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1. INTRODUCTION

Positive linear maps and completely positive linear maps are found to be very important
in quantum mechanics, quantum computation and quantum information. In fact they can
be used to recognize entangled states, and every quantum channel is represented as a trace
preserving completely positive linear map.

In quantum mechanics, a quantum system is associated with a separable complex Hilbert
space H, i.e., the state space. A quantum state is described as a density operator p €
T(H) C B(H) which is positive and has trace 1, where B(H) and 7 (H) denote the von
Neumann algebras of all bounded linear operators and the trace-class of all operators T' with
1T = Tr((TTT)%) < o0, respectively. p is a pure state if p? = p; p is a mixed state if p? # p.
The state space H of a composite quantum system is the tensor product of the state spaces
of the component quantum systems H;, that is H = H; ® Ho ® ... ® Hy. In this lecture we
are mainly interested in bipartite systems, that is, the case k = 2. Let H and K be finite
dimensional and let p be a state acting on H ® K. p is said to be separable if p can be written
as

k
p= Zpi/)z' ® 03,
i=1
where p; and o; are states on H and K respectively, and p; are positive numbers with Zle p; =
1. Otherwise, p is said to be inseparable or entangled (ref. [2, 34]). For the infinite dimensional
case, by Werner [46], a state p acting on H ® K is called separable if it can be approximated

in the trace norm by the states of the form

n
o= sz‘ﬂz’ ® oy,
i=1

where p; and o; are states on H and K respectively, and p; are positive numbers with > """ | p; =

1. Otherwise, p is called an entangled state.



The quantum entangled states have been used as basic resources in quantum information
processing and communication (see [3, 4, 15, 16, 34, 39]). Generally, to decide whether or not
a state of composite quantum systems is entangled is one of the most challenging task of this
field [34]. For the case of 2 x 2 or 2 x 3 systems, that is, for the case dim H = dim K = 2
or dim H = 2, dim K = 3, a state is separable if and only if it is a PPT (Positive Partial
Transpose) state [22, 36]. But PPT is only a necessary condition for a state to be separable
acting on Hilbert space of higher dimensions. There are PPT states that are entangled. It
is known that PPT entangled states belong to the class of bound entangled states [23]. In
[7], the realignment criterion for separability in finite dimensional systems was established,
and was generalized to the infinite dimensional systems by [21]. The realignment criterion
is a powerful criterion that is independent of the PPT criterion. However, there are still
entangled states that can be recognized by neither the PPT criterion nor the realignment
criterion. There are several other sufficient criteria for entanglement such as the reduction
criterion and majorization criterion [6, 24, 25].

A most general approach to study the entanglement of quantum states in finite dimensional
systems is based on the notion of entanglement witnesses (see [22]). A Hermitian operator W
acting on H ® K is said to be an entanglement witness (briefly, EW), if W is not positive and
Tr(Wo) > 0 holds for all separable states o. Thus, p is entangled if and only if there exists
an entanglement witness W such that Tr(1Wp) < 0 [22]. This entanglement witness criterion
is also valid for infinite dimensional systems. Clearly, constructing entanglement witnesses is
a hard task. A recent result in [30] states that every entangled state in a bipartite (finite or
infinite dimensional) system can be detected by a witness of the form ¢/ — F', where ¢ is a
nonnegative number and F' is a finite rank self-adjoint operator. A method of constructing
entanglement witnesses of the form I — F was also given in [30].

Another general approach to detect entanglement is based on positive maps. It is obvious
that if p is a state on H ® K, then for every completely positive (briefly, CP) linear map
® : B(H) — B(K), the operator (? ® I)p € B(K ® K) is always positive; if p is separable,
then for every positive linear map ® : B(H) — B(K), the operator (® ® I)p is always positive
on K® K (or, for every positive linear map ® : B(K) — B(H), the operator (I ® ®)p is always
positive on H ® H). The converse of the last statement is also true. In [22], it was shown that

Horodeckis’ Theorem. [22, Theorem 2| Let H, K be finite dimensional complex Hilbert
spaces and p be a state acting on H ® K. Then p is separable if and only if for any positive
linear map ® : B(H) — B(K), the operator (P @ I)p is positive on K @ K.

The positive map criterion and the witness criterion for entanglement are two of few known
necessary and sufficient criteria. These two criteria are closely connected by the so-called
the Jamiotkowski-Choi isomorphism [20, 22, 38, 40]. Recall that a positive map is said to be
decomposable if it is the sum of a CP map and a map which is the transpose of some CP map.

It is obvious that a decomposable positive map can not detect any PPT entangled states [32].
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Let us consider the case that at least one of H and K is of infinite dimension. As every
positive linear map 7 between von Neumann algebras is bounded and ||n|| = ||n(1)| (see
[31, Exercise 10.5.10]), p is separable on H ® K still implies that, for any completely bounded
positive linear map ® : B(H) — B(K), the operator (P®1)p is positive on K® K. The infinite-
dimensional version of Horodeckis’ Theorem above was obtained by Stgrmer [44]. Recall that
a positive linear map ¢ : B(H) — B(K) is said to be normal if it is weakly continuous on
bounded sets, or equivalently, if it is ultra-weakly continuous (i.e., if {A,} is a bounded net
and there is A € B(H) such that (x|A,|y) converges to (y|A|z) for any |z) € H,|y) € K, then
(x|P(Aq)|y) converges to (y|®(A)|z) for any |z) € H, |y) € K. ref. [17, pp.59)]).

Stormer’s Theorem. [44] Let H, K be Hilbert spaces, p be a state acting on H @ K.
Then p is separable if and only if for any normal positive linear map ® : B(H) — B(K), the
operator (& @ I)p is positive on K ® K.

Thus, for a state p on H ® K, if there exists a normal positive map ® : B(H) — B(K)
such that (® ® I)p is not positive or unbounded, then p is entangled. In this situation, ®
can never be completely positive. Therefore, to detect the inseparability of states, the key
is to find the normal positive linear maps that are not completely positive. In the case that
dim H = dim K = n, the transpose A — A” and the map A ~ Tr(A)I — A are well known
positive maps that are not completely positive (briefly, NCP).

However, Stgrmer’s Theorem is difficult to apply. To detect a state (1) we have to exhaust
all normal positive linear maps; (2) the structure of the normal positive linear maps is not
clear; (3) for a given entangled state, we do not know how to construct some non-completely
positive normal positive linear maps that recognize the entanglement of this state.

Thus several natural questions rise. For instance, (1) is the set of completely bounded
normal positive (CBNP) linear maps sufficient to determine the separability of any state?
(2) are there any more small subsets of CBNP linear maps that are still enough to provide
necessary and sufficient criteria of separability? (3) is there a tractable small subset of CBNP
linear maps that is enough to provide a necessary and sufficient criterion of separability?

In this lecture note, we give a characterization of completely bounded normal positive
linear maps, and show that the set of all positive finite-rank elementary operators is enough to
provide a necessary and sufficient criterion of the separability of states in infinite dimensional
systems. We also illustrate how to construct NCP positive finite-rank elementary operators
and apply them to detect the entanglement of some states.

Positive linear maps have attracted much attention of physicists working in quantum infor-
mation science in recent decades because of Horodeckis’ positive map criterion. Great efforts
have be payed to find as many as possible positive maps that are not CP, and then use them
to detect some entangled states [1, 11, 12, 25], for finite dimensional systems.

Positive linear maps and completely positive linear maps are also important mathematical
topics studied intensively in a general setting of C*-algebras by mathematicians. The com-

pletely positive linear maps can be understood quite well (Stinespring’s theorem). However,
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the structure of positive linear maps is drastically nontrivial even for the finite dimensional
case ([8]-[10], [35]).

Note that every linear map ® from B(H) into B(K) is an elementary operator if both
H and K are finite dimensional, that is, there exist operators Ay, As, ..., Ay € B(H, K) and
Bi,Ba,..., By, € B(K, H), such that ®(T) = S-F | A;TB; for all T € B(H). So, it is also basic
important and interesting to find as many as possible characterizations of positive elementary
operators and characterizations of completely positive elementary operators, and then, to
apply them to get some criteria for the entanglement of states.

A characterization of positive elementary operators was obtained in [28] in terms of contrac-
tively locally linear combinations. This is the only known necessary and sufficient condition
for an elementary operator to be positive. In this lecture we give a characterization of positive
completely bounded normal maps between B(H) and B(K), which including all positive ele-
mentary operators. Consequently, we present some concrete representations of the completely
bounded linear maps, positive completely bounded linear maps and completely positive linear
maps between the trace-classes 7 (H) and 7 (K'), which allow us to obtain a representation of
quantum channels (operations) for infinite-dimensional systems. Apply these characterization
of positive maps that are not CP, a necessary and a sufficient criterion, that is, the elementary
operator criterion of separability is established. Finally, some positive elementary operators
are constructed so that they are not completely positive, even indecomposable, and then used
to recognize some entangled quantum states that cannot be detected by the PPT criterion
and the realignment criterion.

