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1. Introduction

Positive linear maps and completely positive linear maps are found to be very important

in quantum mechanics, quantum computation and quantum information. In fact they can

be used to recognize entangled states, and every quantum channel is represented as a trace

preserving completely positive linear map.

In quantum mechanics, a quantum system is associated with a separable complex Hilbert

space H, i.e., the state space. A quantum state is described as a density operator ρ ∈
T (H) ⊆ B(H) which is positive and has trace 1, where B(H) and T (H) denote the von

Neumann algebras of all bounded linear operators and the trace-class of all operators T with

‖T‖1 = Tr((T †T )
1
2 ) < ∞, respectively. ρ is a pure state if ρ2 = ρ; ρ is a mixed state if ρ2 6= ρ.

The state space H of a composite quantum system is the tensor product of the state spaces

of the component quantum systems Hi, that is H = H1 ⊗H2 ⊗ . . . ⊗Hk. In this lecture we

are mainly interested in bipartite systems, that is, the case k = 2. Let H and K be finite

dimensional and let ρ be a state acting on H⊗K. ρ is said to be separable if ρ can be written

as

ρ =
k∑

i=1

piρi ⊗ σi,

where ρi and σi are states on H and K respectively, and pi are positive numbers with
∑k

i=1 pi =

1. Otherwise, ρ is said to be inseparable or entangled (ref. [2, 34]). For the infinite dimensional

case, by Werner [46], a state ρ acting on H ⊗K is called separable if it can be approximated

in the trace norm by the states of the form

σ =
n∑

i=1

piρi ⊗ σi,

where ρi and σi are states on H and K respectively, and pi are positive numbers with
∑n

i=1 pi =

1. Otherwise, ρ is called an entangled state.
1
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The quantum entangled states have been used as basic resources in quantum information

processing and communication (see [3, 4, 15, 16, 34, 39]). Generally, to decide whether or not

a state of composite quantum systems is entangled is one of the most challenging task of this

field [34]. For the case of 2 × 2 or 2 × 3 systems, that is, for the case dim H = dim K = 2

or dimH = 2, dimK = 3, a state is separable if and only if it is a PPT (Positive Partial

Transpose) state [22, 36]. But PPT is only a necessary condition for a state to be separable

acting on Hilbert space of higher dimensions. There are PPT states that are entangled. It

is known that PPT entangled states belong to the class of bound entangled states [23]. In

[7], the realignment criterion for separability in finite dimensional systems was established,

and was generalized to the infinite dimensional systems by [21]. The realignment criterion

is a powerful criterion that is independent of the PPT criterion. However, there are still

entangled states that can be recognized by neither the PPT criterion nor the realignment

criterion. There are several other sufficient criteria for entanglement such as the reduction

criterion and majorization criterion [6, 24, 25].

A most general approach to study the entanglement of quantum states in finite dimensional

systems is based on the notion of entanglement witnesses (see [22]). A Hermitian operator W

acting on H⊗K is said to be an entanglement witness (briefly, EW), if W is not positive and

Tr(Wσ) ≥ 0 holds for all separable states σ. Thus, ρ is entangled if and only if there exists

an entanglement witness W such that Tr(Wρ) < 0 [22]. This entanglement witness criterion

is also valid for infinite dimensional systems. Clearly, constructing entanglement witnesses is

a hard task. A recent result in [30] states that every entangled state in a bipartite (finite or

infinite dimensional) system can be detected by a witness of the form cI − F , where c is a

nonnegative number and F is a finite rank self-adjoint operator. A method of constructing

entanglement witnesses of the form I − F was also given in [30].

Another general approach to detect entanglement is based on positive maps. It is obvious

that if ρ is a state on H ⊗ K, then for every completely positive (briefly, CP) linear map

Φ : B(H) → B(K), the operator (Φ ⊗ I)ρ ∈ B(K ⊗ K) is always positive; if ρ is separable,

then for every positive linear map Φ : B(H) → B(K), the operator (Φ⊗ I)ρ is always positive

on K⊗K (or, for every positive linear map Φ : B(K) → B(H), the operator (I⊗Φ)ρ is always

positive on H⊗H). The converse of the last statement is also true. In [22], it was shown that

Horodeckis’ Theorem. [22, Theorem 2] Let H, K be finite dimensional complex Hilbert

spaces and ρ be a state acting on H ⊗K. Then ρ is separable if and only if for any positive

linear map Φ : B(H) → B(K), the operator (Φ⊗ I)ρ is positive on K ⊗K.

The positive map criterion and the witness criterion for entanglement are two of few known

necessary and sufficient criteria. These two criteria are closely connected by the so-called

the JamioÃlkowski-Choi isomorphism [20, 22, 38, 40]. Recall that a positive map is said to be

decomposable if it is the sum of a CP map and a map which is the transpose of some CP map.

It is obvious that a decomposable positive map can not detect any PPT entangled states [32].
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Let us consider the case that at least one of H and K is of infinite dimension. As every

positive linear map η between von Neumann algebras is bounded and ‖η‖ = ‖η(I)‖ (see

[31, Exercise 10.5.10]), ρ is separable on H⊗K still implies that, for any completely bounded

positive linear map Φ : B(H) → B(K), the operator (Φ⊗I)ρ is positive on K⊗K. The infinite-

dimensional version of Horodeckis’ Theorem above was obtained by Størmer [44]. Recall that

a positive linear map Φ : B(H) → B(K) is said to be normal if it is weakly continuous on

bounded sets, or equivalently, if it is ultra-weakly continuous (i.e., if {Aα} is a bounded net

and there is A ∈ B(H) such that 〈x|Aα|y〉 converges to 〈y|A|x〉 for any |x〉 ∈ H, |y〉 ∈ K, then

〈x|Φ(Aα)|y〉 converges to 〈y|Φ(A)|x〉 for any |x〉 ∈ H, |y〉 ∈ K. ref. [17, pp.59]).

Størmer’s Theorem. [44] Let H, K be Hilbert spaces, ρ be a state acting on H ⊗ K.

Then ρ is separable if and only if for any normal positive linear map Φ : B(H) → B(K), the

operator (Φ⊗ I)ρ is positive on K ⊗K.

Thus, for a state ρ on H ⊗ K, if there exists a normal positive map Φ : B(H) → B(K)

such that (Φ ⊗ I)ρ is not positive or unbounded, then ρ is entangled. In this situation, Φ

can never be completely positive. Therefore, to detect the inseparability of states, the key

is to find the normal positive linear maps that are not completely positive. In the case that

dimH = dim K = n, the transpose A 7→ AT and the map A 7→ Tr(A)I − A are well known

positive maps that are not completely positive (briefly, NCP).

However, Størmer’s Theorem is difficult to apply. To detect a state (1) we have to exhaust

all normal positive linear maps; (2) the structure of the normal positive linear maps is not

clear; (3) for a given entangled state, we do not know how to construct some non-completely

positive normal positive linear maps that recognize the entanglement of this state.

Thus several natural questions rise. For instance, (1) is the set of completely bounded

normal positive (CBNP) linear maps sufficient to determine the separability of any state?

(2) are there any more small subsets of CBNP linear maps that are still enough to provide

necessary and sufficient criteria of separability? (3) is there a tractable small subset of CBNP

linear maps that is enough to provide a necessary and sufficient criterion of separability?

In this lecture note, we give a characterization of completely bounded normal positive

linear maps, and show that the set of all positive finite-rank elementary operators is enough to

provide a necessary and sufficient criterion of the separability of states in infinite dimensional

systems. We also illustrate how to construct NCP positive finite-rank elementary operators

and apply them to detect the entanglement of some states.

Positive linear maps have attracted much attention of physicists working in quantum infor-

mation science in recent decades because of Horodeckis’ positive map criterion. Great efforts

have be payed to find as many as possible positive maps that are not CP, and then use them

to detect some entangled states [1, 11, 12, 25], for finite dimensional systems.

Positive linear maps and completely positive linear maps are also important mathematical

topics studied intensively in a general setting of C∗-algebras by mathematicians. The com-

pletely positive linear maps can be understood quite well (Stinespring’s theorem). However,
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the structure of positive linear maps is drastically nontrivial even for the finite dimensional

case ([8]-[10], [35]).

Note that every linear map Φ from B(H) into B(K) is an elementary operator if both

H and K are finite dimensional, that is, there exist operators A1, A2, . . . , Ak ∈ B(H, K) and

B1, B2, . . . , Bk ∈ B(K, H), such that Φ(T ) =
∑k

i=1 AiTBi for all T ∈ B(H). So, it is also basic

important and interesting to find as many as possible characterizations of positive elementary

operators and characterizations of completely positive elementary operators, and then, to

apply them to get some criteria for the entanglement of states.

A characterization of positive elementary operators was obtained in [28] in terms of contrac-

tively locally linear combinations. This is the only known necessary and sufficient condition

for an elementary operator to be positive. In this lecture we give a characterization of positive

completely bounded normal maps between B(H) and B(K), which including all positive ele-

mentary operators. Consequently, we present some concrete representations of the completely

bounded linear maps, positive completely bounded linear maps and completely positive linear

maps between the trace-classes T (H) and T (K), which allow us to obtain a representation of

quantum channels (operations) for infinite-dimensional systems. Apply these characterization

of positive maps that are not CP, a necessary and a sufficient criterion, that is, the elementary

operator criterion of separability is established. Finally, some positive elementary operators

are constructed so that they are not completely positive, even indecomposable, and then used

to recognize some entangled quantum states that cannot be detected by the PPT criterion

and the realignment criterion.

Throughout, H and K are separable complex Hilbert spaces that may be of infinite di-

mension if no specific assumption is made, and 〈·|·〉 stands for the inner product in both of

them. B(H, K) (B(H) when K = H) is the Banach space of all (bounded linear) operators

from H into K. A ∈ B(H) is self-adjoint if A = A† (A† stands for the adjoint operator of

A); and A is positive, denoted by A ≥ 0, if A is self-adjoint with spectrum falling in the

interval [0,∞) (or equivalently, 〈ψ|Aψ〉 ≥ 0 for all |ψ〉 ∈ H). For any positive integer n, H(n)

denotes the direct sum of n copies of H. It is clear that every operator A ∈ B(H(n),K(m))

can be written in an m×n operator matrix A = (Aij)i,j with Aij ∈ B(H, K), i = 1, 2, . . . , m;

j = 1, 2, . . . , n. Equivalently, B(H(n),K(m)) is often written as B(H, K) ⊗Mm×n(C). We

will write AT = (Aij)T for the formal transpose matrix (Aji)i,j of A, At = (At
ji)i,j for the

usual transpose of A, and denote by A(n) the operator matrix (Aij) ∈ B(H(n),K(n)) with

Aii = A and Aij = 0 if i 6= j. If Φ is a linear map from B(H) into B(K), we can define a

linear map Φn : B(H(n)) → B(K(n)) by Φn((Aij)) = (Φ(Aij)). Recall that Φ is said to be

positive (resp. hermitian-preserving) if A ∈ B(H) is positive (resp. self-adjoint) implies that

Φ(A) is positive (resp. self-adjoint). If Φn is positive we say Φ is n-positive; if Φn is positive

for every integer n > 0, we say that Φ is completely positive. Obviously, Φ is completely

positive ⇒ Φ is positive ⇒ Φ is hermitian-preserving. Φ is said to be completely bounded if

‖φ‖cb = supn ‖Φn‖ < ∞.
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2. Characterizing positive completely bounded normal linear maps

In this section we give a characterization of positive completely bounded normal linear

maps from B(H) into B(K).

Recall that a linear map Φ : B(H) → B(K) is called an elementary operator if there are two

finite sequences {Ai}n
i=1 ⊂ B(H, K) and {Bi}n

i=1 ⊂ B(K, H) such that Φ(X) =
∑n

i=1 AiXBi

for all X ∈ B(H); Φ : B(H) → B(K) is called a generalized elementary operator if there

exist sequences {Ai} and {Bi} satisfying ‖∑
i AiA

†
i‖‖

∑
i B

†
i Bi‖ < ∞ such that Φ(X) =∑

i AiXBi for all X. Obviously, the generalized elementary operators are completely bounded

and normal.

We first give a lemma.

Lemma 2.1. Let H, K be separable complex Hilbert spaces and Φ : B(H) → B(K) be

a linear map. Then Φ is normal and completely bounded if and only if Φ is a generalized

elementary operator.

Proof. We need only check the “only if” part. Assume that the linear map Φ : B(H) →
B(K) is completely bounded and normal. It follows that, Φ = Φ1 − Φ2 + i(Φ3 − Φ4) with

Φi normal and completely positive by Wittstock’s decomposition theorem (ref. [35]). As H

and K are separable, by Stinespring’s Theorem (ref. [35, 43]) and the structural theorem

of normal ∗-homomorphisms of B(H) (ref. [17, pp.61]), for each k = 1, 2, 3, 4, there exist a

countable cardinal number Jk, an operator Uk ∈ B(H(Jk),K) such that Φk(X) = UkX
(Jk)U †

k ,

where H(Jk) (resp. X(Jk)) is the direct sum of Jk-copies of H (resp. of X). Therefore, there

are sequences of operators {Ai}i≤J1 , {Bj}j≤J2 , {Cs}s≤J3 , {Dt}t≤J4 ⊂ B(H, K), such that

U1 = ( A1 A2 · · · Ai · · · )

U2 = ( B1 B2 · · · Bj · · · ),

U3 = ( C1 C2 · · · Cs · · · ),

U4 = ( D1 D2 · · · Dt · · · )

and

Φ(X) =
∑

i≤J1

AiXA†i −
∑

j≤J2

BjXB†
j + i

∑

s≤J3

CsXC†
s − i

∑

t≤J4

DtXD†
t

for every X ∈ B(H). Now it is clear that

‖
∑

i≤J1

AiA
†
i +

∑

j≤J2

BiB
†
i +

∑

s≤J3

CsC
†
s +

∑

≤J4

DtD
†
t‖ ≤

4∑

k=1

‖Uk‖2 < ∞,

and so, Φ is a generalized elementary operator. ¤
By Lemma 2.1, the question of characterizing positive completely bounded normal linear

maps between B(H) and B(K) is equivalent to the question of characterizing positive general-

ized elementary operators.
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As a special class of generalized elementary operators, the global structures of hermitian-

preserving and completely positive elementary operators are quite clear. In fact, for general-

ized elementary operators, by the proof of Lemma 2.1, we have the following result.

