θ, φ) = e−iθ(cosφIx+sinφIy) = cos
θ

2
I − 2i sin

θ

2
(cosφIx + sinφIy) =

⎛
⎜⎜⎝

cos θ
2 −i sin θ

2
e−iφ

−i sin θ
2e

iφ cos
θ

2

⎞
⎟⎟⎠ . (143)

Let us consider implementing X , for example. We need to find parameters φ, ω1 and τ such that

e−i
∫ τ
0

H̃dt = e−iω1τ(cosφIx+sinφIy) = e−iπIx/2.

It is easily found that a pulse with phase φ = 0, amplitude ω1 and duration τ satisfying ω1τ = π/2 does the job.
We assume here the pulse shape is square and express it graphically as in Fig. 12. The parameter τ is called the
pulse width. More sophisticated pulses are available, but we restrict ourselves within square pulses to simplify
our calculation. Similarly Y , X̄, Ȳ are obtaind by applying pulses with φ = π/2, π and −π/2 and pulse duration
τ = π/2ω1, respectively. A typical value for ω1 is ∼ 100 kHz for heteronucleus molecules, and the above operation is
implemented with the pulse width τ ∼ 1/ω1 ∼ 10 μs.

FIG. 12: Square pulse. Amplitude of a continuous wave with frequency ωrf is modulated by this pulse. The amplitude
corresponds to ω1 and the pulse width to τ . They satisfy ω1τ = π/2.
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Exercise IX.1 Let φ = π/4 in H̃ and write down the unitary matrix which H̃ generates when ω1τ = π/2. Apply this
unitary matrix to |0〉 and |1〉 and find the states obtained.

The Hamiltonian lacks the generator Iz. This does not imply Z and Z̄ cannot be implemented with the Hamiltonian
H̃ . There are three ways to implement U = e−iαIz with H̃ . The simplest one is to shift the clock of the NMR by a
certain amount of time τz . The frame is rotating with the angular velocity ω0 around the z-axis, and if we shift the
clock of the NMR sequencer by τz , we will obtain a rotation equivalent with U = e−iω0τzIz . Thus shifting the clock
by τz = α/ω0 implements the gate e−iαIz . The second one is to literally generate U = e−iαIz with Ix,y. By noting

the identity Iz = e−i(π/2)IxIye
i(π/2)Ix we immediately obtain

e−iαIz = e−i(π/2)Ixe−iαIyei(π/2)Ix . (144)

The third one is applicable only in the end of the computation and when the spin is in one of the eigenstates of Iz . It
is clear that e−iαIz |j〉 ∼ |j〉 if the phase is ignored since σz|j〉 = ±|j〉. Therefore if we can shift some of the Iz rotation

matrices toward the very end of the algorithm, we may ignore them at all. Now we have shown that H̃ generates all
SU(2) rotations.
The following relations are useful in designing pulse sequences for NMR quantum computing:

XY X̄ = Z, Ȳ XY = Z, X̄Ȳ X = Z, Y X̄Ȳ = Z

X̄Y X = Z̄, Y XȲ = Z̄, XȲ X̄ = Z̄, Ȳ X̄Y = Z̄

XY = ZX, XY = Y Z, Ȳ X = XZ, Y X̄ = ZY

XZ = ZȲ , Ȳ Z = ZX̄, X̄Z = ZY, Y Z = ZX

XZZ = ZZX̄, Y ZZ = ZZȲ .

(145)

By making use of these relations, it becomes possible to replace Z and Z̄ with other rotations. It also becomes possible
to eliminate some of Z and Z̄ by sending them to the both ends of a pulse sequence.

Exercise IX.2 Verify the above relations.

It is clear that the Hamiltonian H̃ is independent of t so far as ω1 and φ are time-independent. In general, ω1 and
φ may change as functions of time. In actual experiments, they are often taken to be piecewise constant, for which
case the time-evolution operator is given by

U = T e−i
∫ T
0

H̃(t)dt ≡ e−iH̃(tn)Δtne−iH̃(tn−1)Δtn−1 . . . e−iH̃(t1)Δt1 , (146)

where T stands for the time-ordered product and

H̃(tk) = ω1(tk) [cosφ(tk)Ix + sinφ(tk)Iy]

is the Hamiltonian at the kth step whose temporal duration is Δtk.

