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We will give two lectures providing some basic notation, mathematics and physics background

needed for the subsequent discussion in this summer school. Most material are adapted from [3,

Chapter 2] and [1] (see also [2, Chapter 1]).

1 Hilbert spaces

The mathematical platform of quantum mechanics/computing is Hilbert space (complete inner

product space) V . We mainly focus on finite dimensional complex inner product space Cn, the set

of n× 1 column vectors. Let Cn∗ be the dual vector space of Cn consisting of 1× n row vectors

In physics, we use the bra and ket vector notation. (Dirac notation.) Let

|x〉 = (x1, . . . , xn)t =

 x1
...
xn

 ∈ Cn.

Then

〈x| = (x̄1, . . . , x̄n) ∈ Cn∗

is the dual vector. The norm (length) of |x〉 is

‖x‖ = 〈x|x〉1/2 = {(x̄1, . . . , x̄n)(x1, . . . , xn)t}1/2 =


n∑
j=1

|xj |


1/2

.

(a) For |x〉 ∈ Cn, we can construct its transpose |x〉t, the conjugate |x〉, the conjugate transpose

|x〉† (instead of |x〉∗).

(b) The inner product of |x〉, |y〉 ∈ Cn is 〈x|y〉 =
∑n
j=1 x

∗
jyj . The vectors are orthogonal if their

inner product is zero.

(c) Given a set of vectors S in Cn, we can determine whether it is a linearly independent set, a

generating set, an orthonormal set, a basis, or an orthonormal basis.
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2 Matrices

Linear maps (transformations/functions) on finite dimensional vector spaces can be identified with

matrices, namely, A : Cn → Cn so that |x〉 7→ A|x〉.

Operations and Properties

Let Mn be the set (vector space/algebra) of n× n matrices.

(a) One can perform A+B, AB and µA for A,B ∈Mn and µ ∈ C.

(b) One can compute the eigenvalues and eigenvectors of A ∈Mn.

Let {|e1〉, . . . , |en〉} be the standard basis for Cn. Then

Aij = 〈ei|A|ej〉 and A =
∑
i,j

Aij |ei〉〈ej |.

The trace of A is defined by Tr(A) =
∑n
j=1Ajj .

Exercise 1) If A is m× n and B is n×m, then Tr(AB) = Tr(BA).

2) If R is an n× n matrix, and |ψ〉 ∈ Cn, then 〈ψ|R|ψ〉 = Tr(R|ψ〉〈ψ|).

Gram-Schmidt process and orthogonal projectors

If S is linearly independent set in Cn, one can apply the Gram-Schmidt process to S to get an

orthonormal set.

If |ek〉 is a unit vector, then the projection of a vector |v〉 in the direction of |ek〉 is |v〉 − Pk|v〉,
where P = |ek〉〈ek| is the projection operator. The vector |v〉 − Pk|v〉 is orthogonal to |ek〉.

If {|e1〉, . . . , |en〉} is an orthonormal basis and Pk = |ek〉〈ek| for k = 1, . . . , n, then

(i) P 2
k = Pk, (ii) PjPk = 0 for j 6= k, (iii)

∑n
k=1 Pk = In.

More notation, definitions and examples

Let A ∈Mn. One can compute its transpose At, the conjugate A and the conjugate transpose

A†. The matrix is Hermitian if A = A†; it is skew-Hermitian if A = −A†; it is normal if AA† = A†A;

it is unitary if A† = A−1. If A is real and At = A−1, the A is a real orthogonal matrix.

In quantum information science, the following Pauli matrices are useful:

σ0 = I2, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Exercises 1) The Pauli matrices are trace zero Hermitian unitary matrices.

2) Let {i, j, k} = {x, y, z}, then

σiσj = iγijσk = −σjσi, and [σi, σj ] = 2iγij ,

where γij = 1 for (i, j) = (x, y), (y, z), (z, x).
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Some useful facts

Theorem (Schur Triangularization Lemma) Every matrix in Mn is unitarily similar to a

matrix in upper or lower triangular form.