Throughout, H and K are separable complex Hilbert spaces that may be of infinite di-
mension if no specific assumption is made, and (-|-) stands for the inner product in both of
them. B(H,K) (B(H) when K = H) is the Banach space of all (bounded linear) operators
from H into K. A € B(H) is self-adjoint if A = AT (A" stands for the adjoint operator of
A); and A is positive, denoted by A > 0, if A is self-adjoint with spectrum falling in the
interval [0, 00) (or equivalently, (1| As) > 0 for all |¢) € H). For any positive integer n, H)
denotes the direct sum of n copies of H. It is clear that every operator A € B(H ) K (m))
can be written in an m x n operator matrix A = (A4;5);; with A;; € B(H,K),i=1,2,...,m;
j =1,2,...,n. BEquivalently, B(H™ 6 K(™) is often written as B(H, K) @ Myxn(C). We
will write AT = (4;;)T for the formal transpose matrix (Aj;);; of A, At = (A;i)z‘,j for the
usual transpose of A, and denote by A(™ the operator matrix (4;;) € B(H™, K™) with
A = Aand A;; = 01if ¢ # j. If ® is a linear map from B(H) into B(K), we can define a
linear map @, : B(H™) — B(K™) by ®,((A;;)) = (®(A;;)). Recall that & is said to be
positive (resp. hermitian-preserving) if A € B(H) is positive (resp. self-adjoint) implies that
®(A) is positive (resp. self-adjoint). If @, is positive we say ® is n-positive; if ®,, is positive
for every integer n > 0, we say that ® is completely positive. Obviously, ® is completely

positive = & is positive = ® is hermitian-preserving. & is said to be completely bounded if

[@llep = supy, [|Pnl| < oo



2. CHARACTERIZING POSITIVE COMPLETELY BOUNDED NORMAL LINEAR MAPS

In this section we give a characterization of positive completely bounded normal linear
maps from B(H) into B(K).

Recall that a linear map ® : B(H) — B(K) is called an elementary operator if there are two
finite sequences {A;}!" ; C B(H, K) and {B;} ; C B(K, H) such that ®(X) = Y""" | A;XB;
for all X € B(H); ® : B(H) — B(K) is called a generalized elementary operator if there
exist sequences {A;} and {B;} satisfying || >, A,AIHHZl BQLBZ-H < oo such that ®(X) =
>, A; X B, for all X. Obviously, the generalized elementary operators are completely bounded
and normal.

We first give a lemma.

Lemma 2.1. Let H, K be separable complex Hilbert spaces and ® : B(H) — B(K) be
a linear map. Then ® is normal and completely bounded if and only if ® is a generalized
elementary operator.

Proof. We need only check the “only if” part. Assume that the linear map ® : B(H) —
B(K) is completely bounded and normal. It follows that, ® = ®; — &g + i(P3 — $4) with
®; normal and completely positive by Wittstock’s decomposition theorem (ref. [35]). As H
and K are separable, by Stinespring’s Theorem (ref. [35, 43]) and the structural theorem
of normal *-homomorphisms of B(H) (ref. [17, pp.61]), for each k = 1,2,3,4, there exist a
countable cardinal number .J, an operator Uy, € B(H/¥), K) such that ®;(X) = UkX(Jk)U,I,
where H(/¥) (resp. X(/¥)) is the direct sum of Jy-copies of H (resp. of X). Therefore, there
are sequences of operators {A;}i<s,, {Bj}j<s, {Cs}s<ss, {Dt}i<s, C B(H, K), such that

Uy=(A Ay - A ---)
Up=(By By --- B; ),
Us=(C1 Cy -+ Cs ---),
Us=( D1 Do D, )

and
O(X) =Y AXAI - > BXBI+i) C.XCI—i) DXD]
1<J1 J<J2 s<J3 t<Jy

for every X € B(H). Now it is clear that

4

1D AAN+ > BBl + > .t +> DDf| <D U < 0,
1<Jq J<J2 s<J3 <Js k=1

and so, ® is a generalized elementary operator. U

By Lemma 2.1, the question of characterizing positive completely bounded normal linear

maps between B(H) and B(K) is equivalent to the question of characterizing positive general-

ized elementary operators.



As a special class of generalized elementary operators, the global structures of hermitian-
preserving and completely positive elementary operators are quite clear. In fact, for general-
ized elementary operators, by the proof of Lemma 2.1, we have the following result.

Corollary 2.2. Let H, K be Hilbert spaces and ® be a generalized elementary operator
from B(H) into B(K). Then

(i) @ is hermitian-preserving if and only if there are sequences {A;},{C;} C B(H, K) with
152572, AiAl [|< 00 and || 3252, C5CT ||< oo such that

d(X) = i A XA — i C;XCT
i=1 j=1

for every X € B(H);
(i1) ® is completely positive if and only if there exists a sequence {A;} C B(H,K) with
| > AiA;'r |< oo such that

(X)) =) A XAl
i=1
for every X € B(H).

If both H and K are finite-dimensional, Corollary 2.2 (i) and (ii) were established by
DePillis [14] and Choi [8], respectively. For the elementary operator case, see [26] and [33].

For a sequence A = ( 4; Ay --- A; --- ), we will denote by A7 the formal transpose
of A and AT the usual adjoint operator of A, that is
A Al
Ay Al
AT = and Af=| :
A; A;r

We will also denote by Bi(H, K) the closed unit ball of B(H, K).

The next lemma is the key lemma which is a generalization of [28, Lemma 2.2|, where
more conditions || >°>%, AZTAi [< oo and || 3252, C']T-Cj ||< oo are assumed. Note that, the
conditions || Y72, AiA;-r |[< oo and || >°%, AITAi ||< oo are not equivalent in general. For
instance, let H = @2, H; with each H; is of infinite dimension. Let V; € B(H) be the
isometry with range H;. Then V;V; = [ and ViViT = P;, where P; is the projection from
H onto H;. Thus |72, ViViTH =32, Bl = |I|| =1 as P,P; = 0 whenever i # j, but
122, ViVill = oo.

Lemma 2.3. Let {4}, and {C;}2, C B(H,K) with | Y32 AiA] [|[< oo and |
PO C'J-C'jT |< co. Then the following statements are equivalent:

(i) >, AiPAl-L >0 C’jPC]T for all positive operators P € B(H).

(i) >0, AiPAZT >3 C’jPC’;r for all rank-one projections P € B(H).

(iii) There exists a map 2 : H — Bi(ly) such that

CTly) = Q(|y))AT ) for every |¢) € H.



Proof. (i)=(ii) is obvious.
(ii)=(iii). Given any |¢) € H with [||¢)|| = 1, P = |¢)(¢| is a rank-one projection. From

(ii) we have

> APAT > cpCl (2.1)
i=1 j=1
et
AP - AP - c,p --- C;P
0 0 0 0
T= 0 0 and 8= 0 0

be operators from H () into K(*). The inequality (2.1) implies that TTT > SST. So by [18],
there exists a unique contractive operator X = (X;;) € B(H)) such that ker X’ D ker T
and S = TX. Since

(0 -+ 0 |¢) 0 -~ ) €kerT
for each |¢;) € ker A; P, we have X;rj\gbz) =0 for all j = 1,2,.... Hence, kerXiTj D ker A; P
for all ¢ and j. It follows that X;; are operators of rank at most one and there exist vectors
|¢i;) € H such that X;; = [1)(¢;;| for all ¢, =1,2,.... Now S = TX leads to

(Cilg)y - Cily) )T

(CyPly)y - CyPlp)y - )"
( YRy APXulp) - X2 APXyly) - )"
= ( CZGulp)Aily) - X2 (i) Ailw)y - )T

Denote wj; = (¢i;|v) and let Q(|¢)) = (wji(|)));,i- Then we have

Clly)= (Cily) - Cjly) - )"
= QN Ailg) - Ay )T =) T ).
Moreover, since X;;P = (¢;j1)P = wji(|1))P, by regarding €(|1)) as an operator from Iy

into itself, we get
12wl = [12(1) ® Pl = [XPOI| < X < 1.

Therefore, (ii) holds implies that (iii) holds.

(iii)=-(ii). Assume (iii). For any unit vector |¢)) € H, denote P = |¢)(¢/| and the contractive
matrix () = © = (i), As CT|p) = Q) AT]), we have Cjl) = T2, wjiAily) for
each 7. Thus,

CP= (CP CyP --- CjP --)
= (Y widiP Y2 wyAiP - 2w AP )
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It follows that

> C;PCl = CPCT = AP(w;il)" ((w;il)") ' PAT < APAT =" A;PA]
= i=1
because of 0 < (wj; 1)T ((w;; [)T)T < I.

(i)=(i). Let A(X) = Y0 XAl — 3 ;XC] = AX(AT — CX™)CH for each
X € B(H). Since |A| = [AAT|} = (|53, 44T < oo and ] = |CCT|} =
(1252 CjC}H)% < 00, we see that A is normal. The condition (ii) implies that A(P) is
positive for every finite rank positive operator P. For any positive operator X € B(H), by
spectral theorem, there exists a net Py of finite-rank positive operators such that || Py|| < || X||
and wk—limy Py = X. Hence A(X) = wk—limy A(P)) is positive and (i) is true. O

Lemma 2.4. Let H, K be complex Hilbert spaces and {A;};2,,{C;}32, C B(H, K) with
(e AZ-AlT [< o0 and || 352, C’jC]T |< oco. Let @ : B(H) — B(K) be a linear map defined
by

d(X) = i A XA — i C;XC]
i=1 j=1

for every X € B(H). Then
(i) @ is positive if and only if there exists a map ) : [¢) € H — Q(|¢)) = (wji(|¢)));: €
Bi(l2) such that
CTly) = Q(lv)ATIY)
for every |¢) € H.