Example IX.3 Let us consider implementing the Hadamard gate

UH =
1√
2

(
1 1

1 −1

)

with our Hamiltonian H̃. Since detUH = −1, we have to multiply i to UH to make it an element of SU(2). (The
factor −i also does the job.) We are tempted to use Eq. (9) to find parameters ω1, φ and τ such that

H̃τ = − π√
2
(Ix + Iz),

which certainly satisfies e−iH̃τ = UH. However, this does not work since we do not have an Iz term in H̃. Therefore,
we have to implement UH using the formula

e−iαIxe−iβIye−iγIx

=

⎛
⎜⎝ cos

(
β
2

)
cos

(
α+γ
2

)
− i sin

(
β
2

)
sin

(
α−γ
2

)
− cos

(
α−γ
2

)
sin

(
β
2

)
− i cos

(
β
2

)
sin

(
α+γ
2

)
cos

(
α−γ
2

)
sin

(
β
2

)
− i cos

(
β
2

)
sin

(
α+γ
2

)
cos

(
β
2

)
cos

(
α+γ
2

)
+ i sin

(
β
2

)
sin

(
α−γ
2

)
⎞
⎟⎠ . (147)
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Comparison between UH and the above expression immediately leads to the following solution:

α = −π, β =
π

2
, γ = 0, (148)

for example. Therefore UH is implemented by two square pulses as

UH = eiω1τ2Ixe−iω1τ1Iy = X̄2Y, (149)

where ω1τ1 = π/2 and ω1τ2 = π. The amplitude ω1 need not be the same for the two pulses, but there is no reason
to employ different amplitude either. The amplitude should be large to implement a gate with a shorter pulse width.
However, a large amplitude pulse leads to overcurrent in the rf coil and eventually damages the coil. A typical pulse
width for a π-pulse is on the order of 10 μs as mentioned before.
Using the symbols introduced above, this pulse sequence is conveniently expressed as

UH : −Y − X̄2 − . (150)

The time flows from left to right as before. We also describe the pulse sequence graphically as in Fig. 13.

FIG. 13: Control pulse sequence to implement the Hadamard gate H . X̄2 is a π-pulse around −x-axis. The time flows from
left to right.

Exercise IX.4 Implement the phase shift gate

U(θ) =

(
1 0

0 e−iθ

)
(151)

using the Hamiltonian H̃. Here θ is a real constant. Note that U �∈ SU(2) and a phase must be multiplied to make it
an element of SU(2).

2. One-Qubit Operation in Two-Qubit Molecule: Bloch-Siegert Effect

Let us consider the effect of an off-resonance pulse on a qubit. We have to consider this effect when we have a
multi-qubit molecule with several nuclei of the same species; addressing to one qubit may affect the other qubits of
the same species since they have close resonance frequencies.
We first consider the effect of an off-resonance pulse on a one-qubit molecule. Let ωrf = ω0+δ, δ being the detuning

parameter. Then we find from Eqs. (126) and (127) that

H̃ = δIz + ω1 (cosφIx + sinφIy) = δ (ε cosφIx + ε sinφIy + Iz)

= δ
√
1 + ε2n̂ · I, (152)

where ε = ω1/δ and

n̂ =
1√

1 + ε2
(ε cosφ, ε sinφ, 1)t (153)

is a unit vector. The time-development operator is

U(t) = e−iH̃t = e−iδ
√
1+ε2n̂·It. (154)
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Suppose the detuning is large enough compared to ω1 so that |ε| � 1. Then it follows that n̂ � (0, 0, 1)t, and we have
an approximation

U(t) � e−iδ
√
1+ε2Izt. (155)

In fact, the rotation axis n̂ is slightly tilted from the z-axis and the spin precesses around this axis, which remains
near the z-axis. This observation justifies the negligence of components Ix,y in Eq. (155). However, the effect of ε in
the square root is not negligible if we are concerned with a long-term behavior of the spin, in which tδε2 is sizeable.
This effect is called the Bloch-Siegert effect [59], and this shift in the reference phase must be taken into account
when designing pulse sequences which involve detuned rf fields. Suppose, for example, that ε = 10−1 and δt = 20π.
Then we obtain δ

√
1 + ε2t− δt � 0.31 rad � 18◦, which is not negligible at all.