Theorem (Spectral Theorem) If A ∈ Mn is normal, then there is a unitary U such that

UAU † = diag (λ1, . . . , λn); hence if U has columns |u1〉, . . . , |un〉 then

A = λ1|u1〉〈u1|+ · · ·+ λn|un〉〈un|.

(a) For any positive integer m,

Am = λm1 |u1〉〈u1|+ · · ·+ λmn |un〉〈un|.

The formula holds for negative integers m as well if A is invertible.

(b) If f(z) is an analytic function, then

f(A) =
n∑
j=1

f(λj)|uj〉〈uj |.

(c) In particular, if f(z) = ez, then f(A) =
∑n
j=1 e

λj |uj〉〈uj |.

Theorem (Singular Value Decomposition) For every m× n matrix A, there are unitary U ∈
Mm and V ∈Mn so that U †AV = D such that the (j, j) entries of D is sj for 1 ≤ j ≤ min{m,n},
where s2

1 ≥ s2
2 ≥ · · · are the eigenvalues of A†A.

Theorem Every unitary matrix U ∈ Mn is a product of no more than n(n − 1)/2 tridiagonal

unitary matrices, each of them differs from In by a 2× 2 principal submatrix.

Remark Using the Gray code labeling of 2m × 2m, all the tridiagonal unitary matrices involve a

change of two basic vectors with binary labels differ in one position.

Definition Given two real vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), we say that x is majorized

by y if
∑n
j=1 xj =

∑n
j=1 yj and the sum of the k largest entries of x is not larger than that of y for

k = 1, . . . , n− 1.

Theorem The vector of diagonal entries (d1, . . . , dn) of a Hermitian matrix in Mn is majorized by

the vector of its eigenvalues (λ1, . . . , λn).
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3 Tensor products

Let A = (aij) and B be two rectangular matrices or vectors. Then their tensor product (Kronecker

product) is the matrix

A⊗B = (aijB).

The following equalities hold:

(A⊗B)(C ⊗D) = (AC)⊗ (BD), A⊗ (B + C) = A⊗B +A⊗ C, (A⊗B)† = A† ⊗B†.

Note that A,B,C can be |ψ1〉, |ψ2〉, |ψ3〉 vectors. If A ∈Mm and B ∈Mn are invertible, then

(A⊗B)−1 = A−1 ⊗B−1.

Every T on Mmn can be written as T =
∑
j=1 cjAj ⊗ Bj with cj ∈ C so that for any vectors

|u〉 ∈ Cm, |v〉 ∈ Cn,

T |u〉|v〉 =

∑
j

cjAj ⊗Bj

 |u〉 ⊗ |v〉 =
∑
j

cjAj |u〉 ⊗Bj |v〉.

Of course, every |w〉 ∈ Cm ⊗Cn has Schmidt decomposition |w〉 =
∑
j sj |uj〉 ⊗ |vj〉 so that

T |w〉 =
∑
j

∑
k

cjskAj |uk〉 ⊗Bj |vk〉.

Remark We often use the abbreviation: |x1〉 ⊗ · · · ⊗ |xn〉 = |x1〉 · · · |xn〉 = |x1 · · ·xn〉.

Example Denote by |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. Let H =

( 1√
2

) ( 1 1
1 −1

)
.

(1) H|0〉 = (|0〉+ |1〉)/
√

2, H|1〉) = (|0〉 − |1〉)/
√

2, and H2 = I2.

(2) Label the rows and columns of A ∈M2n by (x1 · · ·xn) with xj ∈ {0, 1}. Then

Hn =

n︷ ︸︸ ︷
H ⊗ · · · ⊗H = 2−n/2((−1)x·y),

where x · y is the inner product of (x1, . . . , xn) and (y1, . . . , yn).

(3) We have Hn|0 · · · 0〉 = 2−n/2
∑
x |x〉, where the summation ranges through all x ∈ {0, 1}n.

Exercise Let A ∈Mm and B ∈Mn. Prove the following.