Corollary 2.2. Let H, K be Hilbert spaces and Φ be a generalized elementary operator

from B(H) into B(K). Then

(i) Φ is hermitian-preserving if and only if there are sequences {Ai}, {Cj} ⊂ B(H, K) with

‖ ∑∞
i=1 AiA

†
i ‖< ∞ and ‖ ∑∞

j=1 CjC
†
j ‖< ∞ such that

Φ(X) =
∞∑

i=1

AiXA†i −
∞∑

j=1

CjXC†
j

for every X ∈ B(H);

(ii) Φ is completely positive if and only if there exists a sequence {Ai} ⊂ B(H, K) with

‖ ∑∞
i=1 AiA

†
i ‖< ∞ such that

Φ(X) =
∞∑

i=1

AiXA†i

for every X ∈ B(H).

If both H and K are finite-dimensional, Corollary 2.2 (i) and (ii) were established by

DePillis [14] and Choi [8], respectively. For the elementary operator case, see [26] and [33].

For a sequence A = ( A1 A2 · · · Ai · · · ), we will denote by AT the formal transpose

of A and A† the usual adjoint operator of A, that is

AT =




A1

A2

...

Ai

...




and A† =




A†1
A†2
...

A†i
...




.

We will also denote by B1(H, K) the closed unit ball of B(H, K).

The next lemma is the key lemma which is a generalization of [28, Lemma 2.2], where

more conditions ‖ ∑∞
i=1 A†iAi ‖< ∞ and ‖ ∑∞

j=1 C†
j Cj ‖< ∞ are assumed. Note that, the

conditions ‖ ∑∞
i=1 AiA

†
i ‖< ∞ and ‖ ∑∞

i=1 A†iAi ‖< ∞ are not equivalent in general. For

instance, let H = ⊕∞i=1Hi with each Hi is of infinite dimension. Let Vi ∈ B(H) be the

isometry with range Hi. Then V †
i Vi = I and ViV

†
i = Pi, where Pi is the projection from

H onto Hi. Thus ‖∑∞
i=1 ViV

†
i ‖ = ‖∑∞

i=1 Pi‖ = ‖I‖ = 1 as PiPj = 0 whenever i 6= j, but

‖∑∞
i=1 V †

i Vi‖ = ∞.

Lemma 2.3. Let {Ai}∞i=1 and {Cj}∞j=1 ⊂ B(H, K) with ‖ ∑∞
i=1 AiA

†
i ‖< ∞ and ‖∑∞

j=1 CjC
†
j ‖< ∞. Then the following statements are equivalent:

(i)
∑∞

i=1 AiPA†i ≥
∑∞

j=1 CjPC†
j for all positive operators P ∈ B(H).

(ii)
∑∞

i=1 AiPA†i ≥
∑∞

j=1 CjPC†
j for all rank-one projections P ∈ B(H).

(iii) There exists a map Ω : H → B1(l2) such that

CT |ψ〉 = Ω(|ψ〉)AT |ψ〉 for every |ψ〉 ∈ H.
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Proof. (i)⇒(ii) is obvious.

(ii)⇒(iii). Given any |ψ〉 ∈ H with ‖|ψ〉‖ = 1, P = |ψ〉〈ψ| is a rank-one projection. From

(ii) we have

∞∑

i=1

AiPA†i ≥
∞∑

j=1

CjPC†
j . (2.1)

Let

T =




A1P · · · AiP · · ·
0 · · · 0 · · ·
0 · · · 0 · · ·
...

. . .
...

. . .




and S =




C1P · · · CjP · · ·
0 · · · 0 · · ·
0 · · · 0 · · ·
...

. . .
...

. . .




be operators from H(∞) into K(∞). The inequality (2.1) implies that TT† ≥ SS†. So by [18],

there exists a unique contractive operator X = (Xij) ∈ B(H(∞)) such that kerX† ⊇ kerT

and S = TX. Since

( 0 · · · 0 |φi〉 0 · · · )T ∈ kerT

for each |φi〉 ∈ kerAiP , we have X†
ij |φi〉 = 0 for all j = 1, 2, . . .. Hence, kerX†

ij ⊇ kerAiP

for all i and j. It follows that Xij are operators of rank at most one and there exist vectors

|φij〉 ∈ H such that Xij = |ψ〉〈φij | for all i, j = 1, 2, . . .. Now S = TX leads to

( C1|ψ〉 · · · Cj |ψ〉 · · · )T

= ( C1P |ψ〉 · · · CjP |ψ〉 · · · )T

= (
∑∞

i=1 AiPXi1|ψ〉 · · · ∑∞
i=1 AiPXij |ψ〉 · · · )T

= (
∑∞

i=1〈φi1|ψ〉Ai|ψ〉 · · · ∑∞
i=1〈φij |ψ〉Ai|ψ〉 · · · )T .

Denote ωji = 〈φij |ψ〉 and let Ω(|ψ〉) = (ωji(|ψ〉))j,i. Then we have

CT |ψ〉 = ( C1|ψ〉 · · · Cj |ψ〉 · · · )T

= Ω(|ψ〉)( A1|ψ〉 · · · Ai|ψ〉 · · · )T = Ω(|ψ〉)TT |ψ〉.
Moreover, since XijP = 〈φij |ψ〉P = ωji(|ψ〉)P , by regarding Ω(|ψ〉) as an operator from l2

into itself, we get

‖Ω(|ψ〉)‖ = ‖Ω(|ψ〉)⊗ P‖ = ‖XP (∞)‖ ≤ ‖X‖ ≤ 1.

Therefore, (ii) holds implies that (iii) holds.

(iii)⇒(ii). Assume (iii). For any unit vector |ψ〉 ∈ H, denote P = |ψ〉〈ψ| and the contractive

matrix Ω(|ψ〉) = Ω = (ωji). As CT |ψ〉 = Ω(|ψ〉)AT |ψ〉, we have Cj |ψ〉 =
∑∞

j=1 ωjiAi|ψ〉 for

each i. Thus,

CP = ( C1P C2P · · · CjP · · · )

= (
∑∞

i=1 ω1iAiP
∑∞

i=1 ω2iAiP · · · ∑∞
i=1 ωjiAiP · · · )

= ( A1P A2P · · · AiP · · · )ΩT

= ( A1P A2P · · · AiP · · · )(wjiI)T = AP (wjiI)T .
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It follows that
∞∑

j=1

CjPC†
j = CPC† = AP (ωjiI)T ((ωjiI)T )†PA† ≤ APA† =

∞∑

i=1

AiPA†i

because of 0 ≤ (ωjiI)T ((ωjiI)T )† ≤ I.

(ii)⇒(i). Let ∆(X) =
∑∞

i=1 AiXA†i −
∑∞

j=1 CjXC†
j = AX(∞)A† − CX(∞)C† for each

X ∈ B(H). Since ‖A‖ = ‖AA†‖ 1
2 = (‖∑∞

i=1 AiA
†
i‖)

1
2 < ∞ and ‖C‖ = ‖CC†‖ 1

2 =

(‖∑∞
j=1 CjC

†
j‖)

1
2 < ∞, we see that ∆ is normal. The condition (ii) implies that ∆(P ) is

positive for every finite rank positive operator P . For any positive operator X ∈ B(H), by

spectral theorem, there exists a net Pλ of finite-rank positive operators such that ‖Pλ‖ ≤ ‖X‖
and wk− limλ Pλ = X. Hence ∆(X) = wk− limλ ∆(Pλ) is positive and (i) is true. ¤

Lemma 2.4. Let H, K be complex Hilbert spaces and {Ai}∞i=1, {Cj}∞j=1 ⊂ B(H, K) with

‖ ∑∞
i=1 AiA

†
i ‖< ∞ and ‖ ∑∞

j=1 CjC
†
j ‖< ∞. Let Φ : B(H) → B(K) be a linear map defined

by

Φ(X) =
∞∑

i=1

AiXA†i −
∞∑

j=1

CjXC†
j

for every X ∈ B(H). Then

(i) Φ is positive if and only if there exists a map Ω : |ψ〉 ∈ H 7→ Ω(|ψ〉) = (ωji(|ψ〉))j,i ∈
B1(l2) such that

CT |ψ〉 = Ω(|ψ〉)AT |ψ〉
for every |ψ〉 ∈ H.

(ii) Φ is completely positive if and only if there exists a contractive matrix Ω = (ωji)j,i ∈
B(l2) such that

CT = ΩAT ,

and in turn, if and only if there exists a sequence {Di}∞i=1 ⊂ B(H, K) such that

Φ(X) =
∞∑

i=1

DiXD†
i .

holds for all X ∈ B(H).

Here A = ( A1 A2 · · · Ai · · · ) and C = ( C1 C2 · · · Cj · · · ).

Proof. By Lemma 2.3, (i) is true. By Corollary 2.2, Φ is completely positive if and only

if there exists a sequence {Di}∞i=1 ⊂ B(H, K) such that

Φ(X) =
∞∑

i=1

DiXD†
i

for every X ∈ B(H). So, to complete the proof of Lemma 2.4, we need to show that Φ is

completely positive if and only if there exists a contractive matrix Ω = (ωji)j,i ∈ B(l2) such

that

CT = ΩAT . (2.2)
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Assume that Φ is completely positive. Then, for any positive integer n, we have
∞∑

i=1

A
(n)
i PA

(n)
i

† ≥
∞∑

j=1

C
(n)
j PC

(n)
j

†
(2.3)

holds for all positive operators P ∈ B(H(n)). Let

B = {ΓAT : Γ = (γji)j,i ∈ B1(l2)},

where B1(l2) stands for the closed unit ball of B(l2). It is clear that B is closed in the

strong operator topology in B(H, K(∞)). Given ε > 0. For any |x1〉, . . . , |xn〉 ∈ H, let

|x〉 = ( |x1〉 · · · |xn〉 ) ∈ H(n). It follows from Lemma 2.3 that there exists Ω(|x〉) =

(ωji(|x〉)) ∈ B1(l2) such that

Ω(|x〉)A(n)T |x〉 = C(n)T |x〉.

Therefore,

Ω(|x〉)AT |xk〉 = CT |xk〉
holds for every k = 1, 2, . . . , n. Thus

Ω(|x〉)AT ∈ {X ∈ B(H, K(∞)) : ‖X|xk〉 −CT |xk〉‖ < ε for k = 1, 2, . . . , n}.

However, this means that every strong neighborhood of CT has a nonempty intersection with

B and hence, CT ∈ B. So, there exists an Ω ∈ B1(l2) such that CT = ΩAT .

Conversely, assume that Eq.(2.2) holds. Then, for any positive integer n we have C(n)T =

Ω(n)A(n)T . By Lemma 2.3 again we see that Eq.(2.3) holds true and hence Φ is completely

positive. ¤
Combining Lemma 2.1 and Lemma 2.4, one gets the main result of this section immediately.

Theorem 2.5. Let H, K be separable complex Hilbert spaces and Φ : B(H) → B(K) be a

completely bounded normal linear map. Then

(1) Φ is positive if and only if there exist {Ai}∞i=1, {Cj}∞j=1 ⊂ B(H, K) with ‖ ∑∞
i=1 AiA

†
i ‖<

∞ and ‖ ∑∞
j=1 CjC

†
j ‖< ∞, and a map Ω : |ψ〉 ∈ H 7→ Ω(|ψ〉) = (ωji(|ψ〉))j,i ∈ B1(l2)

satisfying

CT |ψ〉 = Ω(|ψ〉)AT |ψ〉
for every |ψ〉 ∈ H, such that

Φ(X) =
∞∑

i=1

AiXA†i −
∞∑

j=1

CjXC†
j

holds for every X ∈ B(H).

(2) Φ is completely positive if and only if there exists a sequence {Di}∞i=1 ⊂ B(H, K) with

‖ ∑∞
i=1 DiD

†
i ‖< ∞ such that

Φ(X) =
∞∑

i=1

DiXD†
i .

holds for all X ∈ B(H).

Here A = ( A1 A2 · · · Ai · · · ) and C = ( C1 C2 · · · Cj · · · ).
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What does Theorem 2.5 mean? To understand Theorem 2.5 better, let us recall some

notions from [28]. Let l, k ∈ N (the set of all natural numbers), and let A1, · · · , Ak, and

C1, · · · , Cl ∈ B(H, K). If, for each |ψ〉 ∈ H, there exists an l × k complex matrix (αij(|ψ〉))
(depending on |ψ〉) such that

Ci|ψ〉 =
k∑

j=1

αij(|ψ〉)Aj |ψ〉, i = 1, 2, · · · , l,

we say that {C1, · · · , Cl} is a locally linear combination of {A1, · · · , Ak}, (αij(|ψ〉)) is called a

local coefficient matrix at |ψ〉. Furthermore, if a local coefficient matrix (αij(|ψ〉)) can be cho-

sen for every |ψ〉 ∈ H(n) so that the operator norm ‖(αij(|ψ〉))‖ ≤ 1, we say that {C1, · · · , Cl}
is a contractive locally linear combination of {A1, · · · , Ak}; if there is a matrix (αij) with

‖(αij)‖ ≤ 1 such that Ci =
∑k

j=1 αijAj for all i, we say that {C1, · · · , Cl} is a contractive

linear combination of {A1, · · · , Ak} with coefficient matrix (αij). These notions can be gener-

alized to the case that there are infinite many Aks or Cks. For instance, if, for every |ψ〉 ∈ H,

there are scalars αk(|ψ〉) such that C|ψ〉 =
∑∞

k=1 αk(|ψ〉)Ak|ψ〉 and
∑∞

k=1 |αk(|ψ〉)|2 ≤ 1, we

will say that C is a generalized contractive locally linear combination of {Ak}∞k=1.