(ii) ® is completely positive if and only if there exists a contractive matriz Q = (wj;);i €
B(l2) such that

cT = QAT,

and in turn, if and only if there exists a sequence {D;}°, C B(H, K) such that
®(X) =Y DiXD].
i=1

holds for all X € B(H).

Here A= (A Ay -+ A - )andC=(C; Cy -+ Cj -+ ).

Proof. By Lemma 2.3, (i) is true. By Corollary 2.2, ® is completely positive if and only
if there exists a sequence {D;}?°, C B(H, K) such that

®(X) =Y D;XD]
=1

for every X € B(H). So, to complete the proof of Lemma 2.4, we need to show that & is
completely positive if and only if there exists a contractive matrix = (wj;);; € B(l2) such

that
cT = AT, (2.2)



Assume that ® is completely positive. Then, for any positive integer n, we have

S AP pA > 3 o pe! 23)
i=1 j=1

holds for all positive operators P € B(H™). Let

B={TAT:T = (y;1)i € Bi(l2)},
where Bj(l2) stands for the closed unit ball of B(lz). It is clear that B is closed in the
strong operator topology in B(H,K(>®)). Given ¢ > 0. For any |z),...,|z,) € H, let

Ix) = (|z1) - Jza) ) € H®™_ Tt follows from Lemma 2.3 that there exists Q(|x)) =
(wji(]x))) € Bi(l2) such that

(|x)A™ " x) = ¢ [x).
Therefore,
Q(|x) AT |ag) = CTay)
holds for every £k =1,2,...,n. Thus
Q(x))AT € {X € B(H, K™)) : | X|xy) — CT|ap)|| < e for k=1,2,...,n}.

However, this means that every strong neighborhood of C* has a nonempty intersection with
B and hence, CT € B. So, there exists an © € Bi(l2) such that CT = QAT

Conversely, assume that Eq.(2.2) holds. Then, for any positive integer n we have C(”)T =
QmAMT, By Lemma 2.3 again we see that Eq.(2.3) holds true and hence ® is completely
positive. O

Combining Lemma 2.1 and Lemma 2.4, one gets the main result of this section immediately.

Theorem 2.5. Let H, K be separable complex Hilbert spaces and ® : B(H) — B(K) be a
completely bounded normal linear map. Then

(1) @ is positive if and only if there exist {A;}2,,{C;}32, C B(H, K) with || 3772, AiAZT- l|<
oo and | 52, C;CL ||< o0, and a map Q 1 ) € H — Q|¢) = (@;i([¥)));s € Bi(la)
satisfying

CTly) = Q(jv))ATIY)

for every |¢) € H, such that

d(X) = i A XA - i C;XC]
i=1 j=1

holds for every X € B(H).
(2) @ is completely positive if and only if there exists a sequence {D;}2, C B(H, K) with
| >, DiDg |< oo such that

o0
®(X) =Y DiXD].
=1

holds for all X € B(H).
Here A= (A Ay -+ A - )andC=(C; Cy -+ Cj -+ ).
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What does Theorem 2.5 mean? To understand Theorem 2.5 better, let us recall some
notions from [28]. Let [, k € N (the set of all natural numbers), and let Ay,---, Ax, and
Ci,---,C € B(H, K). If, for each |[¢)) € H, there exists an [ x k complex matrix (a;;(|1)))
(depending on [¢)) such that

k
Cilv) = au () A1), i=1,2, 1,
7=1

we say that {C1,---,C}} is alocally linear combination of {Ay,---, Ax}, (ai;(]1))) is called a
local coefficient matriz at |). Furthermore, if a local coefficient matrix (a;;(]1))) can be cho-
sen for every [¢) € H(™ so that the operator norm ||(a;(|1)))|| < 1, we say that {C1,---,C)}

is a contractive locally linear combination of {Ay,---, Ay}; if there is a matrix (a;;) with
|(cij)|| < 1 such that C; = Z§:1 a;jA; for all 4, we say that {Cy,---,C;} is a contractive
linear combination of {Ay,--- , Ay} with coefficient matrix (). These notions can be gener-

alized to the case that there are infinite many Ags or Cys. For instance, if, for every |¢)) € H,
there are scalars aj(|1)) such that Cly) = Y72 | ar(|1)) Axlv) and S50, Jar(|)? < 1, we
will say that C'is a generalized contractive locally linear combination of {AR}72 .

Thus Theorem 2.5 may be restated as follows: A completely bounded normal linear map
& : B(H) — B(K) is positive but not completely positive if and only if it has the form
(X)) =>7, AiXA;r -2 C']-XCJT for all X, where {C}} is a generalized contractive locally
linear combination of {A4;} but {C;} is not a generalized contractive linear combination of
{A;}. This characterization is much helpful in some sense to understand the differences of
completely positive normal linear maps, positive completely bounded normal linear maps and
hermitian completely bounded normal linear maps.

By Theorem 2.5, one gets immediately a global structure theorem for positive elementary
operators in terms of locally linear combination that was established in [28]. For £ C B(H, K),
we’ll denote by [L£] the linear span of L.

Corollary 2.6. Let ® = )" | A;(-)B; be an elementary operator from B(H) into B(K).
Then ® is positive if and only if there exist C1,--- ,Cy and Dy,--- , Dy in [Ay,- -, Ay] with
kE+1<n such that (Dy,---,Dy) is a contractive locally linear combination of (Cy,---,Ck)

and
l

k
& =3 Ci()C] = D;()D]. (2.4)
1=1

7j=1

Furthermore, ® in Eq.(2.4) is completely positive if and only if (D1,--- ,Dy) is a linear com-
bination of (Cy,- - ,Ck) with a contractive coefficient matriz, and in turn, if and only if there
exist B, Fo, ..., E. with r < k such that

P = ZT:Ei()EiT.
=1

In fact, a characterization of k-positive elementary operators is given in [28]. By the same

spirit, we can get also a characterization of k-positive completely bounded normal linear maps
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by applying Theorem 2.5. However, positive linear maps are more powerful than the 2-positive
linear maps if we use them to detect entanglement.

Since every linear map between matrix algebras is an elementary operator, by Corollary
2.6 we get a characterization of positive maps that is not CP for finite dimensional case.

Corollary 2.7. Let H and K be finite dimensional complex Hilbert spaces and let @ :
B(H) — B(K) be a linear map. Then ® is positive but not completely positive if and only if
there exist C1, -+ ,Ck, D1, -+, Dy € B(H, K) such that ®(X) = Yr_, C;XCJ =S| D;X D!
forall X € B(H), and {D; }2:1 is a contractive locally linear combination but not a contractive
linear combination of {C;}F_,.

It is interesting to observe from the discussion above that, for elementary operators, the
question when positivity ensures complete positivity may be reduced to the question when
contractive locally linear combination implies linear combination. This connection allows us
to look more deeply into the relationship and the difference between positivity and complete
positivity, and obtain some simple criteria to check whether a positive elementary operator
is completely positive or not. This is important especially when we construct positive maps
and apply them to recognize entanglement.

If £ C B(H, K), we will denote by Lp the subset of all finite-rank operators in L.

The Corollaries 2.8 and 2.9 below can be found in [28]. We list them here for completeness
and for reader’s convenience.

Corollary 2.8. Assume that ® = Zle AZ()AI — Zé.:l Bj(~)BJT : B(H) — B(K) is a
positive elementary operator. If any one of the following conditions holds, then ® is completely
positive:

(i) k < 2.

(i) dim[Ay, - -+, Ag]r < 2.

(iii) There exists a vector |1y € H such that {|Aj)}r_, is linearly independent.

(iv) @ ds [%L]-positive, where [t] stands for the integer part of real number t.

Corollary 2.9. Assume that ® = S AZ()AI - 22:1 Bj(')B} : B(H) — B(K) is a

positive elementary operator. If ® is not completely positive, then

(i) k> 3;
(i) dim[A1, -+, Aplp > 3;
(ili) every By, j =1,2,...,1, is a finite-rank perturbation of some combination of {A}E 5

(iv) CID[%] is not positive.

Corollary 2.10. Assume that ® = Zle Az()AI - Zé-:l Bj(-)BJT : B(H) — B(K) is an
elementary operator. If there exists some j such that B; is not a contractive linear combination
of {A;}r_|, then ® is not completely positive.