• If UAU † and V BV † are in upper triangular form, then (U ⊗ V )(A⊗B)(U ⊗ V )† is in upper

triangular form.

• det(A⊗B) = det(A)n det(B)m.

• A ⊗ B has eigenvalue λiµj corresponding to the eigenvector |λi〉|µj〉 for 1 ≤ i ≤ m and

1 ≤ j ≤ n, if A ∈ Mm has eigenvectors |λ1〉, . . . , |λm〉 corresponding to the eigenvalues

λ1, . . . , λm, and B ∈ Mn has eigenvectors |µ1〉, . . . , |µn〉 corresponding to the eigenvalues

µ1, . . . , µn.

4



4 Quantum Mechanics

The Copenhagen interpretation

A1 A state |x〉 is a unit vector in a Hilbert space H (usually Cn). Linear combinations (super-

position) of the physical states are allowed in the state space.

A2 Every physical quantity (observable) corresponds to a Hermitian operator (matrix) A. Sup-

pose a state |x〉 = c1|u1〉 + c2|u2〉 such that A|ui〉 = ai|ui〉 for i ∈ {1, 2}. Then applying a

measurement of |x〉 corresponding to A will cause a wave function collapse to |u1〉 or |u2〉
with probability of |c1|2 and |c2|2, respectively. Here c1, c2 are called the probability amplitude

of the state |x〉.

A3 The time dependence of a state is governed by the Schrödinger equation

ih̄
∂|x〉
∂t

= H(t)|x〉,

where h̄ is the Planck constant, and H is a Hermitian operator (matrix) corresponding to the

energy of the system known as the Hamiltonian.

Remarks

1. The phase of the state does not matter, i.e., |x〉 and eiα|x〉 represents the same states.

2. In the finite dimensional case, if the state and the observable are represented by

|x〉 =
n∑
j=1

cj |uj〉 ∈ Cn and A =
n∑
j=1

λj |uj〉〈uj | =
n∑
j=1

λjPj ,

then the projective measurement of the state results in

〈x|A|x〉 =
n∑
j=1

λj |cj |2 and becomes
Pi|x〉
|ci|2

with a probability of |ci|2.

3. In the Schrödinger equation, if H(t) does not depend on t, then

|x(t)〉 = e−iHt/h̄|x(0)〉. (1)

Otherwise,

|x(t)〉 = exp

(−i
h̄

∫ t

0
H(s)ds

)
|x(0)〉. (2)
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Measurements

In connection to (A2), quantum measurements are described by a set of measurement operators

{Mm : 1 ≤ m ≤ r} such that
∑r
j=1M

†
rMr = I. For each outcome m, construct a measurement

operator so that the probability of obtaining outcome m in the state |x〉 is computed by

p(m) = 〈x|M †mMm|x〉 = 〈x|Pm|x〉

and the state immediately after the measurement is

|m〉 =
Mm|x〉√
p(m)

.

If there are many copies of a state |x〉, we can let M =
∑
mPm. Then the expected value of M is

Expx(M) = 〈M〉 =
∑
m

mp(m) =
∑
m

m〈x|Pm|x〉 = 〈x|M |x〉.

The variance (square of standard deviation) is

〈(M − 〈M〉)2〉 = 〈x|M2|x〉 − 〈x|M |x〉2.

The uncertainty principle

Let Expx(A) = 〈x|A|x〉 = µ and

Varx(A) = Expx((A− µI)2) = 〈x|(A− µI)2|x〉 = ‖(A− µI)|x〉‖2.

Theorem For any observables A and B and for any state |x〉, we have

Varx(A)Varx(B) ≥ 1

4
〈x|[A,B]|x〉,

where [A,B] = AB −BA is the commutator of A and B.

Remark There is no quantum measurement that can distinguish non-orthogonal states |ψ1〉, |ψ2〉,
reliably. Suppose there is such a measurement. Let E1 =

∑
M †jMj such that 〈ψ1|E1|ψ1〉 = 1 and

E2 =
∑
M †kMk such that 〈ψ2|E2|ψ1〉 = 1. Then Ej − |ψj〉〈ψj | is positive semidefinite for j = 1, 2.