Thus Theorem 2.5 may be restated as follows: A completely bounded normal linear map

Φ : B(H) → B(K) is positive but not completely positive if and only if it has the form

Φ(X) =
∑∞

i=1 AiXA†i−
∑∞

j=1 CjXC†
j for all X, where {Cj} is a generalized contractive locally

linear combination of {Ai} but {Cj} is not a generalized contractive linear combination of

{Ai}. This characterization is much helpful in some sense to understand the differences of

completely positive normal linear maps, positive completely bounded normal linear maps and

hermitian completely bounded normal linear maps.

By Theorem 2.5, one gets immediately a global structure theorem for positive elementary

operators in terms of locally linear combination that was established in [28]. For L ⊂ B(H, K),

we’ll denote by [L] the linear span of L.

Corollary 2.6. Let Φ =
∑n

i=1 Ai(·)Bi be an elementary operator from B(H) into B(K).

Then Φ is positive if and only if there exist C1, · · · , Ck and D1, · · · , Dl in [A1, · · · , An] with

k + l ≤ n such that (D1, · · · , Dl) is a contractive locally linear combination of (C1, · · · , Ck)

and

Φ =
k∑

i=1

Ci(·)C†
i −

l∑

j=1

Dj(·)D†
j . (2.4)

Furthermore, Φ in Eq.(2.4) is completely positive if and only if (D1, · · · , Dl) is a linear com-

bination of (C1, · · · , Ck) with a contractive coefficient matrix, and in turn, if and only if there

exist E1, E2, . . . , Er with r ≤ k such that

Φ =
r∑

i=1

Ei(·)E†
i .

In fact, a characterization of k-positive elementary operators is given in [28]. By the same

spirit, we can get also a characterization of k-positive completely bounded normal linear maps
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by applying Theorem 2.5. However, positive linear maps are more powerful than the 2-positive

linear maps if we use them to detect entanglement.

Since every linear map between matrix algebras is an elementary operator, by Corollary

2.6 we get a characterization of positive maps that is not CP for finite dimensional case.

Corollary 2.7. Let H and K be finite dimensional complex Hilbert spaces and let Φ :

B(H) → B(K) be a linear map. Then Φ is positive but not completely positive if and only if

there exist C1, · · · , Ck, D1, · · · , Dl ∈ B(H, K) such that Φ(X) =
∑k

i=1 CiXC†
i −

∑l
j=1 DjXD†

j

for all X ∈ B(H), and {Dj}l
j=1 is a contractive locally linear combination but not a contractive

linear combination of {Ci}k
i=1.

It is interesting to observe from the discussion above that, for elementary operators, the

question when positivity ensures complete positivity may be reduced to the question when

contractive locally linear combination implies linear combination. This connection allows us

to look more deeply into the relationship and the difference between positivity and complete

positivity, and obtain some simple criteria to check whether a positive elementary operator

is completely positive or not. This is important especially when we construct positive maps

and apply them to recognize entanglement.

If L ⊂ B(H, K), we will denote by LF the subset of all finite-rank operators in L.

The Corollaries 2.8 and 2.9 below can be found in [28]. We list them here for completeness

and for reader’s convenience.

Corollary 2.8. Assume that Φ =
∑k

i=1 Ai(·)A†i −
∑l

j=1 Bj(·)B†
j : B(H) → B(K) is a

positive elementary operator. If any one of the following conditions holds, then Φ is completely

positive:

(i) k ≤ 2.

(ii) dim[A1, · · · , Ak]F ≤ 2.

(iii) There exists a vector |ψ〉 ∈ H such that {|Aiψ〉}k
i=1 is linearly independent.

(iv) Φ is [k+1
2 ]-positive, where [t] stands for the integer part of real number t.

Corollary 2.9. Assume that Φ =
∑k

i=1 Ai(·)A†i −
∑l

j=1 Bj(·)B†
j : B(H) → B(K) is a

positive elementary operator. If Φ is not completely positive, then

(i) k ≥ 3;

(ii) dim[A1, · · · , Ak]F ≥ 3;

(iii) every Bj, j = 1, 2, . . . , l, is a finite-rank perturbation of some combination of {Ai}k
i=1;

(iv) Φ[ k+1
2

] is not positive.

Corollary 2.10. Assume that Φ =
∑k

i=1 Ai(·)A†i −
∑l

j=1 Bj(·)B†
j : B(H) → B(K) is an

elementary operator. If there exists some j such that Bj is not a contractive linear combination

of {Ai}k
i=1, then Φ is not completely positive.

The following result reveals that the non-complete positivity of a positive elementary oper-

ator is essentially determined by its behavior on finite-dimensional subspaces. So, to construct

a NCP positive elementary operator, it is enough to consider the question in finite-dimensional

cases.
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Theorem 2.11. Assume that Φ : B(H) → B(K) is a positive elementary operator. Then

Φ is NCP if and only if there exist finite-rank projections P and Q acting on H and K,

respectively, such that the positive elementary operator ∆ : B(PH) → B(QK) defined by

∆(X) = QΦ(PXP )Q|QK is non-completely positive. In addition, P and Q may be taken so

that ∆′ : B(kerP ) → B(kerQ) defined by ∆′(Y ) = (I − Q)Φ(((I − P )Y (I − P ))(I − Q)|ker Q

is completely positive.

Proof. Clearly, if Φ : B(H) → B(K) is a positive linear map and P ∈ B(H), Q ∈ B(K)

are projections, then ∆ : B(PH) → B(QK) defined by ∆(X) = QΦ(PXP )Q is positive and

∆ is NCP implies that Φ is NCP.

Assume that Φ is a positive elementary operator, writing Φ =
∑k

i=1 Ai(·)A†i−
∑l

j=1 Bj(·)B†
j

with {A1, . . . , Ak, B1, . . . , Bl} linearly independent. By Corollary 2.9 (ii)-(iii), if Φ is NCP,

then the linear subspace spanned by {Ai}k
i=1 has many finite rank operators and there exists

Cj ∈ [A1, A2, . . . , Ak] and finite rank operators Fj 6∈ [A1, . . . , Ak] such that Bj = Cj +Fj . Let

P0 be the projection with range the finite dimensional linear subspace spanned by all the ranges

of {E† : E ∈ [A1, . . . , Ak]F} and the ranges of {F †
j }l

j=1; and Q0 the projection with range the

finite dimensional linear subspace spanned by all the ranges of {E : E ∈ [A1, . . . , Ak]F} and the

ranges of {Fj}l
j=1. It is easily checked that there exist some finite rank projections P ≥ P0 and

Q ≥ Q0 such that QBjP 6∈ [QA1P, . . . , QAkP ] since Bj 6∈ [A1, . . . , Ak]. Pick such P and Q.

Let Si = QAi|PH , i = 1, 2, . . . , k, and Tj = QBj |PH , j = 1, 2, . . . , l. Let ∆ : B(PH) → B(QK)

be the map defined by ∆(X) =
∑k

i=1 SiXS∗i −
∑l

j=1 TjXT ∗j = QΦ(PXP )Q|QK . Then ∆ is

positive. By the choice of P and Q, Tj is not in [S1, . . . , Sk] for some j. Hence, ∆ is not

completely positive by Corollary 2.9. Since [(I−Q)A1(I−P ), . . . , (I−Q)Ak(I−P )]F = {0},
by Corollary 2.8, ∆′ is completely positive. ¤

To conclude this section, we give a simple example illustrating that how to use the results

in this section to judge whether or not a map is positive, completely positive.

Example 2.12. Assume that dim H = n and {|i〉}n
i=1 is an orthonormal basis. Denote

Eij = |i〉〈j|. For a given positive number t, let ∆t : B(H) → B(H) be a linear map defined by

∆t(X) = t
n∑

i=1

EiiXEii −X

for any X ∈ B(H). Then ∆t is positive if and only if it is completely positive, and in turn, if

and only if t ≥ n.

In fact, let Ai =
√

tEii, then ∆t(X) =
∑n

i=1 AiXA†i − IXI†. It is clear that I is a linear

combination of A1, · · · , An, i.e., I =
∑n

i=1
1√
t
Ai. Then the sum of the square of the coefficients

is
∑

i(
1√
t
)2 = n

t , and hence ∆t is completely positive if and only if t ≥ n by Corollary 2.6. If

t < n, then it is obvious that I is not a contractive locally linear combination of A1, · · · , An,

and hence ∆t is not positive.
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3. Quantum channels for infinite dimensional systems

It is known that, for finite-dimensional quantum systems, a quantum channel (operation) E
is a trace-preserving (trace-nonincreasing) completely positive linear map between associated

matrix algebras and vice versa. Thus, by a result due to Choi [8], E is an elementary operator

of the form E(·) =
∑n

i=1 Ai(·)A†i , where
∑n

i=1 A†iAi = I (
∑n

i=1 A†iAi ≤ I).

The dynamics of a closed quantum system are described by a unitary transform. A natural

way to describe the dynamics of an open infinite dimensional quantum system (principal

system) on H as a subsystem of a closed quantum system on H ⊗Henv, composited by the

principal system and an environment system. Let E be a channel on the principal system.

Fix a state ρenv ∈ S(Henv); then there exists a unitary operator U acting on H ⊗Henv such

that

E(ρ) = Trenv[U(ρ⊗ ρenv)U †]. (3.1)

Thus a quantum channel for infinite dimensional system is still a trace-preserving completely

positive linear map between the trace-class operators. This raises the question of character-

izing completely positive linear maps between trace-classes.

Using the discussion in Section 2, one can characterize the completely bounded linear

maps, positive completely bounded linear maps and completely positive linear maps between

the trace-classes. This allow us to obtain a similar representation of quantum operations

for infinite-dimensional systems. Firstly we recall some notions. For A ∈ B(H), denote

|A| = (A†A)
1
2 . Recall that the trace class T (H) = {T : ‖T‖1 = Tr(|T |) < ∞}, which is

an ideal of B(H). Furthermore, T (H) is a Banach space with the trace norm ‖ · ‖1. The

dual space of T (H) is T (H)∗ = B(H) and every bounded linear functional is of the form

T 7→ Tr(AT ), where A ∈ B(H).

Lemma 3.1. Let H, K be separable complex Hilbert spaces and T (H), T (K) be the trace

classes on H, K respectively. Then, a linear map ∆ : T (H) → T (K) is completely bounded

if and only if there exist operator sequences {Ai}i ⊂ B(H, K) and {Bi}i ⊂ B(K,H) satisfying

‖ ∑
i A

†
iAi ‖< ∞, and ‖ ∑

i BiB
†
i ‖< ∞ such that

∆(T ) =
∑

i

AiTBi

for all T ∈ T (H).

Proof. If ∆ has the form stated in the theorem, it is obvious that, for any X ∈ B(K),

Tr(
∑

i AiTBiX) =
∑

i Tr(AiTBiX)

=
∑

i Tr(TBiXAi) = Tr(
∑

i TBiXAi)

holds for all T ∈ T (H), so ∆∗(X) =
∑

i BiXAi ∈ B(H). As ‖ ∑
i A

†
iAi ‖< ∞, and ‖∑

i BiB
†
i ‖< ∞, ∆∗ is completely bounded with ‖∆∗‖cb ≤‖ (

∑
i A

†
iAi)

1
2 ‖ · ‖ (

∑
i BiB

†
i )

1
2 ‖ .

But ‖∆n‖ = ‖∆∗
n‖ (ref. [19, Proposition 3.2.2]). So, ∆ is completely bounded.

Conversely, assume that ∆ : T (H) → T (K) is a completely bounded linear map; then

∆∗ : B(K) → B(H) is a completely bounded normal linear map. By Lemma 2.1, ∆∗ is a
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generalized elementary operator. So there exists operator sequences {Ai}i ⊂ B(H, K) and

{Bi}i ⊂ B(K, H) satisfying ‖ ∑
i A

†
iAi ‖< ∞, and ‖ ∑

i BiB
†
i ‖< ∞ such that ∆∗(X) =∑

i BiXAi holds for all X ∈ B(K,H). Now, it is clear that ∆(T ) =
∑

i AiTBi holds for all

T ∈ B(K, H), completing the proof. ¤
By Lemma 3.1 and Theorem 2.5 the following results are immediate.

Theorem 3.2. Let H, K be separable complex Hilbert spaces and T (H), T (K) be the trace

classes on H, K respectively. Let ∆ : T (H) → T (K) be a linear map. Then

(i) ∆ is positive and completely bounded if and only if there exist operator sequences {Ai}i ⊂
B(H, K) and {Bi}i ⊂ B(H, K) with ‖ ∑

i A
†
iAi ‖< ∞ and ‖ ∑

i B
†
i Bi ‖< ∞, and a map

Ω : H → B1(l2) such that B†|ψ〉 = Ω(|ψ〉)A†|ψ〉 for every |ψ〉 ∈ H and

∆(T ) =
∑

i

AiTA†i −
∑

i

BjTB†
j

for all T ∈ T (H).

(ii) ∆ is completely positive if and only if there exist operator sequences {Ai}i ⊂ B(H, K)

with ‖ ∑
i A

†
iAi ‖< ∞ such that

∆(T ) =
∑

i

AiTA†i

for all T ∈ T (H).

Mathematically, like that for finite dimensional case, we may define a quantum channel

(operation) as a trace-preserving (trace-decreasing) completely positive linear map from a

trace-class into a trace-class. Thus by Theorem 3.2, we have

Corollary 3.3. Every quantum channel (operation) E between two infinite-dimensional

systems respectively associated with Hilbert spaces H and K has the form

E(ρ) =
∞∑

i=1

MiρM †
i ,

where {Mi} ⊂ B(H, K) satisfies that
∑∞

i=1 M †
i Mi = IH (

∑∞
i=1 M †

i Mi ≤ IH).