Exercise IX.5 Suppose a spin is in the state | ↑〉 at t = 0 and its time-development is driven by the operator (154).
Find the spin wave function at later time t > 0. Find when the spin comes back to the initial state up to an overall
phase.

Next we consider manipulating a single qubit in a two-qubit molecule. In case of a heteronucleus molecule, an rf
field in resonance with one of the qubits has no effect on the other qubit. In this case, ε = ω1/δ is typically on the

order of 10−3. For δt = 20π as before, we obtain δ
√
1 + ε2t − δt � 3 × 10−5 rad � 1.8 × 10−3 deg. If, in contrast,

a homonucleus molecule is considered, we have to take a small amplitude pulse with ω1 � Δω0, Δω0 being the
difference in the Larmor frequencies of two nuclei of the same species, for selective addressing to a particular qubit.
This makes the pulse width τ longer, since ω1τ specifies the rotation angle. The effect of the J-coupling may not be
negligible if τ � 1/J .
Let us consider the opposite limit in which δ � ω1. This takes place when we apply a hard pulse (i.e., very short

pulse) in resonance with one of the qubits, qubit 2, say, in a homonucleus molecule. Equation (152) with δ � ω1

leads to a Hamiltonian H̃ � ω1(cosφIx + sinφIy) acting on qubit 1. Therefore qubit 1 also gets rotated by the same
amount as qubit 2. In other words, by applying a hard pulse in resonance with one of the qubits, both qubits are
rotated similtaneously by the same angle. Therefore a gate I ⊗ U , which is meant to act on the second qubit, works
as U ⊗ U if it is implemented with a hard pulse.

3. Two-Qubit Gates

Any n-qubit gate may be implemented with single-qubit gates and the CNOT gates according to the universality
theorem by Barenco et al. [60]. We have shown in the previous subsection how single-qubit gates are implemented.
Let us consider the CNOT gate here. We recall that

UCNOT =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ .

Note again that detUCNOT = −1 and we have to multiply UCNOT by e±iπ/4, for example, to make it an element of
SU(4). We must employ the J-coupling term to implement the CNOT gate since it cannot be decomposed into a
tensor product of two SU(2) gates. A standard implementation of the CNOT gate is [46]

UCNOT = Z1Z̄2X2UJ(π/J)Y2, (156)

where Xj is a π/2-rotation around the x-axis of the jth qubit while X̄j is a π/2-rotation around the −x axis of the
jth qubit, for example. Explicitly,

X1 = e−iπIx/2 ⊗ I, X̄2 = I ⊗ e−iπIx/2,

for example. The matrix UJ(τ) is generated solely by the J-coupling term, without any rf pulses applied during
period of time τ , as

UJ(τ) = e−iJIz⊗Izτ =

⎛
⎜⎜⎜⎝
e−iJτ/4 0 0 0

0 eiJτ/4 0 0

0 0 eiJτ/4 0

0 0 0 e−iJτ/4

⎞
⎟⎟⎟⎠ . (157)
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Therefore

UJ(π/J) = e−iπIz⊗Iz =

⎛
⎜⎜⎜⎝
e−iπ/4 0 0 0

0 eiπ/4 0 0

0 0 eiπ/4 0

0 0 0 e−iπ/4

⎞
⎟⎟⎟⎠ . (158)

Then it is easy to find that the LHS of Eq. (156) takes the form

Z1Z̄2X2UJ(π/J)Y2 = e−iπ/4

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠

as promised.

Exercise IX.6 Implement the “inverted” CNOT gate

UCNOT′ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠

with the two-qubit NMR Hamiltonian.