Since I =
∑
iEi, we have

〈ψ1|I|ψ1〉 ≥ 〈ψ1|(E1 + E2)|ψ1〉 ≥ 〈ψ1|(|ψ1〉〈ψ1|)|ψ1〉+ 〈ψ1|(|ψ2〉〈ψ2|)|ψ1〉 > 1,

which is a contradiction.

Positive Operator-Valued Measure (POVM) is a set of positive operators Ej = M †jMj cor-

responding to the measuring operators Mj so that
∑
j Ej = In. The measurement(s) would allow

Bob to identify correctly the state he receives or gets no information at all.

Note that a special case of POVM is the projective measurement {P1, . . . , Pr}, say, arising from

an observable A =
∑r
j=1 λjPj .
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Example Alice sends Bob |ψ1〉 = |0〉 or |ψ2〉 = (|0〉 + |1〉)/
√

2. Consider the POVM {E1, E2, E3}
with E1 = α|1〉〈1|, E2 = β(|0〉 − |1〉)(〈0| − 〈1|), and E3 = I − E1 − E2.

• If Bob gets |ψ1〉, there is zero probability to get E1. Thus, getting E1 measurement means

that the received state is |ψ2〉.

• Similarly, getting E2 measurement means that the received state is |ψ1〉.

• Getting E3 measurement yields no information.

In connection to the evolution of a closed system, we have the following.

Example Recall that the differential equation y′ = ay has solution y = eaty0.

If H =
∑n
j=1 λjPj is Hermitian, then eiωHt =

∑n
j=1 e

iωλjtPj .

If H = −h̄ωσx/2, then

|ψ(t)〉 =

(
cosωt/2 i sinωt/2
i sinωt/2 cosωt/2

)
|ψ(0)〉.

If |ψ(0)〉 =

(
1
0

)
, then |ψ(t)〉 =

(
cosωt/2
i sinωt/2

)
. If |ψ(0)〉 = 1

2

(
1
1

)
, then |ψ(t)〉 = eiωt/2

√
2

(
1
1

)
.

General solution

Let n = (nx, ny, nz) and H = −h̄ωn · σ/2 = −h̄ω(nxσx + nyσy + nzσz)/2. Then

U(t) = exp(−iHt/h̄) = cos(ω/2)tI + i(n · σ) sin(ω/2)t.

A change of variable technique (using gauge functions)

Suppose

H =
1

2

(
−ω0 ω1e

iωt

ω1e
−ωtt ω0

)
.

Let

|φ(t)〉 = e−iwσzt/2|ψ(t)〉.

Then

i
d

dt
|φ(t)〉 = H̃|φ(t)〉, where H̃ = [(w − w0)σz + w1σx]/2.
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5 Multipartite system, tensor product and entangled states

A system may have two components described by two Hilbert spaces H1 and H2. Then the bipartite

system is represented by H = H1 ⊗H2. A general state in H has the form

|x〉 =
∑
i,j

cij |e1,i〉 ⊗ |e2,j〉 with
∑
i,j

|cij |2 = 1,

where {er,1, er,2, . . .} is an orthonormal basis for Hr with r ∈ {1, 2}.
A state of the form |x〉 = |x1〉 ⊗ |x2〉 is a separable state or a tensor product state. Otherwise,

it is an entangled state.

Proposition Every state |x〉 in H1 ⊗H2 admits a Schmidt decomposition

|x〉 =
r∑
j=1

√
sj |uj〉 ⊗ |vj〉,

where sj > 0 are the Schmidt coefficients satisfying
∑r
j=1 sj = 1, r is the Schmidt number of |x〉,

{|u1〉, . . . , |ur〉} is an orthonormal set of H1 and {|v1〉, . . . , |vr〉} is an orthonormal set of H2.

Remark In matrix theory, the Schmidt decomposition is just the singular value decomposition if

one identify Cm⊗Cn with the space of m×n matrices. The following has a wide research interest

in different branches of study.