Remark 3.4. For infinite dimensional case, is physically every trace-preserving completely

positive linear map qualified being a quantum channel? Let E : T (H) → T (H) be a trace-

preserving positive linear map. If H is finite dimensional, and if E(ρ) =
∑k

i=1 EiρE†
i for

every ρ, then there exists a finite dimensional Hilbert space Henv with dimHenv = k, and

a unitary operator U : H ⊗ Henv → H ⊗ Henv such that Eq.(3.1) holds, that is, E(ρ) =

Trenv[U(ρ⊗ρenv)U †] for all ρ ∈ S(H). In fact the unitary operator U = (Uij) on H⊗Henv can

be chosen so that Ei = Ui1 for each i = 1, 2, . . . , k. This means that every trace-preserving

completely positive linear map is a quantum channel. It is clear that this is not always

true for the infinite dimensional case. In fact, let H be a Hilbert space with dim H = ∞
and E : T (H) → T (H) be a trace-preserving completely positive linear map defined by

E(ρ) =
∑k

i=1 MiρM †
i with

∑k
i=1 M †

i Mi = I, where Mi 6= 0 for each i and k ≤ ∞; then there

exist Henv with dimHenv = k, ρenv ∈ S(Henv) and a unitary operator U : H⊗Henv → H⊗Henv
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such that Eq.(3.1) holds if and only if dim kerM = dim kerM†, where

M =




M1 0 0 · · ·
M2 0 0 · · ·
...

...
...

. . .

Mi 0 0 · · ·
...

...
...

. . .




is an operator from Hk into Hk. Obviously, dimkerM = ∞ ≥ dimkerM†, and kerM† =

{|y〉 = ( |y1〉 |y2〉 · · · |yi〉 · · · )T :
∑

i M
†
i |yi〉 = 0}. Decompose the space H into H =

⊕k
i=1 Hi so that dim Hi = ∞ for each i and take Mi : H → H so that M †

i is an isometry

with range Hi. Then
∑

i M
†Mi = I. As kerM† = {0} we see that dim kerM 6= dim kerM†.

However, if we allow that E(ρ) =
∑k

i=1 MiρM †
i +M∞ρM †∞ with M∞ = 0, and dimHenv = k+1,

then there exists a unitary operator U such that U has the form

U =




M1 U12 · · · U1j · · ·
...

...
. . .

...
. . .

Mi Ui2 · · · Uij · · ·
...

...
. . .

...
. . .

M∞ Uk+1,2 · · · Uk+1,j · · ·




So, for some suitable state ρenv the Eq.(3.1) holds. Thus, like the finite dimensional case, we

still have that every trace-preserving completely positive linear map is a quantum channel.

4. Elementary operator criterion of separability of quantum states

Using the characterization of positive maps that are NCP in Section 2, we can establish

a necessary and sufficient criterion of separability of states, that is, the elementary operator

criterion.

The following necessary and sufficient condition for a state on finite dimensional spaces to

be entangled is an immediate consequence of Corollary 2.7 and Horodeckis’ Theorem.

Theorem 4.1. Let H and K be finite dimensional complex Hilbert spaces and ρ be a state

acting on H ⊗K. Then ρ is an entangled state if and only if there exists a linear map of the

form Φ(·) =
∑k

i=1 Ci(·)C†
i −

∑l
j=1 Dj(·)D†

j : B(H) → B(K) with {D1, . . . , Dl} a contractive

locally linear combination of {C1, . . . , Ck}, such that the operator (Φ⊗ I)ρ is not positive.

We will show below that this result is also true for infinite dimensional case. Before doing

this, we write directly from Theorem 2.5 and Corollary 2.6 two sufficient criteria of entangle-

ment of states for infinite dimensional systems.

Proposition 4.2. Let H, K be complex Hilbert spaces and ρ be a state on H ⊗K. Then

ρ is entangled if there exists an elementary operator of the form Φ(·) =
∑k

i=1 Ci(·)C†
i −∑l

j=1 Dj(·)D†
j : B(H) → B(K), where {D1, . . . , Dl} is a contractive locally linear combination

but not a contractive linear combination of {C1, . . . , Ck}, such that the operator (Φ ⊗ I)ρ is

not positive.
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More generally, we have

Proposition 4.3. Let H, K be complex Hilbert spaces and ρ be a state on H ⊗K. Then ρ

is an entangled state if there exists a generalized elementary operator Φ defined by

Φ(X) =
∑

i

AiXA†i −
∑

j

CjXC†
j

for every X ∈ B(H), where ‖ ∑
i AiA

†
i ‖< ∞ and ‖ ∑

j CjC
†
j ‖< ∞, {Cj}j is a generalized

contractive locally linear combination but not a generalized contractive linear combination of

{Ai}i, such that (Φ⊗ I)ρ is not positive.

Propositions 4.2 and 4.3 only provide sufficient conditions for a state to be entangled. In

fact, these conditions are also necessary, and thus we obtain a necessary and sufficient criterion

for entanglement which we will call the elementary operator criterion. Much better can be

reached. Note that an elementary operator Φ is of finite rank if and only if there exist finite

rank operators Ai, Bi, i = 1, 2, · · · , k, such that Φ(X) =
∑k

i=1 AiXBi [27]. We will prove that

every entangled state can be detected by a positive elementary operator of finite rank.

Theorem 4.4. (Elementary operator criterion) Let H, K be complex Hilbert spaces and ρ

be a state on H⊗K. Then ρ is entangled if and only if there exists an elementary operator of

the form Φ(·) =
∑k

i=1 Ci(·)C†
i −

∑l
j=1 Dj(·)D†

j : B(H) → B(K), where all Cis and Djs are of

finite rank and {D1, . . . , Dl} is a contractive locally linear combination of {C1, . . . , Ck}, such

that the operator (Φ⊗ I)ρ is not positive.

Proof. The “if” part follows from Proposition 4.2. For the “only if” part, assume that the

state ρ is inseparable. Take any orthonormal bases {|i〉} and {|j〉} of H and K, respectively.

For any positive integers s ≤ dimH and t ≤ dimK, denote Pst = Ps ⊗Qt, where Ps and Qt

are finite rank projections onto the subspaces Hs and Kt spanned by {|i〉}s
i=0 and {|j〉}t

j=0,

respectively. Since ρ is entangled, by [42, Theorem 2], there exists (s, t) such that ρst =

Tr(PstρPst)−1PstρPst is entangled. Regarding ρst as a state on Hs ⊗Kt. As dim(Hs ⊗Kt) <

∞, by Theorem 4.1, there exists a positive map ∆ : B(Hs) → B(Kt) of the form ∆(·) =∑k
i=1 Ai(·)A†i −

∑l
j=1 Bj(·)B†

j with {B1, . . . , Bl} a contractive locally linear combination but

not a contractive linear combination of {A1, . . . , Ak}, such that the operator (∆ ⊗ Qt)ρst is

not positive on Kt ⊗ Kt. Let Φ : B(H) → B(K) be defined by Φ(X) = Qt∆(PsXPs)Qt.

Then Φ is positive and Φ(X) =
∑k

i=1 Ci(X)C†
i −

∑l
j=1 Dj(X)D†

j , where Ci = QtAiPs and

Dj = QtBiPs are of finite rank.

Represent ρ as an operator matrix ρ = (ηij)i,j according to the bases {|i〉}s
i=0 and {|j〉}t

j=0,

where ηij ∈ B(H). Obviously,

ρst = Tr(PstρPst)−1




Psη11Ps Psη12Ps · · · Psη1tPs

Psη21Ps Psη22Ps · · · Psη2tPs

...
...

. . .
...

Psηt1Ps Psηt2Ps · · · PsηttPs




.
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Thus we have

(∆⊗Qt)ρst = Tr(PstρPst)−1




∆(Psη11Ps) ∆(Psη12Ps) · · · ∆(Psη1tPs)

∆(Psη21Ps) ∆(Psη22Ps) · · · ∆(Psη2tPs)
...

...
. . .

...

∆(Psηt1Ps) ∆(Psηt2Ps) · · · ∆(PsηttPs)




(4.1)

is not positive. Note that Φ(ηij) = Qt∆(PsηijPs)Qt = ∆(PsηijPs). So

(Φ⊗ I)ρ

=




∆(Psη11Ps) ∆(Psη12Ps) · · · ∆(Psη1tPs) ∆(Psη1(t+1)Ps) · · ·
∆(Psη21Ps) ∆(Psη22Ps) · · · ∆(Psη2tPs) ∆(Psη2(t+1)Ps) · · ·

...
...

. . .
...

...
. . .

∆(Psηt1Ps) ∆(Psηt2Ps) · · · ∆(PsηttPs) ∆(Psηt(t+1)Ps) · · ·
∆(Psη(t+1)1Ps) ∆(Psη(t+1)2Ps) · · · ∆(Psη(t+1)tPs) ∆(Psη(t+1)(t+1)Ps) · · ·

...
...

. . .
...

...
. . .




.

It follows that (Φ⊗ I)ρ is not positive since it has a non positive t× t submatrix (4.1). The

proof is completed. ¤
To sum up, we have proved the following criterion of separability, which is valid for both

finite and infinite dimensional systems, improves Stømer’s theorem [44] and is easier to be

handled by our characterization of positive elementary operators.

Theorem 4.5. (Elementary operator criterion) Let H, K be complex Hilbert spaces and ρ

be a state acting on H ⊗K. Then the following statements are equivalent.

(1) ρ is separable;

(2) (Φ⊗ I)ρ ≥ 0 holds for every positive elementary operator Φ : B(H) → B(K).

(3) (Φ⊗I)ρ ≥ 0 holds for every finite-rank positive elementary operator Φ : B(H) → B(K).

5. Some examples of constructing NCP positive maps

It follows from Theorem 4.4, 4.5 and Theorem 2.11, for both finite and infinite dimensional

systems, it is very important to construct NCP positive linear maps between matrix algebras

since the non-complete positivity of a positive elementary operator is essentially determined by

its behavior on finite-dimensional subspaces. In this section we give some concrete examples

of NCP positive linear maps between matrix algebras by applying the results in Section 2.

Let H be a complex Hilbert space of dim H = n < ∞ and let {|1〉, |2〉, . . . , |n〉} be an

orthonormal basis of H. Denote Eij = |i〉〈j|, 1 ≤ i, j ≤ n. The well known NCP positive map

on B(H), that is, the transpose T 7→ T t is an elementary operator

T t =
n∑

i=1

EiiTEii +
∑

i<j

AijTA†ij −
∑

i<j

CijTC†
ij ∀T,



18

where Aij = 1√
2
(Eij +Eji), Cij = 1√

2
(Eij−Eji). Another example of well known NCP positive

map is the reduction map, which has the form

T 7→ Tr(T )I − T =
∑

i6=j

EijTEji +
∑

i6=j

GijAG†
ij −

∑

i6=j

FijAF †
ij ∀T,

where Fij = 1√
2
(Eii + Ejj) and Gij = 1√

2
(Eii − Ejj).

Next we give another kind of NCP positive linear maps.

Proposition 5.1. Let H be a complex Hilbert space of 2 ≤ dimH = n < ∞ and let

{|1〉, |2〉, . . . , |n〉} be an orthonormal basis of H. Denote Eij = |i〉〈j|, 1 ≤ i, j ≤ n. Let

Ak =
∑n

i=1 aki|i〉〈i|, k = 1, . . . , s and Bl =
∑

i=1 bli|i〉〈i|, l = 1, . . . , t with t > 0 and s+ t ≤ n.

Assume that {Ak, Bl : k = 1, . . . , s; l = 1, . . . , t} is a linearly independent set. Let ∆ : B(H) →
B(H) be the linear map defined by

∆(T ) =
s∑

k=1

AkTA†k +
∑

i6=j

EijTE†
ij −

t∑

l=1

BlTB†
l (5.1)

for every T ∈ B(H). If
∑s

k=1 |aki|2 ≥
∑t

l=1 |bli|2, |
∑s

k=1 akiakj −
∑s

l=1 bliblj | ≤ 1 whenever

i 6= j, then ∆ is NCP positive.

Proof. It is clear that ∆ defined in Eq.(5.1) is not completely positive since Bj is linearly

independent to {Ak, Eij : 1 ≤ k ≤ s; 1 ≤ i, j ≤ n, i 6= j}. Assume that
∑s

k=1 |aki|2 ≥∑t
l=1 |bli|2, |

∑s
k=1 akiakj −

∑s
l=1 bliblj | ≤ 1 whenever i 6= j, We will show that ∆ is positive.

Note that

∆(Emm) = (
s∑

k=1

|akm|2 −
t∑

l=1

|blm|2)Ekk +
∑

i6=k

Eii (5.2)

and

∆(Eij) = (
s∑

k=1

akiākj −
t∑

l=1

blib̄lj)Eij if i 6= j. (5.3)

Let fii =
∑s

k=1 |aki|2 −
∑t

l=1 |bli|2 and fij =
∑s

k=1 akiākj −
∑t

l=1 blib̄lj if i 6= j. Clearly,

fji = f̄ij for all i, j.
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Identify H with Cn. For any |ψ〉 = (ξ1, ξ2, . . . , ξn)T ∈ Cn, consider the rank-one positive

matrix |ψ〉〈ψ| = (ξiξ̄j). By Eqs.(5.2) and (5.3) we have

∆(|ψ〉〈ψ|) =




f11|ξ1|2 f12ξ1ξ̄2 · · · f1nξ1ξ̄n

f21ξ2ξ̄1 f22|ξ2|2 · · · f2nξ2ξ̄n

...
...

. . .
...

fn1ξnξ̄1 fn2ξnξ̄2 · · · fnn|ξn|2




+




∑
1≤j≤n,j 6=1 |ξj |2 0 · · · 0

0
∑

1≤j≤n,j 6=2 |ξj |2 · · · 0
...

...
. . .

...

0 0 · · · ∑
1≤j≤n,j 6=n |ξj |2




≥




∑
1≤j≤n,j 6=1 |ξj |2 f12ξ1ξ̄2 · · · f1nξ1ξ̄n

f21ξ2ξ̄1
∑

1≤j≤n,j 6=2 |ξj |2 · · · f2nξ2ξ̄n

...
...