It is clear from the construction that the expansion such as Eq. (156) requires certain degrees of expertise in NMR
pulse programming and/or trial and error to adjust all the matrix elements. We introduce in §IXD a remarkable
technique fully utilizing the theory of Lie algebras and Lie groups to obtain implementations of any two-qubit unitary
gates. Although this technique is model independent, it is best suited for NMR quantum computing due to the reasons
to be clarified below.
In principle, therefore, an NMR quantum computer is universal, and any U(2n) gate may be implemented by

properly choosing the control parameters. One might wonder how a one- or two-qubit gate is embedded in a multi-
qubit molecule. This is the subject of the next subsection.

4. Multi-Qubit Gates

Suppose we have a molecule with many qubits coupled linearly. Clearly we cannot turn off inter-qubit couplings
even when we do not need them. This is rather inconvenient if we want to employ one-qubit gates and CNOT gates
as building blocks of quantum algorithms. One-qubit operations are executed faster compared to 1/J , and the effect
of J-couplings is safely negligible. In contrast, a two-qubit operation involves a particular J-coupling, and we have
to get rid of the time-evolution of the state due to other J-couplings. This “interaction on demand” is possible if a
technique called refocusing is employed. Refocusing cancels unwanted inter-qubit couplings.

5. Three-Qubit Case

This is best understood from the following example of a three-qubit molecule. Suppose there are three spins 1, 2
and 3 in the molecule, each with the Larmor frequency ω0,i, (i = 1, 2, 3). The coupling strength between 1 and 2 is
J12 and that between 2 and 3 is J23. It is assumed that the spins are linear so that J31 = 0. The Hamiltonian in the
rotating frame of each qubit is

H̃ = J12Iz ⊗ Iz ⊗ I + J23I ⊗ Iz ⊗ Iz + ω11(cosφ1I1x + sinφ1I1y)

+ω12(cosφ2I2x + sinφ2I2y) + ω13(cosφ3I3x + sinφ3I3y), (159)

where I1x = Ix ⊗ I ⊗ I, for example.
Suppose we want to implement a gate

Uα = exp(−iαIz ⊗ Iz ⊗ I). (160)
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If it were not for the J23 coupling, we just need to turn off all the rf pulses and wait for a duration τ = α/J12. In our
case, however, the coupling between qubits 2 and 3 is also active, producing unwanted contribution

exp (−iJ23(α/J12)I ⊗ Iz ⊗ Iz) ,

which must be somehow nullified. The trick is to use the identity

eiπIxIze
−iπIx = X̄2IzX

2 = −Iz .

To get rid of undesirable time evolution due to J23, we apply the first π-pulse e−iπIx3 on the third qubit at τ/2 and
then allow the molecule to evolve freely for another duration τ/2. The extra contribution cancels out by this flipping
of the third qubit. Finally apply the second π-pulse eiπIx3 on the third qubit so that it comes back to its correct
history.
More explicitly we verify that

U = T exp

[
−i
∫ τ

0

H̃(t)dt

]

= (I ⊗ I ⊗ X̄) exp
(
−i τ

2
H̃0

)
(I ⊗ I ⊗X) exp

(
−i τ

2
H̃0

)
= exp

[
−i τ

2
(J12Iz ⊗ Iz ⊗ I − J23I ⊗ Iz ⊗ Iz)

]
× exp

[
−i τ

2
(J12Iz ⊗ Iz ⊗ I + J23I ⊗ Iz ⊗ Iz)

]
= exp (−iαIz ⊗ Iz ⊗ I) , (161)

where H̃0 is the Hamiltonian (159) without rf pulses and use has been made of the identity

[Iz ⊗ Iz ⊗ I, I ⊗ Iz ⊗ Iz] = 0.

This result shows that we can eliminate the effect of J23 coupling by applying a pair of π-pulses to qubit 3. This
technique is called refocusing or decoupling. Refocusing is also used to cancel field inhomogeneity and reduce
transverse relaxation.