Open problem Extend the Schmidt decomposition to H1 ⊗ · · · ⊗ Hk for k ≥ 3.

Copying information

Theorem (No cloning) There is no unitary ψ0 ∈ Cn and U ∈Mn2 such that U |ψψ0〉 = |ψψ〉 for

every |ψ〉 ∈ Cn.

Remark There is unitary U ∈Mn2 such that U |ej〉|e1〉 = |ejej〉 for j = 1, . . . , n, where {|e1〉, . . . , |en〉}
is an orthonormal set. So, classical information can be copied as we know!

Manipulation of multiple qubit states

Suppose two people, Alice and Bob, each possess one of the (maximally) entangled state, which

is known as a Bell state:

|ψ0〉 = (|00〉+ |11〉)/
√

2.

Each of them can manipulate her/his qubit.

For instance, in measuring each qubit, there is a 50-50 chance of seeing |0〉 and |1〉. The other

qubit will be in the state of |0〉 and |1〉 accordingly.

One can apply U⊗I2, I2⊗U to a two qubit states. For example, Alice can apply the Hadamard

gate H = 1√
2

(
1 1
1 −1

)
to her qubit so that the entangled state |ψ0〉 is changed to

1

2
{(|0〉+ |1〉)|0〉+ (|0〉 − |1〉)|1〉} =

1

2
{|00〉+ |10〉+ |01〉 − |11〉}.
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One can also apply a unitary V ∈ M4 to a two qubit states if the two qubits are brought

together. For example, the UCN gate defined by
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


will have the effect change the basis of C4 = C2 ⊗C2 as follows.

|00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉, |11〉 7→ |10〉.

This can be described as |x〉|y〉 7→ |x〉|x⊕ y〉.

Applications of entanglement

Superdense coding

Suppose Alice and Bob share the entangled state |ψ0〉. Alice can manipulate her qubit to encode

one of the two bits of classical information, say, in {00, 01, 10, 11}, and send to Bob. Here is what

she may do:

(1) she does nothing to send 00; (2) she applies a phase flip σz to send 01;

(3) she applies a not gate σx to send 10; (4) she applies iσy to send 11.

The resulting state of Bob will be:

(1) (|00〉+ |11〉)/
√

2, (2) (|00〉 − |11〉)/
√

2, (3) (|10〉+ |01〉)/
√

2, (4) (|01〉 − |10〉)/
√

2,

which form the Bell basis of C4. By a suitable unitary gate V ∈ M4, these will change to

|00〉, |01〉, |10〉, |11〉 so that Bob can get the correct message upon measurement.

Teleportation

Suppose Alice put another state |ξ〉 = α|0〉 + β|1〉 to the system, then Bob’s qubit will be

affected also. The resulting system with 3 qubits has quantum state

|ψ〉 = |ξ〉|ψ0〉 =
1√
2
{α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉} .

Alice can apply a CNOT gate to her qubits to get

|ψ1〉 =
1√
2
{α(|0〉+ |1〉)(|00〉+ |11〉) + β|1〉(|10〉+ |01〉} .

Then apply a Hadamard gate to the first qubit to get

|ψ2〉 =
1

2
{α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉} .

Regrouping yields

|ψ2〉 =
1

2
{|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉) + |10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)}.

Now, measuring the two qubits of Alice gives one of the four possibilities: |00〉, |01〉, |10〉, |11〉.
Bob can get this information from Alice and apply σ0, σx, σz, iσy to convert his qubit to α|0〉+β|1〉.
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6 Mixed States and Density Matrices

A system is in a mixed state if there is a probability pi that the system is in state |xi〉 for i = 1, . . . , N .

If there is only one possible state, i.e., p1 = 1, then the system is in pure state. The mean value of

the measurement of the system corresponding to the observable described by the Hermitian matrix

A is

〈A〉 =
N∑
j=1

pi〈xj |A|xj〉 = Tr(Aρ) where ρ =
N∑
j=1

pj |xj〉〈xj | (3)

is a density operator (matrix).