The following result reveals that the non-complete positivity of a positive elementary oper-
ator is essentially determined by its behavior on finite-dimensional subspaces. So, to construct
a NCP positive elementary operator, it is enough to consider the question in finite-dimensional

Cases.
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Theorem 2.11. Assume that ® : B(H) — B(K) is a positive elementary operator. Then
® is NCP if and only if there exist finite-rank projections P and @ acting on H and K,
respectively, such that the positive elementary operator A : B(PH) — B(QK) defined by
A(X) = QP(PXP)Q|gk is non-completely positive. In addition, P and QQ may be taken so
that A" : B(ker P) — B(ker Q) defined by A'(Y) = (I — Q)2(((I — P)Y(I — P))(I — Q)|ker @
is completely positive.

Proof. Clearly, if ® : B(H) — B(K) is a positive linear map and P € B(H), Q € B(K)
are projections, then A : B(PH) — B(QK) defined by A(X) = Q®(PXP)Q is positive and
A is NCP implies that ® is NCP.

Assume that ® is a positive elementary operator, writing ® = Zle Al()Aj — Zé‘:1 Bj(-)BJT
with {A1,..., A, B1,..., B} linearly independent. By Corollary 2.9 (ii)-(iii), if ® is NCP,
then the linear subspace spanned by {Ai}le has many finite rank operators and there exists
Cj € [A1, As, ..., Ay] and finite rank operators F; & [A1, ..., Ag] such that B; = C;+ Fj. Let
Py be the projection with range the finite dimensional linear subspace spanned by all the ranges
of {E: E € [Ay,...,A;]7} and the ranges of {F;}ézl; and Q) the projection with range the
finite dimensional linear subspace spanned by all the ranges of {E : E € [A1, ..., Ag]r} and the
ranges of { F} }é-:l. It is easily checked that there exist some finite rank projections P > Py and
Q > Qo such that QB;P & [QAP,...,QA,P] since Bj & [Ay,..., Ai]. Pick such P and Q.
Let S; = QAilpu,i=1,2,...,k,and Tj = QBj|py,j =1,2,...,l. Let A: B(PH) — B(QK)
be the map defined by A(X) = 31| §;X S — Y\ T;XTF = Q®(PXP)Q|ok. Then A is
positive. By the choice of P and @, T} is not in [Si,..., S| for some j. Hence, A is not
completely positive by Corollary 2.9. Since [(I —Q)A1(I —P),...,(I —Q)Ax(I — P)|r = {0},
by Corollary 2.8, A’ is completely positive. O

To conclude this section, we give a simple example illustrating that how to use the results
in this section to judge whether or not a map is positive, completely positive.

Example 2.12. Assume that dim H = n and {|i)}*; is an orthonormal basis. Denote

E;j = |i)(j|. For a given positive number ¢, let A, : B(H) — B(H) be a linear map defined by

n
AYX)=tY EuXE;—X
=1

for any X € B(H). Then A, is positive if and only if it is completely positive, and in turn, if
and only if ¢t > n.

In fact, let A; = VtE;;, then Ay(X) = S AiXAI — IXTIt. Tt is clear that I is a linear
combination of Ay, -+, Ay, le, [ =>1", %Ai. Then the sum of the square of the coefficients
is Zl(%)Q = %, and hence A; is completely positive if and only if ¢ > n by Corollary 2.6. If
t < n, then it is obvious that I is not a contractive locally linear combination of Ay, --- , Ay,

and hence A; is not positive.
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3. QUANTUM CHANNELS FOR INFINITE DIMENSIONAL SYSTEMS

It is known that, for finite-dimensional quantum systems, a quantum channel (operation) £
is a trace-preserving (trace-nonincreasing) completely positive linear map between associated
matrix algebras and vice versa. Thus, by a result due to Choi [8], £ is an elementary operator
of the form £(-) = Y7 | A;(-)Al, where 37 | ATA; =1 (37, ATA, < 1).

The dynamics of a closed quantum system are described by a unitary transform. A natural
way to describe the dynamics of an open infinite dimensional quantum system (principal
system) on H as a subsystem of a closed quantum system on H ® Heyy, composited by the
principal system and an environment system. Let £ be a channel on the principal system.
Fix a state peny € S(Heny); then there exists a unitary operator U acting on H ® Hey, such
that

E(p) = Treny[U(p @ peny)UT]. (3.1)

Thus a quantum channel for infinite dimensional system is still a trace-preserving completely
positive linear map between the trace-class operators. This raises the question of character-
izing completely positive linear maps between trace-classes.

Using the discussion in Section 2, one can characterize the completely bounded linear
maps, positive completely bounded linear maps and completely positive linear maps between
the trace-classes. This allow us to obtain a similar representation of quantum operations
for infinite-dimensional systems. Firstly we recall some notions. For A € B(H), denote
|A| = (ATA)%. Recall that the trace class 7(H) = {T : ||T|p = Tr(|T]) < oo}, which is
an ideal of B(H). Furthermore, 7 (H) is a Banach space with the trace norm || - ||;. The
dual space of 7(H) is T(H)* = B(H) and every bounded linear functional is of the form
T — Tr(AT), where A € B(H).

Lemma 3.1. Let H, K be separable complex Hilbert spaces and T (H), T (K) be the trace
classes on H, K respectively. Then, a linear map A : T(H) — T (K) is completely bounded
if and only if there exist operator sequences {A;}; C B(H, K) and {B;}; C B(K, H) satisfying
>, AZTAZ' |< oo, and || >, BZBZ |< oo such that

A(T)=> ATB;

for allT € T(H).
Proof. If A has the form stated in the theorem, it is obvious that, for any X € B(K),

holds for all T € T(H), so A*(X) = Y., BiXA; € B(H). As | Y, AlA; ||< oo, and ||
S BB} ||< 00, A* is completely bounded with || A% <|| (33, ATA))2 | - || (X, BBz || .
But ||A,|| = ||A%]| (ref. [19, Proposition 3.2.2]). So, A is completely bounded.

Conversely, assume that A : 7(H) — T(K) is a completely bounded linear map; then
A* : B(K) — B(H) is a completely bounded normal linear map. By Lemma 2.1, A* is a
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generalized elementary operator. So there exists operator sequences {4;}; C B(H, K) and
{B;}; C B(K, H) satisfying || 3, ATA; ||< oo, and || 33, BiB! ||< oo such that A*(X) =
>.; BiX A; holds for all X € B(K,H). Now, it is clear that A(T) = ), A;TB; holds for all
T € B(K, H), completing the proof. O

By Lemma 3.1 and Theorem 2.5 the following results are immediate.

Theorem 3.2. Let H, K be separable complex Hilbert spaces and T (H), T (K) be the trace
classes on H, K respectively. Let A : T(H) — T(K) be a linear map. Then

(i) A is positive and completely bounded if and only if there exist operator sequences {A;}i C
B(H,K) and {B;}; C B(H,K) with | ¥, Al4; |< oo and | ¥, BIB; ||< o0, and a map
Q: H — Bi(lo) such that Bf[¢)) = Q(|¢))AT|[¢) for every [¢) € H and

A(T) = Z A;TA! — Z B,TB!

for allT € T(H).
(ii) A is completely positive if and only if there exist operator sequences {A;}; C B(H, K)
with || Y, A}LAi ||< oo such that
A(T) =" ATA]

for allT € T(H).

Mathematically, like that for finite dimensional case, we may define a quantum channel
(operation) as a trace-preserving (trace-decreasing) completely positive linear map from a
trace-class into a trace-class. Thus by Theorem 3.2, we have

Corollary 3.3. Ewvery quantum channel (operation) £ between two infinite-dimensional

systems respectively associated with Hilbert spaces H and K has the form
o0
i=1

where {M;} C B(H, K) satisfies that y .o, MJMi =1Ig (32, ]\4;]\4z <Iy).

Remark 3.4. For infinite dimensional case, is physically every trace-preserving completely
positive linear map qualified being a quantum channel? Let £ : 7(H) — T (H) be a trace-
preserving positive linear map. If H is finite dimensional, and if £(p) = Zle EipE;r for
every p, then there exists a finite dimensional Hilbert space Heny with dim Hepy = k, and
a unitary operator U : H @ Hepy — H @ Hepy such that Eq.(3.1) holds, that is, E(p) =
Treny [U(p® peny)UT] for all p € S(H). In fact the unitary operator U = (Uij) on H® Heyy can
be chosen so that E; = U;; for each ¢ = 1,2,..., k. This means that every trace-preserving
completely positive linear map is a quantum channel. It is clear that this is not always
true for the infinite dimensional case. In fact, let H be a Hilbert space with dim H = oo
and £ : T(H) — T(H) be a trace-preserving completely positive linear map defined by
E(p) = Zle MipMzT with Zle MZ.TMi = I, where M; # 0 for each i and k < oo; then there
exist Hepy with dim Hepy = k, peny € S(Heny) and a unitary operator U : HQ Hepy — H® Hepy
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such that Eq.(3.1) holds if and only if dim ker M = dim ker M, where

My 0 O
My 0 O
M — .
M; 0 0

is an operator from H* into H*. Obviously, dimkerM = oo > dimker M, and ker M =
{y) = Cly) ) - Jw)y - )T >, Mj\yﬁ = 0}. Decompose the space H into H =
@le H; so that dim H; = oo for each 7 and take M; : H — H so that ]\JZT is an isometry
with range H;. Then Y, MTM; = I. As ker M = {0} we see that dim ker Ml # dim ker M.
However, if we allow that £(p) = Zle MipMzT+MoopM;ro with My, = 0, and dim Hepy = k+1,

then there exists a unitary operator U such that U has the form

My U - Uy
U= My Uz - Uy
My Ugyr2 -+ Ugg1j

So, for some suitable state peny the Eq.(3.1) holds. Thus, like the finite dimensional case, we

still have that every trace-preserving completely positive linear map is a quantum channel.