D. Time-Optimal Control of NMR Quantum Computer

We have implemented the CNOT gate in the end of §IXC3. Although CNOT plays a particularly important role
in the universality theorem, almost any two-qubit gate not in SU(2) ⊗ SU(2) does the job, an important exception
being the SWAP gate.
In the present section, we consider a general strategy to implement any two-qubit gate. Our implementation is also

optimal in terms of gate execution time. Let us start with some mathematical background materials.

1. A Brief Introduction to Lie Algebras and Lie Groups

It is assumed that the reader has some familiarity with the elementary theory of Lie algebras and Lie groups, such
as SO(3) and SU(2). See [65] and [66], for example.
A Lie group G is a group equipped with a structure of an analytic manifold, where the group operations G×G→

G,G→ G defined by

xy �→ xy, x �→ x−1, (162)

respectively, are analytic with respect to local coordinates [66, 67].
Given a Lie group G, consider the tangent space g of G at the unit element I ∈ G. In other words, g is nothing

but the vector space TI(G), which is constructed as follows [67]. Consider a curve c : (a, b) → G such that c(0) = I
and c′(0) = Xc, where it is assumed that a < 0 < b and the curve belongs to C1 class. For each choice of c, there
exists a tangent vector Xc.[84] Suppose we take all the curves that pass I at t = 0 and consider the set of tangent
vectors g = {Xc|c(0) = I, c ∈ C1}. Then the set g has a structure of a vector space, in which an addition and a scalar
multiplication are well defined:

∀X,Y ∈ g, ∀ck ∈ R ⇒ c1X + c2Y ∈ g. (163)
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Moreover, being a tangent vector space g a Lie group G, the Lie bracket is well defined too:

X,Y ∈ g → [X,Y ] ∈ g, (164)

where [X,Y ] = XY − Y X is the Lie bracket of X and Y . The vector space g is called the Lie algebra associated with
a Lie group G. It is common to denote the Lie algebra of a Lie group G by the corresponding lower case German
letter: the Lie algebra of SU(n) is denoted as su(n), for example. Alternatively, the exponential map exp : g → G,
X �→ expX maps g to a component G0 of G, which contains the unit element I. By definition, this means that
G0 = G for a simply connected Lie group G.
Let us work out an example G = SU(n). Consider a curve c(t) : (a, b) → SU(n). It satisfies c(t)†c(t) = I and

det c(t) = 1 for any t ∈ (a, b). There exists a vector X ∈ g such that c(t) = exp(Xt) in the vicinity of t ∼ 0. The
vector X satisfies the corresponding conditions

det eXt = exp(trX)t = 1, eXteX
†t = e(X+X†)t = I.

It is found from these conditions that

trX = 0 and X +X† = 0, (165)

that is, X is traceless and skew-Hermitian. Conversely, any traceless skew-Hermitian matrix X defines U = eXt,
which satisfies detU = 1 and U †U = I. In summary

su(n) = {X ∈M(n,C)|trX = 0, X +X† = 0}. (166)

The set M(n,C) of n×n complex matrices has 2n2 real free parameters. The conditions X = −X† reduces this down
to n2. In particular, the diagonal elements di of X must be pure imaginary. The condition trX = 0 introduces an
additional condition

∑
i di = 0, which reduces the degrees of freedom to n2 − 1 and hence dim su(n) = n2 − 1. Let

Xk (1 ≤ k ≤ n2 − 1) be the generators of su(n). Any element U ∈ SU(n) is then expressed as

U = exp

⎛
⎝n2−1∑

k=1

αkXk

⎞
⎠ . (167)

For SU(2), for example, the vector space su(2) is spanned by three traceless anti-Hermitian matrices, which we often
take iσk (k = x, y, z).
We note that the condition detU = 1 does not apply for U ∈ U(n), and accordingly the corresponding Lie algebra

is

u(n) = {X ∈M(n,C)|X +X† = 0}, (168)

for which dim u(n) = n2.
It is convenient to take the set of generators of U(2n) as

Ik1 ⊗ Ik2 ⊗ . . .⊗ Ikn , (169)

where Ik ∈ {I, Ix, Iy, Iz}. The generator I ⊗ I ⊗ . . .⊗ I must be excluded as a generator of su(2n) since it does not
satisfy the traceless condition. In this way, we find there are 4n − 1 generators for su(2n).