. . .
...

fn1ξnξ̄1 fn2ξnξ̄2 · · · ∑
1≤j≤n,j 6=n |ξj |2




= Cψ

So it suffices to show that Cψ ≥ 0.

To do this, denote ci = |ξi|. Then, by the assumption of |fij | ≤ 1 for i 6= j, we have

fijξiξ̄j = cicjvij with |vij | ≤ 1, and

Cψ =




∑
1≤j≤n,j 6=1 c2

j c1c2v12 · · · c1cnv1n

c1c2v̄12
∑

1≤j≤n,j 6=2 c2
j · · · c2cnv2n

...
...

. . .
...

c1cn ¯v1n c2cn ¯v2n · · · ∑
1≤j≤n,j 6=n c2

j




.

For any |φ〉 = (η1, η2, . . . , ηn)T ∈ Cn, writing di = |ηi|, we have

〈φ|Cψ|φ〉 =
∑n

i=1(
∑

1≤j≤n,j 6=i c
2
j )|ηi|2 + 2Re(

∑
i<j cicjvijηj η̄i)

≥ ∑n
i=1(

∑
1≤j≤n,j 6=i c

2
j )d

2
i − 2

∑
i<j cicjdidj

=
∑

i<j(cidj − cjdi)2 ≥ 0.

Therefore, Cψ ≥ 0. We have proved that ∆(|ψ〉〈ψ|) ≥ 0 holds for all rank-one positive

matrices |ψ〉〈ψ|. It follows that ∆ is a positive linear map, as desired. ¤
In the following, we give some preliminary results on characterizing positive elementary

operators, which are needed in later.

The following result is easily checked and is useful to us.

Proposition 5.2. Let

B(t1,t2··· ,tn) =




t1 −1 −1 · · · −1

−1 t2 −1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · tn



∈ Mn(C).
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If ti ≥ n− 1 for each i = 1, 2, · · · , n, then B(t1,t2··· ,tn) ≥ 0 (that is, B(t1,t2··· ,tn) is semi-positive

definite); if ti < n−1 for each i = 1, 2, · · · , n, then B(t1,t2··· ,tn) � 0. Particularly, B(t,t,··· ,t) ≥ 0

if and only if t ≥ n− 1.

Proof. Assume that ti ≥ n − 1 for each i = 1, 2, · · · , n. Then t0 = min{t1, t2, · · · , tn} ≥
n− 1. For any |x〉 = (ξ1, ξ2, . . . , ξn)T ∈ Cn, we have

〈x|B(t1,t2··· ,tn)|x〉 = t0
∑n

i=1 |ξi|2 − 2
∑

i<j ξiξ̄j

≥ t0
∑n

i=1 |ξi|2 − 2
∑

i<j |ξi||ξj |
= (t0 − n + 1)

∑n
i=1 |ξi|2 + (n− 1)

∑n
i=1 |ξi|2 − 2

∑
i<j |ξi||ξj |

= (t0 − n + 1)
∑n

i=1 |ξi|2 +
∑n

i<j(|ξi| − |ξj |)2 ≥ 0,

which implies that B(t1,t2··· ,tn) ≥ 0. If ti < n − 1 for each i = 1, 2, · · · , n, then t′0 =

max{t1, t2, · · · , tn} < n − 1. Taking ξ1 = ξ2 = · · · = ξn 6= 0 and let |x0〉 = (ξ1, ξ1, . . . , ξ1)T ,

one gets 〈x0|B(t1,t2··· ,tn)|x0〉 ≤ (t′0−n + 1)n
∑n

i=1 |ξ1|2 < 0. It follows that Bt 6≥ 0, completing

the proof. ¤
There is another simple proof of Proposition 5.2 suggested by Chi-Kwong Li by applying

the fact that an operator A = D − |ψ〉〈ψ| with D ≥ 0 invertible is positive if and only if

‖D− 1
2 |ψ〉‖ ≤ 1.

By using of above results, we can prove the following result.

Proposition 5.3. Let H and K be Hilbert spaces and let {|i〉}n
i=1 and {|i′〉}n

i=1 be any

orthonormal sets of H and K, respectively. Denote Eji = |j′〉〈i| ∈ B(H, K). Let ∆ : B(H) →
B(K) be defined by

∆(t1,t2,··· ,tn)(A) =
∑n

i=1 tiEiiAE†
ii − (

∑n
i=1 Eii)A(

∑n
i=1 Eii)†

for all A ∈ B(H). If ti ≥ n for each i = 1, 2, · · · , n, then ∆(t1,t2,··· ,tn) is a completely positive

map; if ti < n for each i = 1, 2, · · · , n, then ∆(t1,t2,··· ,tn) is not a positive map. Particularly,

∆(t,t,··· ,t) is positive if and only if it is completely positive, and in turn, if and only if t ≥ n.

Proof. For any unit vector |x〉 = (ξ1, ξ2, · · · , ξn, 0, 0, · · · )T ∈ H, consider the rank-one

projection |x〉〈x|. We have

∆(|x〉〈x|) =




(t1 − 1)|ξ1|2 −ξ1ξ̄2 · · · −ξ1ξ̄n 0 0 · · ·
−ξ2ξ̄1 (t2 − 1)|ξ2|2 · · · −ξ2ξ̄n 0 0 · · ·

...
...

. . .
...
...

...
. . .

...

−ξnξ̄1 −ξnξ̄2 · · · (tn − 1)|ξn|2 0 0 · · ·
0 0 · · · 0 0 0 · · ·
0 0 · · · 0 0 0 · · ·
...

...
. . .

...
...

...
. . .




. (5.4)

If ti < n for each i = 1, 2, · · · , n, taking |x〉 = (1, 1, . . . , 1, 0, 0, · · · )T in Eq.(5.4) and by

Proposition 5.2, we get ∆(|x〉〈x|) 6≥ 0, and so ∆ is not positive.
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On the other hand, assume that ti ≥ n for each i = 1, 2, · · · , n. Since
∑n

i=1 Eii =∑n
i=1

1√
ti

(
√

tiEii) and
∑n

i=1(
1√
ti

)2 ≤ ∑n
i=1(

1√
n
)2 ≤ 1,

∑n
i=1 Eii is a contractive linear combi-

nation of {√t1E11,
√

t2E22, · · · ,
√

tnEnn}. By Corollary 2.6, ∆ is completely positive. ¤
For the sake of convenience, we introduce a terminology here.

Definition 5.4. Let ∆ : B(H) → B(K) be a finite rank elementary operator. It follows

from a characterization of finite rank elementary operators in [27] that there exist finite rank

projections P ∈ B(H) and Q ∈ B(K) such that

∆(A) = Q∆(PAP )Q for all A ∈ B(H). (5.5)

Let

(n,m) = min{(rank(P ), rank(Q)) : (P, Q) satisfies the equation (5.5)}.
(n,m) is called the order of ∆, and we say that the elementary operator ∆ is of the order

(n,m).

6. Positive finite rank elementary operators of order (2, 2) and (3, 3)

In this section we will construct some positive finite rank elementary operators of order

(2, 2) and (3, 3). Applying such positive maps, we give a simple necessary and sufficient

condition for a pure state to be separable. We also use these positive maps to detect some

entangled mixed states.

Positive elementary operators of order (2, 2) are easily constructed. For example, Let H

and K be Hilbert spaces of dimension ≥ 2, and let {|i〉}2
i=1 and {|j′〉}2

j=1 be any orthonormal

sets of H and K, respectively. Let Φ0 : B(H) → B(K) be defined by

Φ0(A) = E11AE†
11 + E22AE†

22 + E12AE†
12

+E21AE†
21 − (E11 + E22)A(E11 + E22)†

(6.1)

and
Ψ0(A) = (2E11 + E22)A(2E11 + E22)† + E12AE†

12

+E21AE†
21 − (E11 + E22)A(E11 + E22)†

(6.2)

for every A ∈ B(H), where Eji = |j′〉〈i|. It is obvious that both Φ0 and Ψ0 are positive

because the map (
a11 a12

a21 a22

)
7→

(
a22 −a12

−a21 a11

)

and the map (
a11 a12

a21 a22

)
7→

(
3a11 + a22 a12

a21 a11

)

on M2(C) are positive. A surprising fact is that such simple positive elementary operators of

order (2, 2) will be enough to determine the separability of the pure states.

Let U(H) (resp. U(K)) be the group of all unitary operators on H (resp. on K). For any

map ∆ : B(H) → B(K) and any unitary operators U ∈ U(H) and V ∈ U(K), the deduced

map A 7→ V †∆(U †AU)V will be denoted by ∆U,V . Though there is no “universal” NCP
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positive linear map that can recognize all entangled states, we still hope that the following

conjecture is true:

Conjecture 6.0. There exists a NCP positive linear map ∆ that is universal in the

sense that the set G(∆) = {∆U,V : U ∈ U(H), V ∈ U(K)} provides a necessary and sufficient

criterion of separability.

We do not know if this conjecture is true. But the next result is a support of the conjecture,

which gives a simple necessary and sufficient criterion of separability for pure states in bipartite

composite systems of any dimension, by G(Φ) with Φ a suitable elementary operator or order

(2,2).

Theorem 6.1. Let H and K be Hilbert spaces of dimension ≥ 2, and let {|i〉}2
i=1 and

{|j′〉}2
j=1 be any orthonormal sets of H and K, respectively. Let Φ0(Ψ0) : B(H) → B(K) be

defined by Eq.(6.1) (Eq.(6.2)). Then a pure state ρ on H ⊗K is separable if and only if

(ΦU,V
0 ⊗ I)ρ ≥ 0 ((ΨU,V

0 ⊗ I)ρ ≥ 0)

holds for all U ∈ U(H) and V ∈ U(K).

Proof. If a state ρ is separable, then (ΦU,V
0 ⊗ I)ρ ≥ 0 ((ΨU,V

0 ⊗ I)ρ ≥ 0) as ΦU,V
0 (ΨU,V

0 ) is

a positive map.

Conversely, assume that ρ = |ψ〉〈ψ| is an inseparable pure state. Let |ψ〉 =
∑Nψ

k=1 δk|k, k′〉
be the Schmidt decomposition, where δ1 ≥ δ2 ≥ · · · > 0 with

∑Nψ

k=1 δ2
k = 1, and {|k〉}Nψ

k=1

and {|k′〉}Nψ

k=1 are orthonormal in H and K, respectively. Thus ρ =
∑Nψ

k,l=1 δkδk′ |k, k′〉〈l, l′| =
∑Nψ

k,l=1 δkδk′Ekl ⊗ Ek′l′ . Since ρ = |ψ〉〈ψ| is inseparable, the Schmidt number Nψ of |ψ〉 is

greater than 1 and hence δ1 ≥ δ2 > 0.

Up to unitary equivalence, we may assume that {|k〉}2
k=1 = {|i〉}2

i=1 and {|k′〉}2
k′=1 =

{|j′〉}2
i=1. Then, since Φ0(Ekl) = 0 (Ψ0(Ekl) = 0) whenever k > 2 or l > 2, we have

(Φ0 ⊗ I)ρ =
∑2

i,j=1 δiδjΦ0(Eij)⊗ Eij

∼=




0 0 0 −δ1δ2

0 δ2
1 0 0

0 0 δ2
2 0

−δ1δ2 0 0 0



⊕ 0

((Ψ0 ⊗ I)ρ =
∑2

i,j=1 δiδjΨ0(Eij)⊗ Eij

∼=




3δ2
1 0 0 δ1δ2

0 δ2
1 0 0

0 0 δ2
2 0

δ1δ2 0 0 0



⊕ 0,

which is clearly not positive. ¤
Now let us consider the positive elementary operators of order (3, 3).

Theorem 6.2. Let H and K be Hilbert spaces of dimension ≥ 3, and let {|i〉}3
i=1 and

{|j′〉}3
j=1 be any orthonormal sets of H and K, respectively. Let Φ,Φ′ : B(H) → B(K) be
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defined by

Φ(A) = 2
∑3

i=1 EiiAE†
ii + E12AE†

12 + E23AE†
23 + E31AE†

31

−(
∑3

i=1 Eii)A(
∑3

i=1 Eii)†
(6.3)

and
Φ′(A) = 2

∑3
i=1 EiiAE†

ii + E13AE†
13 + E21AE†

21 + E32AE†
32

−(
∑3

i=1 Eii)A(
∑3

i=1 Eii)†
(6.3)′

for every A ∈ B(H), where Eji = |j′〉〈i|. Then Φ and Φ′ are indecomposable positive finite

rank elementary operators of order (3, 3).

Proof. We only give the proof that Φ is NCP positive. The fact that Φ is not decomposable

will be proved in Example 6.3. Φ′ is dealt with similarly.

It is obvious that Φ is a finite rank elementary operator of order (3, 3). Also, it is clear from

Corollary 2.6 that Φ is not completely positive because
∑3

i=1 Eii is not a contractive linear

combination of

{
√

2E11,
√

2E22,
√

2E33, E12, E23, E31}.
To prove the positivity of Φ, extend {|i〉}3

i=1 and {|j′〉}3
j=1 to orthonormal bases {|i〉}dim H

i=1

and {|j′〉}dim K
j=1 of H and K, respectively. Then every A ∈ B(H) has a matrix representation

A = (akl) and the map Φ maps A into

Φ(A) =




a11 + a22 −a12 −a13 0 0 · · ·
−a21 a22 + a33 −a23 0 0 · · ·
−a31 −a32 a33 + a11 0 0 · · ·

0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .




,

which is unitarily equivalent to

S ⊕ 0 =




a11 + a22 −a12 −a13

−a21 a22 + a33 −a23

−a31 −a32 a33 + a11


⊕ 0.

It is easily checked that (also see [29, Proposition 5.2]) the matrix S is positive. So Φ(A) is

positive, completing the proof of the theorem. ¤
Next we use the positive maps in Theorem 6.2 to detect some mixed entangled states. The

example also implies that the positive maps in Theorem 6.2 are not decomposable since they

can recognize some PPT entangled states.