4. ELEMENTARY OPERATOR CRITERION OF SEPARABILITY OF QUANTUM STATES

Using the characterization of positive maps that are NCP in Section 2, we can establish
a necessary and sufficient criterion of separability of states, that is, the elementary operator
criterion.

The following necessary and sufficient condition for a state on finite dimensional spaces to
be entangled is an immediate consequence of Corollary 2.7 and Horodeckis’ Theorem.

Theorem 4.1. Let H and K be finite dimensional complex Hilbert spaces and p be a state
acting on H ® K. Then p is an entangled state if and only if there exists a linear map of the
form ®(-) = S0, Ci(-)Cf — 324 D;() DI« B(H) — B(K) with {Dy,...,D;} a contractive
locally linear combination of {C1,...,Cy}, such that the operator (P ® I)p is not positive.

We will show below that this result is also true for infinite dimensional case. Before doing
this, we write directly from Theorem 2.5 and Corollary 2.6 two sufficient criteria of entangle-
ment of states for infinite dimensional systems.

Proposition 4.2. Let H, K be complex Hilbert spaces and p be a state on H @ K. Then
p is entangled if there exists an elementary operator of the form ®(-) = Zle C’l()Cj -
Zé‘:l Dj(-)D;. : B(H) — B(K), where {D1,...,D;} is a contractive locally linear combination
but not a contractive linear combination of {C1,...,Cy}, such that the operator (» @ I)p is

not positive.
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More generally, we have
Proposition 4.3. Let H, K be complex Hilbert spaces and p be a state on H® K. Then p

is an entangled state if there exists a generalized elementary operator ® defined by

(X)) =Y AXAI - C;xC]
i J

for every X € B(H), where || ), AZ-A;[ < oo and || 3_; CjC’jT |< oo, {C}}; is a generalized
contractive locally linear combination but not a generalized contractive linear combination of
{A;}i, such that (P ® I)p is not positive.

Propositions 4.2 and 4.3 only provide sufficient conditions for a state to be entangled. In
fact, these conditions are also necessary, and thus we obtain a necessary and sufficient criterion
for entanglement which we will call the elementary operator criterion. Much better can be
reached. Note that an elementary operator ® is of finite rank if and only if there exist finite
rank operators A;, B;, i = 1,2,--- , k, such that ®(X) = Zle A; X B; [27]. We will prove that
every entangled state can be detected by a positive elementary operator of finite rank.

Theorem 4.4. (Elementary operator criterion) Let H, K be complex Hilbert spaces and p
be a state on H® K. Then p is entangled if and only if there exists an elementary operator of
the form ®(-) = Ele C’Z()C’j - 23':1 Dj(-)DJT :B(H) — B(K), where all C;s and Djs are of
finite rank and {D1,...,D;} is a contractive locally linear combination of {C4,...,Ck}, such
that the operator (® ® I)p is not positive.

Proof. The “if” part follows from Proposition 4.2. For the “only if” part, assume that the
state p is inseparable. Take any orthonormal bases {|i)} and {|j)} of H and K, respectively.
For any positive integers s < dim H and ¢ < dim K, denote Py = Ps ® (¢, where P and
are finite rank projections onto the subspaces Hy and K; spanned by {|i)};_, and {|j) ;-:O,
respectively. Since p is entangled, by [42, Theorem 2], there exists (s,t) such that py =
Tr(PyspPs;) ! PsypPs is entangled. Regarding pg as a state on Hy ® K. As dim(H; ® K;) <
00, by Theorem 4.1, there exists a positive map A : B(H;) — B(K;) of the form A(:) =
S Al()AI - Zé.:l Bj(')BJT with {Bj, ..., B;} a contractive locally linear combination but
not a contractive linear combination of {A1,..., Ax}, such that the operator (A ® Q)ps is
not positive on K; ® K;. Let ® : B(H) — B(K) be defined by ®(X) = Q:A(Ps X Ps)Q;.
Then & is positive and ®(X) = Zle C’i(X)C’J - Zz.:l Dj(X)D;[, where C; = Q:A;Ps and
Dj; = QB; P, are of finite rank.

Represent p as an operator matrix p = (1;;);,; according to the bases {|i) };_, and {|7)};_,
where n;; € B(H). Obviously,

Ps"?llps Ps7712ps ce Psnltps

_ Pino1 Py Psnaa Py -+ Psnar Py
Pst = Tr(PstpPst) ! . . . .

Psntlps PsntQPs te PsnttPs
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Thus we have

A(f)snll-Ps) A(PsanPs) ce A(Psnltps)
A(Psno1 Ps) A(PsnooPs) -+ A(PynoPs

(A& Quypat = Te(PupPy)-t | SRR AEmE) | (Farze ) (4.1)
A(PsnﬂPS) A(PsntQPS) o A(Psnttps)

is not positive. Note that ®(n;;) = Q:A(Psnij Ps)Qr = A(Psni; Ps). So

(@®I)p
A(Pyni1Py) A(PmaPs) - A(Pyme Ps) A(Psmi(i41)Ps)
A(Psn2lps) A(Psn22ps) T A(Psn%Ps) A(Ps7]2(t+1)Ps)
a A(Psntlps) A(PsntQPs) T A<Ps77ttps> A(Psnt(t+1)Ps)
A(Psn(t+1)1ps) A(Ps77(t+1)2Ps) T A(Psn(t+1)tps) A(Psn(t—i-l)(t-‘rl)Ps)

It follows that (® ® I)p is not positive since it has a non positive ¢ x ¢ submatrix (4.1). The
proof is completed. O

To sum up, we have proved the following criterion of separability, which is valid for both
finite and infinite dimensional systems, improves Stgmer’s theorem [44] and is easier to be
handled by our characterization of positive elementary operators.

Theorem 4.5. (Elementary operator criterion) Let H, K be complex Hilbert spaces and p
be a state acting on H ® K. Then the following statements are equivalent.

(1) p is separable;

(2) (P ®I)p >0 holds for every positive elementary operator ® : B(H) — B(K).

(3) (P®1I)p > 0 holds for every finite-rank positive elementary operator ® : B(H) — B(K).

5. SOME EXAMPLES OF CONSTRUCTING NCP POSITIVE MAPS

It follows from Theorem 4.4, 4.5 and Theorem 2.11, for both finite and infinite dimensional
systems, it is very important to construct NCP positive linear maps between matrix algebras
since the non-complete positivity of a positive elementary operator is essentially determined by
its behavior on finite-dimensional subspaces. In this section we give some concrete examples
of NCP positive linear maps between matrix algebras by applying the results in Section 2.

Let H be a complex Hilbert space of dimH = n < oo and let {|1),|2),...,|n)} be an
orthonormal basis of H. Denote E;; = |i)(j|, 1 <4,j < n. The well known NCP positive map

on B(H), that is, the transpose T'+ T is an elementary operator

n
T' =% ETEq+Y AyTAL =Y CyTCl VI,
=1

1<J 1<J
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where A;; = %(E@A—Eﬁ), Cij = %(EU —Ej;). Another example of well known NCP positive

map is the reduction map, which has the form

T — Tr(T)[ —T = Z EijTEji + Z Gz‘jAG;[j — Z FijAF;;» VT;
i3] i#j i#J

where Fj; = %(E” + Ej;) and Gj; = %(EZ — Ejj).

Next we give another kind of NCP positive linear maps.