Example IX.7 Generators of su(22) are

Ik ⊗ I, I ⊗ Ik, Ij ⊗ Ik (j, k = x, y, z).

Observe that there are 3 + 3 + 9 = 42 − 1 generators.

2. Cartan Decomposition and Optimal Implementation of Two-Qubit Gates

We have seen in the preceeding sections that one-qubit operation takes a short time on the order 10μs for a
heteronucleus molecule, while a two-qubit entangling operation takes time typically ∼ 1/J ∼ 10ms. Therefore one-
qubit operation time may be neglected in estimating the total execution time of a quantum algorithm [68]. Let us
consider a molecule with two heteronucleus spins for definiteness, whose Hamiltonian, in the rotating frame with
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respective Larmor frequency, is given in Eq. (140), in which ω1,i and φi are control parameters. Typically we have
ω1,i � J , which justifies the above assumption of negligible one-qubit operation time compared to two-qubit operation
time. This Hamiltonian generates a unitary matrix Ualg ∈ SU(4) via the time-evolution equation

Ualg = T e−i
∫ τ
0

H̃(t)dt. (170)

One may naively think that the path providing the shortest execution time corresponds to the shortest path
connecting the unit matrix I (at t = 0) and Ualg at t = T . Note however that the one-qubit operation time is
negligible and we may use one-qubit gates as many times as necessary. Thus we may identify U1, U2 ∈ SU(4) which
differ by an element of K ≡ SU(2)⊗ SU(2). This means that the relevant space for evaluating the time-optimal path
is the coset space SU(4)/SU(2) ⊗ SU(2) in which U1 and U2 = KU1 are identified. To find the time-optimal path
connecting the unit matrix I and the matrix Ualg, therefore, amounts to finding the time-optimal path connecting
cosets [I] and [Ualg], where [U ] ≡ {kU |k ∈ K}. The Lie algebra su(4) is decomposed as su(4) = k⊕ p [68–70], where

k = Span({iI ⊗ Ik, iIk ⊗ I}), (k = x, y, z), (171)

p = k⊥ = Span({iIj ⊗ Ik}), (j, k = x, y, z). (172)

They satisfy the commutation relations

[k, k] ⊂ k, [p, k] ⊂ p, [p, p] ⊂ k. (173)

Decomposition of a Lie algebra g into k and p, satisfying the above commutation relations, is called a Cartan
decomposition. The Cartan subalgebra h = Span({iIj ⊗ Ij}) ⊂ p plays an important role in our construction.
A general theorem of Lie algebras proves that any element Ualg ∈ SU(4) has a KP decomposition Ualg = kp with

k ∈ K ≡ exp k and p ∈ P ≡ exp p. Moreover, any matrix p ∈ P is rewritten in a conjugate form p = k†1hk1, where
k1 ∈ K and h is an element of the Cartan subgroup H of SU(4) defined as

H ≡ exp h =
{
exp

(
i
∑

j=x,y,z

αjIj ⊗ Ij

)∣∣∣αj ∈ R

}
. (174)

Therefore we have a corresponding Cartan decomposition of a group element as Ualg = kp = kk†1hk1 = k2hk1, where

ki ∈ K, h ∈ H and k2 = kk†1. The quantum algorithm Ualg is now decomposed into one-qubit operations k1, k2 and a
two-qubit entangling operation h. This decomposition determines an optimized pulse sequence of the NMR quantum
computer as discussed in [68–70].
Cartan decomposition of an arbitrary U ∈ SU(4) proceeds explicitly as follows. We take the magic basis [71] defined

as

|Ψ0〉 =
1√
2
(|00〉+ |11〉),

|Ψ1〉 =
i√
2
(|01〉+ |10〉),

|Ψ2〉 =
1√
2
(|01〉 − |10〉),

|Ψ3〉 =
i√
2
(|00〉 − |11〉),

(175)

which is different from an ordinary Bell basis by phase. The transformation rule of a matrix U with respect to the
standard binary basis {|00〉, |01〉, |10〉, |11〉} into that with the magic basis {|Ψi〉} is U → UB ≡ Q†UQ, where