The states ρt in the next example were introduced in [30] firstly.

Example 6.3. Let H and K be complex Hilbert spaces of dimension ≥ 3 and let {|i〉}3
i=1

and {|j′〉}3
j=1 be any orthonormal sets of H and K, respectively. Let

|ω1〉 =
1√
3
(|11′〉+ |22′〉+ |33′〉) and |ω2〉 =

1√
3
(|12′〉+ |23′〉+ |31′〉).
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Define ρ1 = |ω1〉〈ω1|, ρ2 = |ω2〉〈ω2| and ρ3 = 1
3(|13′〉〈13′| + |21′〉〈21′| + |32′〉〈32′|). Let ρ =∑3

i=1 qiρi and ρt = (1− t)ρ + tρ0, where qi ≥ 0 for i = 1, 2, 3 with q1 + q2 + q3 = 1, t ∈ [0, 1],

and ρ0 is a state on H ⊗K.

Hou and Qi in [30] proved that, if q2 < 5
7q1 or q1 < 5

7q2, then, for sufficiently small t, ρt is

entangled; if q2 < 5
7q1 or q1 < 5

7q2, and if q1q2q3 ≥ q3
1 +q3

2, then ρt is PPT entangled whenever

ρ0 is. Now, by using of the positive finite rank elementary operators Φ and Φ′ constructed

in Theorem 6.2, we can give a finer result. In fact, for sufficiently small t, or for ρ0 with

(Φ⊗ I)ρ0 = (Φ′ ⊗ I)ρ0 = 0 (for example, taking ρ0 =
∞∑
i=4

pi|i〉〈i′| ⊗ |i〉〈i′|, pi ≥ 0,
∞∑
i=4

pi = 1),

the following statements are true.

(1) If q1 6= q2 or q1 = q2 > q3, then ρt is entangled.

(2) Let ρ0 be PPT. Then ρt is PPT if and only if q1q2q3 ≥ q3
1 + q3

2. Particularly, if qj = 2qi

and 9
2qj ≤ q3, where i, j ∈ {1, 2} and i 6= j, then ρt is PPT entangled.

In fact, by [30], we need only to check the following:

(1)′ If q1 6= q2 or q1 = q2 > q3, then ρ is entangled.

(2)′ ρ is PPT if and only if q1q2q3 ≥ q3
1 + q3

2. Particularly, if qj = 2qi and 9
2qj ≤ q3, where

i, j ∈ {1, 2} and i 6= j, then ρ is PPT entangled.

For ρ = q1ρ1 + q2ρ2 + q3ρ3, it is obvious that

ρ =
1
3




q1 0 0 0 q1 0 0 0 q1

0 q3 0 0 0 0 0 0 0

0 0 q2 q2 0 0 0 q2 0

0 0 q2 q2 0 0 0 q2 0

q1 0 0 0 q1 0 0 0 q1

0 0 0 0 0 q3 0 0 0

0 0 0 0 0 0 q3 0 0

0 0 q2 q2 0 0 0 q2 0

q1 0 0 0 q1 0 0 0 q1




⊕ 0.

Note that

3(Φ⊗ I)(ρ)

∼=




q1 + q3 0 0 0 −q1 0 0 0 −q1

0 q2 + q3 0 0 0 0 0 0 0

0 0 q1 + q2 −q2 0 0 0 −q2 0

0 0 −q2 q1 + q2 0 0 0 −q2 0

−q1 0 0 0 q1 + q3 0 0 0 −q1

0 0 0 0 0 q2 + q3 0 0 0

0 0 0 0 0 0 q2 + q3 0 0

0 0 −q2 −q2 0 0 0 q1 + q2 0

−q1 0 0 0 −q1 0 0 0 q1 + q3




⊕ 0,
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which is unitarily equivalent to the operator A⊕B ⊕ C ⊕ 0, where

A =




q1 + q3 −q1 −q1

−q1 q1 + q3 −q1

−q1 −q1 q1 + q3


 , B =




q1 + q2 −q2 −q2

−q2 q1 + q2 −q2

−q2 −q2 q1 + q2




and

C =




q2 + q3 0 0

0 q2 + q3 0

0 0 q2 + q3


 ≥ 0.

For the matrices A and B, by Proposition 5.2, we get that A � 0 if q3 < q1 and B � 0 if

q1 < q2. So (Φ ⊗ I)(ρ) is not positive if q3 < q1 or q1 < q2. It follows from the elementary

operator criterion Theorem 4.4 that ρ is entangled if q3 < q1 or q1 < q2. Note that ρ is PPT if

and only if q1q2q3 ≥ q3
1 +q3

2. Thus, particularly, we obtain that ρ is PPT entangled if q2 = 2q1

and 9
2q1 ≤ q3.

Similarly, by applying the map Φ′, one can get that the other half of the assertions (1)′-(2)′

is true.

7. Positive finite rank elementary operators of order (4, 4)

In this section we will construct some positive finite rank elementary operators of order

(4, 4). The following is our main result.

Theorem 7.1. Let H and K be Hilbert spaces of dimension greater than 3 and let {|i〉}4
i=1

and {|j′〉}4
j=1 be any orthonormal sets of H and K, respectively. Let Φ,Φ′,Φ′′ : B(H) → B(K)

be defined by

Φ(A) = 3
∑4

i=1 EiiAE†
ii + E12AE†

12 + E23AE†
23 + E34AE†

34 + E41AE†
41

−(
∑4

i=1 Eii)A(
∑4

i=1 Eii)†,
(7.1)

Φ′(A) = 3
∑4

i=1 EiiAE†
ii + E13AE†

13 + E24AE†
24 + E31AE†

31 + E42AE†
42

−(
∑4

i=1 Eii)A(
∑4

i=1 Eii)†
(7.1)′

and

Φ′′(A) = 3
∑4

i=1 EiiAE†
ii + E14AE†

14 + E21AE†
21 + E32AE†

32 + E43AE†
43

−(
∑4

i=1 Eii)A(
∑4

i=1 Eii)†
(7.1)′′

for every A ∈ B(H), where Eji = |j′〉〈i|. Then Φ,Φ′,Φ′′ are positive finite rank elementary

operators that are not completely positive. Moreover, Φ and Φ′′ are indecomposable.

Proof. Still, we only prove that Φ, Φ′ and Φ′′ are NCP positive. The fact that Φ and Φ′′

are indecomposable will be illustrated by Example 7.2 or 7.3 below.

It is clear from Corollary 2.6 that Φ is not completely positive because
∑4

i=1 Eii is not a

contractive linear combination of {√3E11, . . . ,
√

3E44, E12, E23, E34, E41}. We will show that

Φ is positive. Extend {|i〉}4
i=1 and {|j′〉}4

j=1 to orthonormal bases {|i〉}dim H
i=1 and {|j′〉}dim K

j=1
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of H and K, respectively. Then every A ∈ B(H) has a matrix representation A = (akl).

Obviously, Φ maps A = (akl) to the matrix

Φ(A) =




2a11 + a22 −a12 −a13 −a14 0 · · ·
−a21 2a22 + a33 −a23 −a24 0 · · ·
−a31 −a32 2a33 + a44 −a34 0 · · ·
−a41 −a42 −a43 2a44 + a11 0 · · ·

0 0 0 0 0 · · ·
...

...
...

...
...

. . .




.

Take any unit vector |x〉 = (x1, x2, x3, x4, x5, · · · )T ∈ H and consider the rank-one projection

|x〉〈x|. Obviously, Φ is positive if and only if Φ(|x〉〈x|) ≥ 0 holds for all unit vector |x〉 ∈ H.

Since

Φ(|x〉〈x|) =




2|x1|2 + |x2|2 −x1x̄2 −x1x̄3 −x1x̄4 0 · · ·
−x2x̄1 2|x2|2 + |x3|2 −x2x̄3 −x2x̄4 0 · · ·
−x3x̄1 −x3x̄2 2|x3|2 + |x4|2 −x3x̄4 0 · · ·
−x4x̄1 −x4x̄2 −x4x̄3 2|x4|2 + |x1|2 0 · · ·

0 0 0 0 0 · · ·
...

...
...

...
...

. . .




,

we see that Φ(|x〉〈x|) ≥ 0 if and only if

M(x) =




2|x1|2 + |x2|2 −x1x̄2 −x1x̄3 −x1x̄4

−x2x̄1 2|x2|2 + |x3|2 −x2x̄3 −x2x̄4

−x3x̄1 −x3x̄2 2|x3|2 + |x4|2 −x3x̄4

−x4x̄1 −x4x̄2 −x4x̄3 2|x4|2 + |x1|2



≥ 0.

It follows from Proposition 5.2 that all the principal minor determinants with order less than

4 of matrix M(x) are semi-positive definite. So, to prove the positivity of M(x), we need only

to show that det(M(x)) ≥ 0. Writing xi = rie
iθi , i = 1, 2, 3, 4, we have

M(x) = U




2r2
1 + r2

2 −r1r2 −r1r3 −r1r4

−r1r2 2r2
2 + r2

3 −r2r3 −r2r4

−r1r3 −r2r3 2r2
3 + r2

4 −r3r4

−r1r4 −r2r4 −r3r4 2r2
4 + r2

1




U †,

where

U =




eiθ1 0 0 0

0 eiθ2 0 0

0 0 eiθ3 0

0 0 0 eiθ4



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is a unitary matrix. It follows that Φ is positive if and only if the determinant

f(r1, r2, r3, r4) =

∣∣∣∣∣∣∣∣∣∣

2r2
1 + r2

2 −r1r2 −r1r3 −r1r4

−r1r2 2r2
2 + r2

3 −r2r3 −r2r4

−r1r3 −r2r3 2r2
3 + r2

4 −r3r4

−r1r4 −r2r4 −r3r4 2r2
4 + r2

1

∣∣∣∣∣∣∣∣∣∣

≥ 0

holds for all 0 ≤ r1, r2, r3, r4 ≤ 1 with r2
1 + r2

2 + r2
3 + r2

4 = 1. This is the case since, by

a computation, min f(r1, r2, r3, r4) = 0 (also, refer to the proof of Theorem 8.1). So Φ is

positive, as desired.

Similarly, one can show that Φ′ and Φ′′ are positive but not completely positive. ¤
Now let us give some examples.

The entanglement of the states ρ in Example 7.2 were studied for 4 × 4 system in [13]

by constructing suitable witnesses. We construct states ρt based on ρ and detect them by

the positive maps obtained in Theorem 7.1. In addition, we also discuss the question when

these states are entangled but cannot be recognized by the PPT criterion and the realignment

criterion.

Example 7.2. Let H and K be Hilbert spaces of dimension ≥ 4, and let {|i〉}4
i=1 and

{|j′〉}4
j=1 be any orthonormal sets of H and K, respectively. Let |ω〉 = 1

2(|11′〉 + |22′〉 +

|33′〉 + |44′〉). Define ρ1 = |ω〉〈ω|, ρ2 = 1
4(|12′〉〈12′| + |23′〉〈23′| + |34′〉〈34′| + |41′〉〈41′|), ρ3 =

1
4(|13′〉〈13′|+ |24′〉〈24′|+ |31′〉〈31′|+ |42′〉〈42′|) and ρ4 = 1

4(|14′〉〈14′|+ |21′〉〈21′|+ |32′〉〈32′|+
|43′〉〈43′|). Let ρ =

∑4
i=1 qiρi and ρt = (1 − t)ρ + tρ0, where qi ≥ 0 for i = 1, 2, 3, 4 with

q1 + q2 + q3 + q4 = 1, t ∈ [0, 1], and ρ0 is a state on H ⊗K. Then for sufficiently small t, or

for ρ0 with (Φ⊗ I)ρ0 = (Φ′ ⊗ I)ρ0 = (Φ′′ ⊗ I)ρ0 = 0, the following statements are true.

(1) If qi < q1 for some i = 2, 3, 4, then ρt is entangled.

(2) Let ρ0 be PPT. Then ρt is PPT if and only if q2q4 ≥ q2
1 and q2

3 ≥ q2
1. Thus, if

0 < qi < q1 < 1
4 , 1

4 ≤ qj < 1 with qiqj ≥ q2
1 and 0 < q1 ≤ q3 < 1, where i, j ∈ {2, 4} and i 6= j,

then ρt is PPT entangled.

(3) If ρ0 is PPT, and if q1 ≤ 1
7 , qi = 1

2q1, qj = 1
2 and q3 = 1

2 − 3qi, where i, j ∈ {2, 4} and

i 6= j, then ρt is PPT entangled but can not be detected by the realignment criterion.

Like that in Example 6.3, we need only check ρ.

In the rest of this section, we will denote by {|i〉}dim H
i=1 and {|j′〉}dim K

j=1 the orthonormal

bases of H and K extended by {|i〉}4
i=1 and {|j′〉}4

j=1, respectively, denote by Fk,l the rank one

operator |k′〉〈l|, which has a matrix representation of (k, l)-entry 1 and others 0 with respect

to the above bases.

Thus, for ρ =
∑4

i=1 qiρi, with respect to the above bases, we have

ρ = 1
4diag(q1, q4, q3, q2, q2, q1, q4, q3, q3, q2, q1, q4, q4, q3, q2, q1)

+ q1

4 (F1,6 + F1,11 + F1,16 + F6,1 + F6,11 + F6,16

+F11,1 + F11,6 + F11,16 + F16,1 + F16,6 + F16,11)
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and

4(Φ⊗ I)(ρ)

= diag(2q1 + q4, 2q4 + q3, 2q3 + q2, 2q2 + q1, 2q2 + q1, 2q1 + q4, 2q4 + q3,

2q3 + q2, 2q3 + q2, 2q2 + q1, 2q1 + q4, 2q4 + q3, 2q4 + q3, 2q3 + q2, 2q2 + q1, 2q1 + q4)

−q1(F1,6 + F1,11 + F1,16 + F6,1 + F6,11 + F6,16

+F11,1 + F11,6 + F11,16 + F16,1 + F16,6 + F16,11),

which is unitarily equivalent to



2q1 + q4 −q1 −q1 −q1

−q1 2q1 + q4 −q1 −q1

−q1 −q1 2q1 + q4 −q1

−q1 −q1 −q1 2q1 + q4



⊕ (2q4 + q3)I4

⊕(2q3 + q2)I4 ⊕ (2q2 + q1)I4 ⊕ 0.