Proposition 5.1. Let H be a complex Hilbert space of 2 < dimH = n < oo and let
{11),12),...,|n)} be an orthonormal basis of H. Denote E;j; = |i)(j|, 1 < 4,5 < n. Let
A =30 Jagli)(@, k=1,...;s and By = ,_, by|i) (i, L =1,...,t witht >0 and s+t < n.
Assume that {Ag, By : k=1,...,s;l =1,...,t} is a linearly independent set. Let A : B(H) —
B(H) be the linear map defined by

s t
AT) =Y ATAL + > E;TEL - BTB| (5.1)
k=1 i#] =1

for every T € B(H). If Y5_y laril® > iy 1bil? | iy arianj — Sop_y bubij| < 1 whenever
1 # 7, then A is NCP positive.
Proof. It is clear that A defined in Eq.(5.1) is not completely positive since B; is linearl
q p Yy p J Yy
independent to {Ag, Ejj : 1 < k < 551 < 4,5 < n,i # j}. Assume that y ;_, lagi|? >
25:1 0%, | D5y akiakj — > j—q biibij| < 1 whenever i # j, We will show that A is positive.
Note that

s t
A(Epm) = O agml* = 1biml*) Ere + > Eii (5.2)
k=1 1=1 i#k
and
s t _
A(Ey) = (O amar; — > buby)Eiy if i # j. (5.3)
k=1 I=1

Let fm = 22:1 ’akiP — Zle ‘bh"z and fz‘j = 2221 a;ﬂ-dkj — letzl bliBlj if 7 75 ] Clearly,
fji = ﬁj for all 7,,]
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Identify H with C*. For any [v) = (&1,&a,...,&,)T € C", consider the rank-one positive
matrix [¢) (1] = (§€;). By Eqgs.(5.2) and (5.3) we have

flé? fie&i&e - fin&ién
f218281 Sl oo fonbabn

A ) = '
fnlgné_l fn2§n§_2 o fnn‘gn‘Q
D 1<i<nj£l & 0 0
N 0 ZlgjgnjjyéQ &1 0
0 0 Zlgjgn,j;én |§j|2
Si<jenjz 16l f126162 e fin&1én
f21€2gl Z1§j§n7j¢2 |§j‘2 T f2n§2{n
fn1énél Jn2n&o e Yicjengen €17

So it suffices to show that Cy > 0.
To do this, denote ¢; = |&|. Then, by the assumption of |f;;| < 1 for i # j, we have
fzj&éj = CiCjVjj with |Uij| <1, and

2
Zlgjgn,j;él Cj C1C2V12 ce C1CnV1n
- 2
C1C2V12 Yi<jcng#2C C2CnV2n
Cy = )
- - 2
C1CnV1n C2CnV2n T Zlgjgn,j;én G

For any |¢) = (11,72, ...,1,)" € C", writing d; = |n;|, we have

(@lCul8) = 301 (Cicjangpi &)Inil® + 2Re(3,; cicjvign;mi)
2 Z:‘L:l(ZISjgmj;éi Cjz)d? - 22i<j cicjdid,
= D icjlcdj — cjd;)? > 0.
Therefore, Cy, > 0. We have proved that A(|1)(¢)|) > 0 holds for all rank-one positive
matrices [1)(|. It follows that A is a positive linear map, as desired. O
In the following, we give some preliminary results on characterizing positive elementary
operators, which are needed in later.
The following result is easily checked and is useful to us.

Proposition 5.2. Let
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Ifti >n—1 for eachi =1,2,--- ,n, then By, 4,...
definite); if t; < n—1 for eachi =1,2,--- ,n, then Bt 40 tn) # 0. Particularly, Bt....y 20
if and only if t > n — 1.

Proof. Assume that ¢; > n — 1 for each i = 1,2,--- ,n. Then tyg = min{ty,ta, - ,t,} >
n — 1. For any |z) = (&1, &,...,&)T € C, we have

tn) = 0 (that is, B, 4,... 1,,) 18 semi-positive

to D iy Gil* — 230,56

> to Yy G612 =230, 16l

= (to—n+1) X &GP+ (n—1) X, G1* =23, 1611
(to —n+1) S0, &> + i (&) = 1€51)% > 0,

@Bty by o))

which implies that B, ¢,...4,) > 0. If t; < n —1 for each i = 1,2,--- ,n, then t5 =
max{ty,t, - ,tn} <n —1. Taking & = & = -~ = &, # 0 and let |zg) = (&1,61,...,6)7,
one gets (20|B(t, 1y 1) |Z0) < (g —n+1)nd> 7 |&1]* < 0. It follows that B; # 0, completing
the proof. O

There is another simple proof of Proposition 5.2 suggested by Chi-Kwong Li by applying
the fact that an operator A = D — |¢)(¢)| with D > 0 invertible is positive if and only if
ID=3 [y < 1.

By using of above results, we can prove the following result.

Proposition 5.3. Let H and K be Hilbert spaces and let {|i)}"_, and {|i')}_, be any
orthonormal sets of H and K, respectively. Denote E;; = |7')(i] € B(H,K). Let A : B(H) —
B(K) be defined by

A(tl,t2,~~- ,tn)(A) = Z?:l tiEiiAEzTi - (Z?ﬂ Eii)A(E?:l Eii)T

for all A€ B(H). Ift; > n for each i =1,2,--- ,n, then Ay, 4, ... +,,) i a completely positive

map; if t; < n for each i = 1,2, - ,n, then Ay, 4, .. 1,) i not a positive map. Particularly,

Ap ... 1) 18 positive if and only if it is completely positive, and in turn, if and only if t > n.
Proof. For any unit vector |z) = (£1,&,---,&,,0,0,---)T € H, consider the rank-one

projection |z)(z|. We have

(tr—1)|&/? —&& &1 0
—&61 (ta — 1)|&f* - —&6¢&, 0
A(lz)(z|) = —&6 —&&2 o (=D& 0 0 e [ (54)
0 0 0 0
0 0 0 0

If t; < n for each i = 1,2,--- ,n, taking |2) = (1,1,...,1,0,0,---)7 in Eq.(5.4) and by
Proposition 5.2, we get A(]z)(x|) 7 0, and so A is not positive.
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On the other hand, assume that t; > n for each i = 1,2,---,n. Since > [ | E; =
Yo ﬁ(\/ﬂEu) and Z?:l(ﬁ)Q < Z?:l(ﬁ)Q <1, >0, Ej is a contractive linear combi-
nation of {\/t1E11,vt2E%, - ,\/tnEnn}. By Corollary 2.6, A is completely positive. O

For the sake of convenience, we introduce a terminology here.

Definition 5.4. Let A : B(H) — B(K) be a finite rank elementary operator. It follows
from a characterization of finite rank elementary operators in [27] that there exist finite rank
projections P € B(H) and Q € B(K) such that

A(A) = QA(PAP)Q for all A € B(H). (5.5)

Let
(n,m) = min{(rank(P),rank(Q)) : (P, Q) satisfies the equation (5.5)}.
(n,m) is called the order of A, and we say that the elementary operator A is of the order

)

6. POSITIVE FINITE RANK ELEMENTARY OPERATORS OF ORDER (2,2) AND (3, 3)

In this section we will construct some positive finite rank elementary operators of order
(2,2) and (3,3). Applying such positive maps, we give a simple necessary and sufficient
condition for a pure state to be separable. We also use these positive maps to detect some
entangled mixed states.

Positive elementary operators of order (2,2) are easily constructed. For example, Let H
and K be Hilbert spaces of dimension > 2, and let {|i)}?_; and {|j') ?:1 be any orthonormal
sets of H and K, respectively. Let ®¢ : B(H) — B(K) be defined by

®o(A) = EnAE], + ExAEL, + E1nAE], 61)
+E21AE£1 — (E11 + Ex)A(E11 + Fag)T

and
Uo(A) = (2E11 + Ba2)A(2E11 + Ea2) + EIQAEIQ
+Ey AEL, — (B 4 E)A(Ey + Ea)f

for every A € B(H), where Ej; = |j')(i|. It is obvious that both ®, and ¥y are positive

because the map
ail] ai2 a9 —ai2
>
a1 a2 —a21 4

ailr a2 3a11 +aze a2
H
a1 a2 a1 ai

on M(C) are positive. A surprising fact is that such simple positive elementary operators of

(6.2)

and the map

order (2,2) will be enough to determine the separability of the pure states.

Let U(H) (resp. U(K)) be the group of all unitary operators on H (resp. on K). For any
map A : B(H) — B(K) and any unitary operators U € U(H) and V' € U(K), the deduced
map A — VIA(UTAU)V will be denoted by AUV, Though there is no “universal” NCP
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positive linear map that can recognize all entangled states, we still hope that the following
conjecture is true:

Conjecture 6.0. There exists a NCP positive linear map A that is universal in the
sense that the set G(A) = {AYY .U e U(H),V € U(K)} provides a necessary and sufficient
criterion of separability.

We do not know if this conjecture is true. But the next result is a support of the conjecture,
which gives a simple necessary and sufficient criterion of separability for pure states in bipartite
composite systems of any dimension, by G(®) with & a suitable elementary operator or order
(2,2).

Theorem 6.1. Let H and K be Hilbert spaces of dimension > 2, and let {|i)}?_, and
{71 ?:1 be any orthonormal sets of H and K, respectively. Let ®o(Vq) : B(H) — B(K) be
defined by Eq.(6.1) (Eq.(6.2)). Then a pure state p on H @ K is separable if and only if

(@)Y @ p>0 (¥ @ I)p>0)

holds for allU e U(H) and V € U(K).

Proof. If a state p is separable, then (@g’v ®@Dp=>0 ((\Ifg’v ®@I)p>0) as @g’v (\Ilg’v) is
a positive map.

Conversely, assume that p = [¢)(1| is an inseparable pure state. Let |¢) = EkNﬁl Ok |k, k")
be the Schmidt decomposition, where §; > d9 > --- > 0 with Zgi’l 62 = 1, and {|k>}gi’1
and {]k’)}]ivﬁl are orthonormal in H and K, respectively. Thus p = 2%11 S0k [k, KLU | =
Zﬁle 00k By ® Epy. Since p = 1) (9| is inseparable, the Schmidt number Ny of |¢) is
greater than 1 and hence 61 > o > 0.