Q =
1√
2

⎛
⎜⎜⎜⎝

1 0 0 i

0 i 1 0

0 i −1 0

1 0 0 −i

⎞
⎟⎟⎟⎠ . (176)

The matrix Q defines an isomorphism (1:1 linear map preserving the group product) between K = SU(2) ⊗ SU(2)
and SO(4) and is used to classify two-qubit gates [69, 71]. In fact, it is easy to verify that Q†kQ is an element of
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FIG. 14: Implementation of the Grover database search algorithm for n = 2 qubits case. H is the Hadamard gate, W2 = U⊗2
H ,

while Rz = I − 2|z〉〈z|.

SO(4) for k ∈ K. Moreover, Q diagonalizes elements of the Cartan subgroup, viz Q†hQ = diag(eiθ0 , eiθ1 , eiθ2 , eiθ3)
for h ∈ H . We find for U = k2hk1 that

UB = Q†UQ = Q†k2Q ·Q†hQ ·Q†k1Q = O2hDO1,

where Oi ≡ Q†kiQ is an element of SO(4) and hD ≡ Q†hQ is a diagonal matrix. From U t
BUB = Ot

1h
2
DO1, we

notice that U t
BUB is diagonalized by O1 and its eigenvalues form the diagonal elements of h2D. Finally O2 is found as

O2 = UB(hDO1)
−1.

Example IX.8 Let us consider implementing two-qubit Grover’s database search algorithm Uz as a concrete example.
The data are encoded in one of the basis vectors |00〉, |01〉, |10〉, |11〉, and the gate Uz picks out a particular binary
basis vector |z〉 = |ij〉 as a “target file” upon acting on |00〉 [77, 78]. Figure 14 shows the actual quantum cirucit
implementation of the Grover algorithm. Here H is the Hadamard gate and Rz = I − 2|z〉〈z|, R0 = I − 2|0〉〈0|, cf
Fig. ??. Here we do not explicitly give oracle cirucits Rz and R0, but they are treated as black boxes.
Here we consider U10 which picks out the file |10〉 with a single step. The unitary matrix representing this algorithm

takes the form

U10 =W2R0W2R10W2 =

⎛
⎜⎜⎜⎝

0 1 0 0

0 0 0 −1

−1 0 0 0

0 0 −1 0

⎞
⎟⎟⎟⎠ . (177)

We apply the above strategy and find the Cartan decomposition of U10 = k2hk1 as

k1 = I2 ⊗ I2,

h = eiπ(Ix⊗Ix−Iy⊗Iy), (178)

k2 = e−i(π/2)Iz ⊗ ei(π/
√
2)(Ix+Iy).

Actually, the decomposition is not unique, and we choose a solution that minimizes the execution time of an NMR
quantum computer. To implement this decomposition with NMR, such terms as eiπ(Ix⊗Ix) must be rewritten in favor
of the subset of generators of SU(4) contained in the Hamiltonian (140). We verify, for example, that

eiπ(Ix⊗Ix)

= [e−i(π/2)Iy ⊗ ei(π/2)Iy ] · e−iπ(Iz⊗Iz) · [ei(π/2)Iy ⊗ e−i(π/2)Iy ]. (179)

Table V shows the pulse sequence to implement U10 with an NMR quantum computer. We call the hydrogen nucleus
and the carbon nucleus qubit 1 and qubit 2, respectively. The time-optimal path requires the execution time of 1/J ,
which happens to be the same as that for the conventional pulse sequence [79].

Exercise IX.9 Find a Cartan decomposition of the controlled-Z gate

UZ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ σz

and implement the solution with an NMR pulse sequence which implements the decomposition.