Description of a quantum system in mixed states

A1’ A physical state is specified by a density matrix ρ : H → H, which is positive semidefinite

with trace equal to one.

A2’ The mean value of an observable associate with the Hermitian matrix A is 〈A〉 = Tr(ρA).

A3’ The temporal evolution of the density matrix is given by the Liouville-von Neumann equation

ih̄
d

dt
ρ = [H, ρ] = Hρ− ρH,

where H is the system Hamiltonian.

Remarks

(1) A density matrix ρ =
∑
j pj |xj〉〈xj | corresponds to a mixed state, where the vector states

|x1〉, . . . , |xN 〉 need not be orthonormal.

(2) Each |xj〉 satisfies the Schrödinger equation

ih̄
d

dt
|xj〉 = H|xj〉.

One can derive the Liouville-von Neumann equation from these equations.

(3) The set of density matrices is compact and convex.

Exercises

1) The following conditions are equivalent for a given state (density matrix) ρ.

(a) ρ is pure. (b) ρ2 = ρ. (c) Tr(ρ2) = 1.

2) Show that every density matrix ρ ∈ M2 has the form ρ = 1
2(σ0 + xσx + yσy + zσz) with

x2 + y2 + z2 ≤ 1. The equality holds if and only if ρ is a pure state.

Hence every density matrix in M2 corresponds to a point in the unit sphere in R3, known as

the Bloch sphere; ρ is a pure state if and only if it corresponds to a point on the sphere.
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Definition Suppose H = H1 ⊗H2. A state ρ is uncorrelated if ρ = ρ1 ⊗ ρ2; it is separable if it is a

convex combination of uncorrelated states, i.e.,

ρ =
r∑
j=1

qj ρ1,j ⊗ ρ2,j with q1, . . . , qr > 0, q1 + · · ·+ qr = 1.

Otherwise, it is inseparable.

Remark Do not confuse this with the definitions of separability in the vector case. There will be

discussion on this topic in depth.

Definition Let ρ =
∑r
j=1 cjρ1,j ⊗ρ2,j act on H = H1⊗H2. The partial transpose of ρ with respect

to H2 is

ρpt =
r∑
j=1

ρ1,j ⊗ ρt2,j .

Proposition If ρ is separable, then so is ρpt. If ρpt has negative eigenvalues, then it is not physical

and ρ is not separable. The converse holds if H has dimension at most 6.

Open problem Find effective way to determine separability.

Example Consider the Werner state and its partial transpose

ρ =
1

4


1− p 0 0 0

0 1 + p −2p 0
0 −2p 1 + p 0
0 0 0 1− p

 , ρpt =
1

4


1− p 0 0 −2p

0 1 + p 0 0
0 0 1 + p 0
−2p 0 0 1− p

 .
Then the partial transpose has eigenvalues (1 + p)/4, (1 + p)/4, (1 + p)/2, (1− 3p)/4. So, it is not

separable if and only if p ∈ (1/2, 1].

The realignment matrices

For any X = (xij) ∈ Mn, let vec(X) = (x11, x12, . . . , xnn). Suppose ρ = (ρij)1≤i,j≤m ∈ Mmn is

a density matrix such that ρij ∈Mn. The realignment matrix of ρ is the matrix

ρR =


vec(ρ11)
vec(ρ12)

...
vec(ρmm)

 .

Theorem Suppose m ≤ n and ρ ∈ Mmn = Mm ⊗Mn is a density matrix. If ρ is separable, then

the sum of the singular values of ρR is at most one. In fact, the vector of singular values of ρR

majorizes the vector (α, β, . . . , β) ∈ R1×m2
, where α = 1/

√
mn and β = (1− α)/m2.

Open problem If ρ ∈ M2 ⊗M3 is separable, then ρR cannot have its vector of singular values

equal to (1, (
√

6− 1)/3, (
√

6− 1)/3, (
√

6− 1)/3)/
√

6.
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Partial Trace and Purification

Let A be an operator acting on H = H1 ⊗ H2. The partial trace of A over H2 is an operator

acting on H1 defined by

A1 = Tr2A =
∑
u

(I ⊗ 〈u|)A(I ⊗ |u〉).