Up to unitary equivalence, we may assume that {|k)}3_, = {|i)}?_; and {|K)}3,_, =
{l7"Y}2-;- Then, since ®(Ey;) =0 (¥o(Ex) = 0) whenever k > 2 or [ > 2, we have

(Po@Dp= 37,1 0:8;Po(Eij) ® Ei
0 0 0 =80
0 46 0 0

= @0
0 0 62 0
—0102 0 0 0
(To@ Dp= 37,1 0:6;%0(Eij) @ Ej

362 0 0 6162

0 & 0 0
~ @0,
0 0 6 0
0162 0 0 O
which is clearly not positive. U

Now let us consider the positive elementary operators of order (3, 3).
Theorem 6.2. Let H and K be Hilbert spaces of dimension > 3, and let {|i)}3_, and
{137 ;’:1 be any orthonormal sets of H and K, respectively. Let ®, 9" : B(H) — B(K) be
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defined by
D(A) = 2% | EyAE! + E\2AEl, + By AEL, + E31 AEL 63
(X Ea) A Ei)f '
and
¥ (A)= 23°% | EyAEl + E3AEl, + Ey AEL + B3 AEL, (6.3

—(Z0 Ea)A(C, Ea)'
for every A € B(H), where Ej; = |j')(i|. Then ® and ®" are indecomposable positive finite
rank elementary operators of order (3,3).

Proof. We only give the proof that ® is NCP positive. The fact that ® is not decomposable
will be proved in Example 6.3. ®' is dealt with similarly.

It is obvious that @ is a finite rank elementary operator of order (3,3). Also, it is clear from
Corollary 2.6 that ® is not completely positive because 2?21 F;; is not a contractive linear

combination of

{V2E11,V2E2,V2E33, E12, Eo3, F31}.

To prove the positivity of ®, extend {]i)}?_; and {\j’)}?zl to orthonormal bases {|i)}dim
and {|j’ )}EhzniK of H and K, respectively. Then every A € B(H) has a matrix representation

A = (ay;) and the map ® maps A into

ai1 + a —a12 —a13 0 0
—as a2 + ass —as3 0 0
—ag1 —ago azgz+ai; 0 0
(I)(A) = ’
0 0 0 0 0
0 0 0 0 0
which is unitarily equivalent to
ail + a2 —a12 —a13
S®0= —az1 G2 +azz  —ass & 0.
—asy —asz ass + aix

It is easily checked that (also see [29, Proposition 5.2]) the matrix S is positive. So ®(A) is
positive, completing the proof of the theorem. O

Next we use the positive maps in Theorem 6.2 to detect some mixed entangled states. The
example also implies that the positive maps in Theorem 6.2 are not decomposable since they
can recognize some PPT entangled states.

The states p; in the next example were introduced in [30] firstly.

Example 6.3. Let H and K be complex Hilbert spaces of dimension > 3 and let {]i)}_,
and {|5')}7_; be any orthonormal sets of H and K, respectively. Let

1 1

Iw1>=\/g(lll’>+l22’>+l33’>) and |wa) = —=(|12') + [23') +[31')).

Sl

3
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Define p1 = |wi){wil, p2 = |wo){we| and ps = L(|13/)(13'| + |21/)(21'| + |32/)(32'|). Let p =
Z?Zl qipi and py = (1 —t)p + tpy, where ¢; > 0 for i = 1,2,3 with g1 + ¢ +¢3 =1, t € [0, 1],
and pg is a state on H ® K.

Hou and Qi in [30] proved that, if g5 < %ql or qp < %qz, then, for sufficiently small ¢, p; is
entangled; if g9 < %ql or g1 < %qg, and if q1g2q3 > ¢ +¢3, then p; is PPT entangled whenever
po is. Now, by using of the positive finite rank elementary operators ® and ®' constructed

in Theorem 6.2, we can give a finer result. In fact, for sufficiently small ¢, or for pg with

(@@ I)po = (' @ I)po = 0 (for example, taking po = i pili)(@'| @ [1)(i'], pi 20, ipi =1),
the following statements are true. = -

(1) If g1 # q2 or g1 = g2 > g3, then p; is entangled.

(2) Let pg be PPT. Then p; is PPT if and only if q1g2g3 > ¢§ + 5. Particularly, if qj = 2¢;
and %qj < g3, where i,j € {1,2} and i # j, then p; is PPT entangled.

In fact, by [30], we need only to check the following:

(1) If ¢1 # q2 or ¢1 = g2 > g3, then p is entangled.

(2)" p is PPT if and only if g1g2g3 > q:f + qg’. Particularly, if ¢; = 2¢; and %qj < g3, where
i,7 € {1,2} and ¢ # j, then p is PPT entangled.

For p = qip1 + q2p2 + q3ps, it is obvious that

g1 0 0 0 ¢ O O q1
0 g 0 0O 0 0 O
0 ¢ ¢ 0 0 ¢
. 0 ¢ @ 0 0 g
p=3| @ O @i 0 0 a | 0.
0 0 g3 0
0 3
0 @ ¢ 0 0 0 ¢
@ 0 0 0 @ 0 ¢
Note that
3(@®I)(p)
a1+ 0 0 0 —q1 0 0 0 —q1
0 g2 + q3 0 0 0 0 0 0
0 0 G+tq —¢ 0 0 —q2
0 0 —G2 @1t 0 0 0 —q2
= —q1 0 0 0 q+q3 0 0 0 —q1 ® 0,
0 0 0 0 q2 + qs3 0 0 0
0 0 0 0 0 Q2+ q3 0 0
0 —q2 —q2 0 0 @+ g2 0
—q1 0 0 0 —¢1 0 0 0 R
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which is unitarily equivalent to the operator A& B & C & 0, where

@1+aq —q —q @1+aq  —q2 —q2
A= -1 @ tag  —q , B= 2 @ tq  —q
—q1 - @1+ —q2 —q2 @ t+q
and
q2 + g3 0 0
C = 0 g2 +q3 0 > 0.
0 0 72 +q3

For the matrices A and B, by Proposition 5.2, we get that A % 0 if g3 < ¢; and B # 0 if
q1 < q2. So (P ® I)(p) is not positive if g3 < ¢1 or ¢1 < go. It follows from the elementary
operator criterion Theorem 4.4 that p is entangled if g3 < g1 or ¢1 < ¢o. Note that p is PPT if
and only if g1qoq3 > qi’ + qg’. Thus, particularly, we obtain that p is PPT entangled if g5 = 2¢;
and 3a1 < 5.

/

Similarly, by applying the map ®’, one can get that the other half of the assertions (1)’-(2)

is true.

7. POSITIVE FINITE RANK ELEMENTARY OPERATORS OF ORDER (4,4)

In this section we will construct some positive finite rank elementary operators of order
(4,4). The following is our main result.

Theorem 7.1. Let H and K be Hilbert spaces of dimension greater than 3 and let {|i)}i,
and {U/>}§:1 be any orthonormal sets of H and K, respectively. Let ®, @', ®" : B(H) — B(K)
be defined by

O(A) = 331 | ByAE! + E\wAE!, + B AEL, + B3y AEL, + Ey AE],

(7.1)
—(Ch En) AT Ea)',
O'(A) = 3L, E4AE! + Ei3AEl, + Ea AEL, + B3 AEL, + EpAE], (1)
—(C En) A Ea)f
and
O"(A) = 31 | E4AE! + B\ AE!, + Ex AE}, + EAEL, + Ej3AE), 1y

—(Ci Ea) AT Ea)t

for every A € B(H), where Ej; = |j')(i|. Then ®,®',®" are positive finite rank elementary
operators that are not completely positive. Moreover, ® and ®" are indecomposable.

Proof. Still, we only prove that ®, ® and ®” are NCP positive. The fact that ® and ®”
are indecomposable will be illustrated by Example 7.2 or 7.3 below.

It is clear from Corollary 2.6 that ® is not completely positive because Z?Zl E;; is not a
contractive linear combination of {v/3E11,...,V3Eu, E12, Ess, F34, B4 }. We will show that
® is positive. Extend {|i)}?_; and {|j’) ?:1 to orthonormal bases {|i) 8% # and {|j’>}?i:”iK
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of H and K, respectively. Then every A € B(H) has a matrix representation A = (ay).

Obviously, ® maps A = (ay;) to the matrix

2a11 + a2 —ai —a13 —aiq 0

—ag 2a22 + ass —ag3 —a4 0

B(4) = —asy —asy 2a33 + a4 —az4 0
—a41 —ay2 —a43 2a44 +a11 O

0 0 0 0 0

Take any unit vector |z) = (21, z2, 3, T4, T5, - - )T € H and consider the rank-one projection
|z)(z|. Obviously, ® is positive if and only if ®(|z)(x|) > 0 holds for all unit vector |x) € H.