Hence, by Proposition 5.2, we get that (Φ ⊗ I)(ρ) � 0 if q4 < q1, which implies that ρ is

entangled if q4 < q1.

Note that

ρ is PPT if and only if q2q4 ≥ q2
1 and q3 ≥ q1. (7.2)

Thus we obtain that ρ is PPT entangled if 0 < q4 < q1 < 1
4 , 1

4 ≤ q2 < 1 with q2q4 ≥ q2
1 and

0 < q1 ≤ q3 < 1. This reveals that the positive map Φ can recognize some PPT entangled

states and hence is not decomposable.

The realignment matrix of ρ is

ρR ∼= 1
4diag(q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1)

+ q4

4 (F1,6 + F6,11 + F11,16 + F16,1) + q3

4 (F1,11 + F6,16 + F11,1 + F16,6)

+ q2

4 (F1,16 + F6,1 + F11,6 + F16,11)

∼= 1
4




q1 q4 q3 q2

q2 q1 q4 q3

q3 q2 q1 q4

q4 q3 q2 q1



⊕ 1

4q1I12 ⊕ 0 = A⊕ 1
4q1I12 ⊕ 0.

Thus ‖ρR‖1 = ‖A‖1 + 3q1. By computation, we have that

‖A‖1 = 3
4

√∑4
i=1 q2

i − q1q2 − q2q3 − q3q4 − q1q4

+1
4

√∑4
i=1 q2

i + 3(q1q2 + q2q3 + q3q4 + q1q4).
(7.3)

It follows from Eqs.(7.2)-(7.3) that the PPT criterion and the realignment criterion are inde-

pendent each other. It is also easy to construct entangled states that can not be recognized

by the PPT criterion and the realignment criterion. In fact, we have that ‖ρR‖1 < 1 if q1 ≤ 1
7 ,

q4 = 1
2q1, q2 = 1

2 and q3 = 1
2 − 3q4. For example, ‖ρR‖1

.= 0.9411 < 1 if q1 = 1
7 , q4 = 1

14 ,

q2 = 1
2 and q3 = 2

7 . Hence, in this case, the state ρ is PPT and cannot be detected by the

realignment criterion. However it is entangled and can be recognized by the positive map Φ

in Theorem 7.1.
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Similarly, by applying the map Φ′′, we have that ρ is entangled if q2 < q1, and, ρ is PPT

entangled if 0 < q2 < q1 < 1
4 , 1

4 ≤ q4 < 1 with q2q4 ≥ q2
1 and 0 < q1 ≤ q3 < 1. Thus, Φ′′

is indecomposable, too. Furthermore, if q1 ≤ 1
7 , q2 = 1

2q1, q4 = 1
2 and q3 = 1

2 − 3q2, then ρ

is PPT entangled that cannot be detected by the realignment criterion. However, it can be

detected by the positive map Φ′′ in Theorem 7.1.

By applying the map Φ′, we see that ρ is entangled if q3 < q1. However, one should be

careful that, in this case, ρ is not PPT. This means that we can not use ρ to check whether

or not Φ′ is decomposable.

Example 7.3. Let H and K be complex Hilbert spaces of dimension ≥ 4 and let {|i〉}4
i=1

and {|j′〉}4
j=1 be any orthonormal sets of H and K, respectively. Let

|ω1〉 =
1
2
(|11′〉+ |22′〉+ |33′〉+ |44′〉) and |ω2〉 =

1
2
(|12′〉+ |23′〉+ |34′〉+ |41′〉).

Define ρ1 = |ω1〉〈ω1|, ρ2 = |ω2〉〈ω2|, ρ3 = 1
4(|13′〉〈13′| + |24〉〈24′| + |31′〉〈31′| + |42′〉〈42′|) and

ρ4 = 1
4(|14′〉〈14′|+ |21′〉〈21′|+ |32′〉〈32′|+ |43′〉〈43′|). Let ρ =

∑4
i=1 qiρi and ρt = (1− t)ρ+ tρ0,

where qi ≥ 0 for i = 1, 2, 3, 4 with q1 + q2 + q3 + q4 = 1, t ∈ [0, 1], and ρ0 is a state on H ⊗K.

By using of the positive finite rank elementary operators Φ, Φ′ and Φ′′ in Theorem 4.1, we

get that, for sufficiently small t or for any ρ0 with (Φ⊗ I)ρ0 = (Φ′ ⊗ I)ρ0 = (Φ′′ ⊗ I)ρ0 = 0,

the followings are true.

(1) If q1 6= q2 or q1 = q2 > qi for some i ∈ {3, 4}, then ρt is entangled.

(2) Let ρ0 be PPT. Then ρt is PPT if and only if q1(q1q
2
3 − q2

2q3 − q3
1) ≥ q2

2(q1q3 − q2
2) ≥ 0

and q2(q2q
2
4 − q2

1q4 − q3
2) ≥ q2

1(q2q4 − q2
1) ≥ 0. Hence, if, in addition, q1 6= q2 or q1 = q2 > qi

for some i ∈ {3, 4}, then ρt is PPT entangled.

(3) If ρ0 is separable, and if 1
2qi = qj ≤ 1

15 and q3 = q4, where i, j ∈ {1, 2} and i 6= j, then

ρt is PPT entangled that cannot be detected by the realignment criterion.

We need only deal with ρ.

For ρ = q1ρ1 + q2ρ2 + q3ρ3 + 4ρ4, it is obvious that

ρ = q1

4 (F1,1 + F1,6 + F1,11 + F1,16 + F6,1 + F6,6 + F6,11 + F6,16

+F11,1 + F11,6 + F11,11 + F11,16 + F16,1 + F16,6 + F16,11 + F16,16)

+ q2

4 (F4,4 + F4,5 + F4,10 + F4,15 + F5,4 + F5,5 + F5,10 + F5,15

+F10,4 + F10,5 + F10,10 + F10,15 + F15,4 + F15,5 + F15,10 + F15,15)

+ q3

4 (F3,3 + F8,8 + F9,9 + F14,14) + q4

4 (F2,2 + F7,7 + F12,12 + F13,13).

Note that

4(Φ⊗ I)(ρ) = diag(2q1 + q4, q3 + 2q4, q2 + 2q3, q1 + 2q2, q1 + 2q2, 2q1 + q4, q3 + 2q4, q2 + 2q3,

q2 + 2q3, q1 + 2q2, 2q1 + q4, q3 + 2q4, q3 + 2q4, q2 + 2q3, q1 + 2q2, 2q1 + q4)

−q1(F1,6 + F1,11 + F1,16 + F6,1 + F6,11 + F6,16

+F11,1 + F11,6 + F11,16 + F16,1 + F16,6 + F16,11)

−q2(F4,5 + F4,10 + F4,15 + F5,4 + F5,10 + F5,15

+F10,4 + F10,5 + F10,15 + F15,4 + F15,5 + F15,10),
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which is unitarily equivalent to the operator A⊕B ⊕ C ⊕D ⊕ 0, where

A =




2q1 + q4 −q1 −q1 −q1

−q1 2q1 + q4 −q1 −q1

−q1 −q1 2q1 + q4 −q1

−q1 −q1 −q1 2q1 + q4


 , B =




q1 + 2q2 −q2 −q2 −q2

−q2 q1 + 2q2 −q2 −q2

−q2 −q2 q1 + 2q2 −q2

−q2 −q2 −q2 q1 + 2q2




and

C =




q2 + 2q3 0 0 0

0 q2 + 2q3 0 0

0 0 q2 + 2q3 0

0 0 0 q2 + 2q3


 , D =




q3 + 2q4 0 0 0

0 q3 + 2q4 0 0

0 0 q3 + 2q4 0

0 0 0 q3 + 2q4


.

It is clear that C,D ≥ 0. For the matrices A and B, by Proposition 5.2, we get that A ≥ 0 if

and only if q4 ≥ q1 and B ≥ 0 if and only if q1 ≥ q2. So (Φ ⊗ I)(ρ) is not positive if q4 < q1

or q1 < q2. It follows from the elementary operator criterion that ρ is entangled if q4 < q1 or

q1 < q2.

Next, consider the positive partial transpose of ρ. It is clear that

ρT1 ∼= q1

4 (F1,1 + F2,5 + F3,9 + F4,13 + F5,2 + F6,6 + F7,10 + F8,14

+F9,3 + F10,7 + F11,11 + F12,15 + F13,4 + F14,8 + F15,12 + F16,16)

+ q2

4 (F1,8 + F2,12 + F3,16 + F4,4 + F5,5 + F6,9 + F7,13 + F8,1

+F9,6 + F10,10 + F11,14 + F12,2 + F13,7 + F14,11 + F15,15 + F16,3)

+ q3

4 (F3,3 + F8,8 + F9,9 + F14,14) + q4

4 (F2,2 + F7,7 + F12,12 + F13,13)
∼= A1 ⊕B1 ⊕ C1 ⊕D1 ⊕ 0,

where

A1 =
1
4




q1 q2 0 0

q2 q3 0 q1

0 0 q1 q2

0 q1 q2 q3


, B1 =

1
4




q4 q1 q2 0

q1 q2 0 0

q2 0 q4 q1

0 0 q1 q2




and

C1 =
1
4




q3 0 q1 q2

0 q1 q2 0

q1 q2 q3 0

q2 0 0 q1


, D1 =

1
4




q2 0 0 q1

0 q4 q1 q2

0 q1 q2 0

q1 q2 0 q4


.

It is easy to check that A1 ≥ 0 if and only if q1q3 ≥ q2
2 and q2

1q
2
3 − 2q1q

2
2q3 − q4

1 + q4
2 ≥ 0;

B1 ≥ 0 if and only if q2q4 ≥ q2
1 and q2

2q
2
4 − 2q2

1q2q4 + q4
1 − q4

2 ≥ 0; C1 ≥ 0 if and only if

q1q
2
3 ≥ q2

2q3 + q3
1 and q2

1q
2
3 − 2q1q

2
2q3 − q4

1 + q4
2 ≥ 0; and D1 ≥ 0 if and only if q2q4 ≥ q2

1 and

q2
2q

2
4 − 2q2

1q2q4 + q4
1 − q4

2 ≥ 0. Hence

ρ is PPT if and only if

q1(q1q
2
3 − q2

2q3 − q3
1) ≥ q2

2(q1q3 − q2
2) ≥ 0

and q2(q2q
2
4 − q2

1q4 − q3
2) ≥ q2

1(q2q4 − q2
1) ≥ 0.

(7.4)

Particularly,

if q2 = 2q1 and q3 = q4 ≥ 4q1, then ρ is PPT entangled. (7.5)
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This fact will be used below.

Now, let us apply the realignment criterion to ρ. The realignment of ρ is

ρR ∼= 1
4diag(q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1, q1)

+ q2

4 (F1,16 + F2,13 + F3,14 + F4,15 + F5,4 + F6,1 + F7,2 + F8,3

+F9,8 + F10,5 + F11,6 + F12,7 + F13,12 + F14,9 + F15,10 + F16,11)

+ q3

4 (F1,11 + F6,16 + F11,1 + F16,6) + q4

4 (F1,6 + F6,11 + F11,16 + F16,1)
∼= A⊕B(3) ⊕ 0,

where

A =
1
4




q1 q4 q3 q2

q2 q1 q4 q3

q3 q2 q1 q4

q4 q3 q2 q1




, B =
1
4




q1 0 0 q2

q2 q1 0 0

0 q2 q1 0

0 0 q2 q1




and B(3) denotes the direct sum of 3 copies of B. Then

‖ρR‖1 = ‖A‖1 + 3‖B‖1

= 3
4

√∑4
i=1 q2

i − q1q2 − q2q3 − q3q4 − q1q4

+1
4

√∑4
i=1 q2

i + 3(q1q2 + q2q3 + q3q4 + q1q4)

+9
4

√
q2
1 + q2

2 − q1q2 + 3
4

√
q2
1 + q2

2 + 3q1q2.

(7.6)

Now a computation reveals that, if q1 ≤ 1
15 , q2 = 2q1 and q3 = q4, then the trace norm

‖ρR‖1 < 1. Note that, by Eq.(7.5), ρ is PPT in this case. Hence, we get another kind

of examples of entangled states that are PPT and cannot be detected by the realignment

criterion.

Similarly, by using the positive map Φ′′, we obtain that ρ is entangled if q2 < q1 or q3 < q2,

and, if q2 ≤ 1
15 , q1 = 2q2 and q3 = q4, then ρ is PPT entangled that cannot be detected by

the realignment criterion.

By using the positive map Φ′, we see that ρ is entangled if q3 < q1 or q4 < q2. In this case,

by Eq.(7.4), ρ is not PPT because q1q
2
3 − q2

2q3 − q3
1 < 0 or q2q

2
4 − q2

1q4 − q3
2 < 0.

8. Positive finite rank elementary operators of order (n, n)

In this section we consider the general case, that is, constructing positive finite rank ele-

mentary operators of order (n, n). The main purpose is to show that the following result is

true.

Theorem 8.1. Let H and K be Hilbert spaces of dimension ≥ n, and let {|i〉}n
i=1 and

{|j′〉}n
j=1 be any orthonormal sets of H and K, respectively. For k = 1, 2, · · · , n − 1, let

Φ(k) : B(H) → B(K) be defined by

Φ(k)(A) = (n− 1)
∑n

i=1 EiiAE†
ii +

∑n
i=1 Ei,πk(i)AE†

i,πk(i)

−(
∑n

i=1 Eii)A(
∑n

i=1 Eii)†
(8.1)
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for every A ∈ B(H), where π(i) = π1(i) = (i + 1) mod n, πk(i) = (i + k) mod n (k > 1),

i = 1, 2, · · · , n and Eji = |j′〉〈i|. Then Φ(k) are positive but not completely positive. Moreover,

Φ(k) is indecomposable whenever either n is odd or k 6= n
2 .