Remark The partial trace is the unique operation which gives rise to the correct description of

observable quantities for subsystems of a composite system.

Theorem (Purification) Suppose ρ1 =
∑n
j=1 pj |xj〉〈xj | ∈ Mn. Let {|y1〉, . . . , |yn〉} be an or-

thonormal basis of Cn, and |ψ〉 =
∑n
j=1
√
p
j
|xj〉 ⊗ |yj〉. Then Tr2(|ψ〉〈ψ|) = ρ1.

Exercise Suppose ρ1 = Tr2(|ψ1〉〈ψ1|) = Tr2(|ψ2〉〈ψ2|) ∈ Mm with |ψ1〉, |ψ2〉 ∈ Cm ⊗ Cn. Then

there is a unitary U ∈Mn such that |ψ2〉 = (Im ⊗ U)|ψ1〉.

An application: Quantum channels and quantum operations

A unitary time evolution of a closed system is determined by the quantum map E defined by

E(ρS) = U(t)ρSU(t)†.

Here, ρS is the density matrix of a closed system at time t = 0 and U(t) is the time evolution

operator.

An open system is a system of interest (called the principal system) coupled with its environment.

The total Hamiltonian is given by

HT = HS +HE +HSE ,

where HS , HE and HSE are the system Hamiltonian, the environment Hamiltonian and their

interaction Hamiltonian, respectively.

The state of the total system, which is assumed to be closed, will be described by ρ acting on the

Hilbert space HS ⊗HE such that one has the approximation ρ(0) = ρS ⊗ ρE and

ρ(t) = U(t)(ρS ⊗ ρE)U(t)† for t > 0.

For simplicity, we may assume that HT is a constant matrix and U(t) = eitHT .

We study the system (HS) by taking the partial trace

ρS(t) = TrE [U(t)(ρS ⊗ ρE)U(t)†] =
∑
a∈J

(IS ⊗ 〈εa|)[U(t)(ρS ⊗ ρE)U(t)†](IS ⊗ |εa〉)

for any complete orthonormal basis {|εa〉 : a ∈ J} for HE . We may assume ρE = |ε0〉〈ε0| by

linearity or by purification. Let Ea(t) = (IS ⊗ 〈εa|)U(t)(IS ⊗ |ε0〉). Then

ρS(t) =
∑
a

Ea(t)ρSEa(t)
†.
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This is known as the operator-sum representation of the quantum operation. Note that∑
a

Ea(t)
†Ea(t) =

∑
a

(IS ⊗ 〈ε0|)U(t)†(IS ⊗ |εa〉)(IS ⊗ 〈εa|)U(t)(IS ⊗ |ε0〉)

= (IS ⊗ 〈ε0|)U(t)†(IS ⊗ IE)U(t)(IS ⊗ |ε0〉) = IS .

This is the trace preserving condition for the quantum operation. For certain quantum operations

or channels, one may relax this condition.

7 EPR and the Bell inequality

Under the “real locality” theory of Einstein, Rosen, and Podolsky, Bell suggested the following

inequality. Suppose a measurement of some quantity prepared by Charlie to that Alice measures

Q or R, and Bob measures S and T , where Q,R, S, T each can assume the value 1 and −1, then

(Q+R)S = 0 or (R−Q)T = 0 so that QS +RS +RT −QT = ±2 and

E(QS +RS +RT −QT ) = E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2.

However, in quantum world, Charlie prepares the state

|ψ〉 = (|01〉 − |10〉)/
√

2.

Alice performs the measurements Q = σz and R = σx, where as Bob performs the measurements

S = −(σz + σx)/
√

2 and T = (σz − σx)/
√

2. Then

〈QS〉 = 1/
√

2, 〈RS〉 = 1/
√

2, 〈RT 〉 = 1/
√

2, 〈QT 〉 = −1/
√

2

so that

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2
√

2,

which is confirmed by experiment. So, the “real locality” theory does not apply to quantum

mechanics.
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