Exercise IX.10 Find a Cartan decomposition of UCNOT. Find an NMR pulse sequence which implements the de-
composition.
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TABLE V: Time-optimal pulse sequences for Grover’s algorithm U10. The number 1 (2) denotes the first (second) qubit. Here
X (X̄) and Y (Ȳ ) denote π/2-pulse around x (−x) and y (−y) axis, respectively. The symbol Pi(θ) denotes a π-pulse around a
direction (cos θ, sin θ, 0) in the Bloch sphere. The symbol (1/2J) indicates the length of the idle time, during which no external
pulses are applied.

Pulse sequence Execution time

1: X (1/2J) Xm Y (1/2J) X Ym 1/J

2: X (1/2J) Xm Ym (1/2J) Y Pi(π/4)

E. DiVincenzo Criteria

DiVincenzo criteria for an NMR quantum computer are evaluated as follows.

1. A scalable physical system with well-characterized qubits:

Spin 1/2 nuclei in a molecule are used as qubits. They cannot be cooled down to ultralow temperature since a
molecule must be solved in a liquid to simplify nucleus-nucleus interaction. Selective addressing to each spin is
possible by taking advantage of Larmor frequency differences. Chemical shifts among the same nuclear spices
make it possible to access spins selectively even in a homonucleus molecule. However, selective addressing
becomes harder and harder as the number of the same nuclei grows. The initialization outlined in §?? is also
difficult for a large number of spins, and the estimated upper bound in the number of qubits in an NMR quantum
computer is ∼ 10.

2. The ability to initialize the state of the qubits to a simple fiducial state, such as |00 . . . 0〉:
Molecules in a liquid solvent at room temperature are in a thermal equilibrium state, which is quite close to
the uniform mixture of all possible spin states. Since any unitary transformation cannot map a mixed state to
a pure state, we need to employ nonunitary operations, such as temporal averaging, spatial averaging or logical
labelling, to prepare a pseudopure state |00 . . . 0〉, for example. The number of steps (the number of pulses, say)
required to prepare the pseudopure state diverges exponentially as a function of the number of qubits n. The
number of steps cannot be too large for an NMR quantum computer because of a finite decoherence time. The
maximum number of qubits is estimated to be limited to ∼ 10 from this viewpoint as well.

3. Long decoherence times, much longer than the gate operation time:

Decoherence time depends on the molecule employed as a quantum computer. It may be as large as 102 ∼ 103 s.
Single-qubit gate operation time can be as short as ∼ 10−5 s, while two-qubit gate operation time, making use
of the J-couplings, takes ∼ 10−2 ∼ 10−1 s. It has been shown in [80] that a faithful implementation of Shor’s
algorithm providing the factorization 21 = 3×7 requires approximately 105 gate operations, among which ∼ 104

are two-qubit gate operations. Therefore we need at least ∼ 10−2 × 104 = 102 s decoherence time to execute
this modest factorization.

4. A “univeral” set of quantum gates:

One-qubit operations are implemented with rf pulses, by making use of the Rabi oscillations. Two-qubit opera-
tions are realized by using the J-coupling between nuclei. Some important two-qubit gates, such as the CNOT
gate and the SWAP gate, are realized. In fact, a simplified version of Shor’s factorization algorithm has already
been demonstrated [57].

5. A qubit-specific measurement capability:

Measurement of qubit states with the free induction decay (FID) is a well-established measurement technique in
NMR, having several decades of history. It is also possible to measure the density matrix itself (quantum state
tomography) and the unitary gate (quantum process tomography) within the current technology. However, the
signal to noise ratio scales as ne−an, a ∼ 1 being a constant, and the readout becomes more and more difficult
as the number of qubits grows.

In addition to the difficulties listed above, thermal density matrix at room temperature is not entangled, and it
is often criticized that NMR is not a true quantum computer. However, it works as a simulator to a real quantum
computer on which we can execute quantum algorithms. Several important techniques have been developed from these
standpoints in the past. It should also be addressed that NMR is the only quantum computer which is commercially
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available. An NMR quantum computer is expected to remain an important tool to develop various techniques
necessary to materialize a real working quantum computer to come.
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