Proof. Obviously, Φ(k) is not completely positive for each k = 1, 2, · · · , n − 1. Similar to

the proof of Theorem 7.1, to prove that Φ = Φ(1) is positive, it is sufficient to show that the

function

f1,n(r1, r2, · · · , rn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

(n− 2)r2
1 + r2

2 −r1r2 −r1r3 · · · −r1rn

−r1r2 (n− 2)r2
2 + r2

3 −r2r3 · · · −r2rn

−r1r3 −r2r3 (n− 2)r2
3 + r2

4 · · · −r3rn

...
...

...
. . .

...

−r1rn −r2rn −r3rn · · · (n− 2)r2
n + r2

1

∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0

(7.2)

for all (r1, r2, · · · , rn) with 0 ≤ r1, r2, · · · , rn ≤ 1 and
∑n

i=1 r2
i = 1. Other Φ(k)s are dealt with

similarly.

We may assume that all ris are nonzero. Let xi =
r2
i+1

r2
i

, i = 1, 2, . . . , n − 1, and xn = r2
1

r2
n
.

Then x1x2 · · ·xn = 1 and

f1,n(r1, r2, · · · , rn) = (r1r2 · · · rn)2h1,n(x1, x2, · · · , xn), (7.3)

where

h1,n(x1, x2, · · · , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

(n− 2) + x1 −1 −1 · · · −1

−1 (n− 2) + x2 −1 · · · −1

−1 −1 (n− 2) + x3 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · (n− 2) + xn

∣∣∣∣∣∣∣∣∣∣∣∣∣

(7.4)

with each xi > 0 and x1x2 · · ·xn = 1. It follows that f1,n ≥ 0 for all (r1, r2, · · · , rn) with

0 ≤ r1, r2, · · · , rn ≤ 1 and
∑n

i=1 r2
i = 1 if and only if h1,n ≥ 0 holds for all (x1, x2, · · · , xn)

with xi > 0 (i = 1, 2, . . . , n) and x1x2 · · ·xn = 1.

Note that, the determinant in Eq.(8.4) can be formulated as

h1,n(x1, x2, · · · , xn) = −M0 + M1
∑n

i=1 xi + M2
∑

i<j xixj + · · ·
+Mk

∑
i1<i2<···<ik

xi1xi2 · · ·xik + · · ·
+Mn−1

∑
i1<i2<···<in−1

xi1xi2 · · ·xin−1 + Mnx1x2 · · ·xn.
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The case of n = 3 is obvious. So we assume that n ≥ 4 in the sequel. Since, by Proposition

5.2, h1,n(0, 0, · · · , 0) = −M0 < 0, we have M0 > 0. Taking xi = 0 for 2 ≤ i ≤ n, we see that

−M0 + M1x1 = h1,n(x1, 0, . . . , 0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(n− 2) + 1 −1 −1 · · · −1

−1 (n− 2) −1 · · · −1

−1 −1 (n− 2) · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · (n− 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

(n− 2) −1 −1 · · · −1

−1 (n− 2) −1 · · · −1

−1 −1 (n− 2) · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · (n− 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 0 0 · · · 0

0 (n− 2) −1 · · · −1

0 −1 (n− 2) · · · −1
...

...
...

. . .
...

0 −1 −1 · · · (n− 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −M0 + h1,n−1(1, 1, . . . , 1)x1.

Thus we have M1 = h1,n−1(1, 1, · · · , 1) ≥ 0 by Proposition 5.2. Let xi = 0 for i ≥ 3. A

computation reveals that M2 = h1,n−2(2, 2, · · · , 2) ≥ 0. In general, one can check that

Mk = h1,n−k(k, k, · · · k) ≥ 0, k = 1, 2, · · · , n. (8.5)

For example,

Mn−3 = h1,3(n− 3, n− 3, n− 3) =

∣∣∣∣∣∣∣

n− 2 −1 −1

−1 n− 2 −1

−1 −1 n− 2

∣∣∣∣∣∣∣
= (n− 2)3 − 3(n− 2)− 2 ≥ 0,

Mn−2 = h1,2(n− 2, n− 2) =

∣∣∣∣∣
n− 2 −1

−1 n− 2

∣∣∣∣∣ = (n− 2)2 − 1 ≥ 0,

Mn−1 = h1,n−1 = n − 2 ≥ 0 and Mn = 1. Thus we have shown that M0,M1,M2, · · ·Mn ∈
N ∪ {0}. It is easily checked that h1,n(1, 1, · · · , 1) = 0. This leads to

n∑

i=1

Mi = M0. (8.6)

Next, observe that if aj > 0 and a1a2 · · · am = 1, then
∑m

j=1 aj ≥ 1. This fact implies that
∑

i1<i2<···<ik

xi1xi2 · · ·xik ≥ 1 (8.7)

holds for each 1 ≤ k ≤ n. Eq.(8.7), together with Eq.(8.6), yields that h1,n(x1, x2, · · · , xn) ≥ 0

holds for all (x1, x2, · · · , xn) with x1x2 · · ·xn = 1.

The last assertion will be proved by Example 8.4 below. The proof is finished. ¤
Remark 8.2. Let π be any permutation of (1, 2, · · · , n) and let Ψπ : Mn(C) → Mn(C) be

the map defined by

Ψπ(A) = diag{(n− 1)a11 + aπ(1)π(1), (n− 1)a22 + aπ(2)π(2), · · · , (n− 1)ann + aπ(n)π(n)} −A
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for every A = (aij) ∈ Mn(C). By Corollary 2.6, Proposition 5.3 and the proof of Theorem

8.1, it is easily seen that Ψπ is a positive linear map that is not completely positive whenever

π 6= id.

Remark 8.3. For any n-dimensional Hilbert space H, define

Dk =
1√

k(k + 1)
(
k−1∑

i=1

Eii − (k − 1)Ekk), k = 1, 2, · · · , n− 1,

Mi,j =
1√
2
(Eij + Eji) for i < j,

and

Ni,j =
1√
2
(iEij − iEji) for i < j.

Relabel these n2−1 matrices as J1, J2, · · · , Jn2−1. Then the n2−1 matrices form a completely

orthonormal traceless set and any n× n Hermitian matrix S can be written as the form

S =
1
n

(I +
n2−1∑

k=1

ηkJk),

where ηk ∈ R, k = 1, 2, · · · , n2 − 1. Hence it is clear that the n × n hermitian matrices

with trace 1 and the points in Rn2−1 (the real linear space) are in one-to-one correspondence.

The image Λn of the set of all density matrices is a closed convex set in Rn2−1. Then every

positive linear map Φ : Mn(C) → Mn(C) corresponds to a linear map MΦ : Rn2−1 → Rn2−1

that sends Λn into Λn. It was shown in [41] that every map represented by a matrix of the form

M = (n−1)−1R is positive, where R ∈ O(n2−1), the orthogonal group of proper and improper

rotations in Rn2−1 ([41, Theorem 4]). Some more can be said. In fact, M = (n − 1)−1R

corresponds a positive map whenever ‖R‖ ≤ 1. The positive maps in Theorem 6.2 may be

obtained from this way. However, the positive maps in Theorem 7.1 can not be obtained from

this way. For example, consider the map Φ in Theorem 7.1. By a simple calculation, we get

MΦ = 1
18




9 3
√

3 0

−√3 11 4
√

2

−2
√

6 −2
√

2 10


 .

It is clear that ‖MΦ‖ > 1
3 , and so [41, Theorem 4] is not applicable to our map Φ here.

In the following we give two examples that generalize the examples in Sections 3-4.

The states ρ in Example 8.4 were suggested for n×n system in [13] without analyzing their

entanglement.

Example 8.4. Let H and K be Hilbert spaces of dimension ≥ n and let {|i〉}n
i=1 and

{|j′〉}n
j=1 be any orthonormal sets of H and K, respectively. Let |ω〉 = 1

n

∑n
i=1 |ii′〉. Define

ρ1 = |ω〉〈ω|, ρ2 = 1
n

∑n
i=1(I ⊗ S)|ii′〉〈ii′|(I ⊗ S)†, ρ3 = 1

n

∑n
i=1(I ⊗ S2)|ii′〉〈ii′|(I ⊗ S2)†,

. . ., ρn = 1
n

∑n
i=1(I ⊗ Sn−1)|ii′〉〈ii′|(I ⊗ S(n−1))†, where S is the operator on K defined by

S|j′〉 = |(j + 1)′〉 if j = 1, 2, · · · , n− 1, S|n′〉 = |1′〉 and S|j′〉 = 0 if j > n. Let ρ =
∑n

i=1 qiρi

and ρt = (1− t)ρ+ tρ0, where qi ≥ 0 for i = 1, 2, · · · , n with
∑n

i=1 qi = 1, t ∈ [0, 1], and ρ0 is a
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state on H⊗K. Then for sufficiently small t, or for ρ0 with (Φ(k)⊗I)ρ0 = 0, k = 1, 2, · · · , n−1,

the following statements are true.

(1) If qi < q1 for some i = 2, 3, · · · , n, then ρt is entangled.

(2) Let ρ0 be PPT. Then ρt is a PPT state if and only if qiqj ≥ q2
1 for i, j with i+ j = n+2,

i = 3, 4, · · · , n.

It is enough to discuss the entanglement of ρ. For ρ =
∑n

i=1 qiρi, by using of the map

Φ = Φ(1) in Theorem 8.1, it is easily checked that

n(Φ⊗ I)(ρ)

∼=




(n− 2)q1 + qn −q1 −q1 · · · −q1

−q1 (n− 2)q1 + qn −q1 · · · −q1

−q1 −q1 (n− 2)q1 + qn · · · −q1

...
...

...
. . .

...

−q1 −q1 −q1 · · · (n− 2)q1 + qn




⊕((n− 2)qn + qn−1)In ⊕ ((n− 2)qn−1 + qn−2)In ⊕ · · · ⊕ ((n− 2)q2 + q1)In ⊕ 0.

Thus, by Proposition 5.2, we get that ρ is entangled if qn < q1.

Similarly, by applying the map Φ(k) in Theorem 8.1, we have ρ is entangled if qn+1−k < q1,

where k = 2, 3, · · · , n− 1.

It is easily checked that ρ is PPT if and only if qiqj ≥ q2
1, where i + j = n + 2 and

i = 3, 4, · · · , n.

Moreover, if n is odd, or if n is even but k 6= n
2 , we can choose q1, q2, · · · qn so that

qn+1−k < q1 < 1
n and qiqj ≥ q2

1 whenever i + j = n + 2. It follows that ρ =
∑n

i=1 qiρi is PPT

entangled which can be recognized by Φ(k). Hence, Φ(k) is not decomposable. This completes

the proof of the last assertion of Theorem 8.1.

Example 8.5. Let H and K be complex Hilbert spaces of dimension ≥ n and let {|i〉}n
i=1

and {|j′〉}n
j=1 be any orthonormal sets of H and K, respectively. Let |ω1〉 = 1√

n

∑n
i=1 |ii′〉

and |ω2〉 = 1√
n
(|12′〉 + |23′〉 + · · · + |(n − 1)n′〉 + |n1′〉). Define ρ1 = |ω1〉〈ω1|, ρ2 = |ω2〉〈ω2|,

ρ3 = 1
n

∑n
i=1(I ⊗S2)|ii′〉〈ii′|(I ⊗S2†), . . ., ρn = 1

n

∑n
i=1(I ⊗Sn−1)|ii′〉〈ii′|(I ⊗S(n−1)†), where

S is the same operator as in Example 8.4. Let ρ =
∑n

i=1 qiρi and ρt = (1 − t)ρ + tρ0, where

qi ≥ 0 for i = 1, 2, · · · , n with
∑n

i=1 qi = 1, t ∈ [0, 1], and ρ0 is a state on H ⊗K. By using

of the positive finite rank elementary operators Φ(k) in Theorem 8.1, one can get that, for

sufficiently small t or for any ρ0 with (Φ(k) ⊗ I)ρ0 = 0, k = 1, 2, · · · , n − 1, if q1 6= q2 or

q1 = q2 > qi for some i ∈ {3, 4, · · · , n}, then ρt is entangled.
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Still, we only need to consider the entanglement of ρ. For ρ =
∑n

i=1 qiρi, with Φ = Φ(1) as

in Theorem 8.1, it is clear that

n(Φ⊗ I)(ρ) ∼=




(n− 2)q1 + qn −q1 −q1 · · · −q1

−q1 (n− 2)q1 + qn −q1 · · · −q1

−q1 −q1 (n− 2)q1 + qn · · · −q1

...
...

...
. . .

...

−q1 −q1 −q1 · · · (n− 2)q1 + qn




⊕




(n− 2)q2 + q1 −q2 −q2 · · · −q2

−q2 (n− 2)q2 + q1 −q2 · · · −q2

−q2 −q2 (n− 2)q2 + q1 · · · −q2

...
...

...
. . .

...

−q2 −q2 −q2 · · · (n− 2)q2 + q1




⊕n
k=3((n− 2)qk + qk−1)In ⊕ 0

So, by Proposition 5.4, (Φ ⊗ I)(ρ) is not positive if qn < q1 or q1 < q2, which implies that ρ

is entangled if qn < q1 or q1 < q2.

Similarly, by applying the map Φ(k) (k = 2, 3, · · · , n − 1) in Theorem 8.1, one gets that

ρ is entangled if qn+1−k < q1 or q1 < q2. Thus, we obtain that ρ is entangled if q1 6= q2 or

q1 = q2 > qi for some i ∈ {3, 4, · · · , n}.
Before the end of this section, we propose a question.

Question 8.6. Let n ≥ 4 be an even integer. Is the positive map Φ(n
2
) defined in Theorem

8.1 indecomposable? Particularly, is the positive map Φ′ defined in Theorem 7.1 indecompos-

able?

We guess that the answer is affirmative, but we are not able to prove it by now.
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