Since
201 |* + |22]? —T1T2 —Z1%3 —X1%4 0
—T2T1 2|$2|2 + |$3‘2 — XT3 — XXy 0
(I)(’ >< ’) —X3T1 —X3T9 2|IL‘3|2+ |1’4|2 —X374 0
z){x|) = _ _ _
—T4T1 —T4To —T4T3 2|3§‘4‘2 + |$1|2 0
0 0 0 0 0
we see that ®(|z)(z|) > 0 if and only if
2|:ZJ1‘2 + ‘$2’2 —I1T2 —X1T3 —XT174
—ToT- 2|za|? + |z3]? —XoX: — X9
M(z) = 201 |2 J3| 223 2 284 >0
—37] —T3To 2|zs|* + |z4] — T34
— 4T —TaTo —T4T3 2|xy|? + |21]?

It follows from Proposition 5.2 that all the principal minor determinants with order less than
4 of matrix M (z) are semi-positive definite. So, to prove the positivity of M (x), we need only
to show that det(M (z)) > 0. Writing z; = r;¢'%, i = 1,2,3,4, we have

22+ 13 —riry —rirs —Tir4
2 2
—rire  2r5 +r —7rors3 —Trory
M(z)=U SR T Ut
—Trirs —Trars3 27"3 + 7“4 —Tr3ra
—7r1T4 —Tory —73Ty 27“2 + r%

where
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is a unitary matrix. It follows that ® is positive if and only if the determinant

27“% + 7"% —Triry —T173 —T1T4
—Tr1r2 27“% + 7“32) —7ors —1oTy
f(ri,ma,r3,r8) = 9 9 >0
—7rirs —ror3  2r5 + 71y —73ry
—riry —Trory —73ry 21"2 + r%

holds for all 0 < ry,7ro, 73,74 < 1 with r% + r% + r% + T‘Z = 1. This is the case since, by
a computation, min f(rq,r2,73,74) = 0 (also, refer to the proof of Theorem 8.1). So ® is
positive, as desired.

Similarly, one can show that ® and ®” are positive but not completely positive. O

Now let us give some examples.

The entanglement of the states p in Example 7.2 were studied for 4 x 4 system in [13]
by constructing suitable witnesses. We construct states p; based on p and detect them by
the positive maps obtained in Theorem 7.1. In addition, we also discuss the question when
these states are entangled but cannot be recognized by the PPT criterion and the realignment
criterion.

Example 7.2. Let H and K be Hilbert spaces of dimension > 4, and let {|i)}{; and
{l7)}j=1 be any orthonormal sets of H and K, respectively. Let |w) = (1) + 22) +
38') + [44)). Define py = w)(wl, pz = 2(12)(12] + [23')(23] + [34) (34| + [41)(41']), s =
T(|13")(13'| + |24y (24'| + |31/)(31'| + [42') (42']) and pg = F(|14/)(14'| + |21/)(21/| + [32') (32| +
|43')(43']). Let p = Z?Zl gipi and pr = (1 —t)p + tpg, where ¢; > 0 for i = 1,2,3,4 with
G1t+q+qg+q=1,te[0,1], and pg is a state on H @ K. Then for sufficiently small ¢, or
for po with (@ ® I)po = (' ® I)pg = (®” @ I)po = 0, the following statements are true.

(1) If ¢; < ¢1 for some i = 2, 3,4, then p; is entangled.

(2) Let pp be PPT. Then p; is PPT if and only if gags > ¢} and ¢3 > ¢3. Thus, if
0<q <q <i,%§qj<1withqiqj2q% and 0 < q1 < g3 < 1, where 7,5 € {2,4} and i # j,
then p; is PPT entangled.

(3) If pg is PPT, and if ¢1 < %, G = %ql, g = % and g3 = % — 3q;, where i,j € {2,4} and
1 # j, then p; is PPT entangled but can not be detected by the realignment criterion.

Like that in Example 6.3, we need only check p.

In the rest of this section, we will denote by {|i)}{ 5 and {]j')}‘Jh:HiK the orthonormal
bases of H and K extended by {|i)};_; and {|5") ;4-:1, respectively, denote by Fy,; the rank one
operator |k')(l|, which has a matriz representation of (k,l)-entry 1 and others 0 with respect
to the above bases.

Thus, for p = Z?Zl qipi, with respect to the above bases, we have

p= xdiag(qi,q4,93, 92, 2, @1, 44, 43, 43, 92, 41, G4, G4, 43, G2, 1)
+4(Fi6 + Fra1 + Fiie + Fo1 + Fsa1 + Fo 6
+Fua+ Fue+ Fiiie + Fieq + Fiee + Fie1)
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and

4@ @ I)(p)
= diag(2q1 + q4,2q4 + 43,293 + @2, 2q2 + q1, 2q2 + q1, 2q1 + qu, 2q4 + g3,
293 + 2,293 + 42,262 + @1, 2q1 + 44,294 + g3, 2q4 + G3, 293 + G2, 2q2 + q1,2q1 + qa)
—q1(Fi6 + Fii1 + Fii6 + Fo1 + Fo 11 + Fo 16
+Fua+ Fue+ Fiiae + Fisq + Fiee + Fiea1),

which is unitarily equivalent to

2 +q  —q —q1 —q1
—q1 2q1 + qa —q1 —q1
® (294 + q3) 14
—q1 —q1 2q1 + qa —q1
—q1 —q1 —q1 2q1 +qu

D(2¢3 + q2)11 ® (2¢2 + q1)14 ® 0.

Hence, by Proposition 5.2, we get that (® ® I)(p) # 0 if ¢4 < q1, which implies that p is
entangled if g4 < q1.
Note that

p is PPT if and only if g2q4 > ¢? and ¢3 > 1. (7.2)

Thus we obtain that p is PPT entangled if 0 < g4 < q1 < i, i < @2 < 1 with qoqq > q% and
0 < g1 < g3 < 1. This reveals that the positive map ® can recognize some PPT entangled
states and hence is not decomposable.

The realignment matrix of p is

R = idiag((haQ17Q1aQ17Q17Q17Q1aQhQ17Q17Q17Q1aQ17Q1,Q17Q1)

+4(Fre + Foa1 + Fuiae + Fien) + § (Fra + Fee + Fiin + Fiee)
+L(F116 + Fo1 + Fii6 + Fie 1)

p

q1 44 43 QG2

~ q2 q1 44 (g3

= g elalye0=Aslgh,e0.
q3 Q92 41 g4
94 493 492 q1

Thus ||pf||1 = ||All1 + 3¢1. By computation, we have that

1Al = %\/Zle @ — Q192 — 4243 — G304 — Q144

(7.3)
+%\/Z?=1 @ +3(q102 + @203 + 4391 + q1a).-

It follows from Eqgs.(7.2)-(7.3) that the PPT criterion and the realignment criterion are inde-
pendent each other. It is also easy to construct entangled states that can not be recognized
by the PPT criterion and the realignment criterion. In fact, we have that ||pf||; < 1if g1 < %,
1

14>
qo = % and g3 = % Hence, in this case, the state p is PPT and cannot be detected by the

g1 = 3q1, @2 = 1 and g3 = & — 3¢4. For example, ||pf|l; = 09411 < 1if ¢ = 1, g4 =

realignment criterion. However it is entangled and can be recognized by the positive map ®

in Theorem 7.1.
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Similarly, by applying the map ®”, we have that p is entangled if ¢o < ¢1, and, p is PPT
entangled if 0 < go < ¢1 < 1, T < g1 < 1 with goqu > ¢} and 0 < ¢1 < g3 < 1. Thus, 9"
is indecomposable, too. Furthermore, if ¢; < %, Q@ = %ql, qq = % and g3 = % — 3q2, then p
is PPT entangled that cannot be detected by the realignment criterion. However, it can be
detected by the positive map ®” in Theorem 7.1.

By applying the map @', we see that p is entangled if g3 < ¢;. However, one should be
careful that, in this case, p is not PPT. This means that we can not use p to check whether
or not ®' is decomposable.

Example 7.3. Let H and K be complex Hilbert spaces of dimension > 4 and let {|i)}%,
and {[j") ?:1 be any orthonormal sets of H and K, respectively. Let

|w1) = %(|11’>+|22’>+|33’>+|44’>) and |we) = %(|12’>+|23’>+|34’>+|41’>).

Define p1 = [wi){wil, p2 = fa) wsl, ps = L(13) (13| + [24) (24'] + [31) (31| + [42)(42']) and
pa = LAY (14 + |217) (21| + 32) (32| + |43} (43']). Let p = S, gupy and py = (1—t)p+tpo,
where ¢; > 0 for i = 1,2,3,4 with ¢1 + g2+ ¢3 + g1 = 1, t € [0,1], and pp is a state on H @ K.
By using of the positive finite rank elementary operators ®, ® and ®” in Theorem 4.1, we
get that, for sufficiently small ¢ or for any py with (® @ I)pg = (®' @ I)po = (" ® I)py = 0,
the followings are true.

(1) If g1 # g2 or q1 = g2 > ¢; for some i € {3,4}, then p, is entangled.

(2) Let po be PPT. Then p; is PPT if and only if ¢1(q1¢3 — ¢3q3 — ¢3) > ¢3(qugs — ¢3) > 0
and q2(q2q3 — @qs — @3) > ¢2(q2q4 — ¢3) > 0. Hence, if, in addition, g1 # g2 or 1 = g2 > g
for some i € {3,4}, then p, is PPT entangled.

(3) If po is separable, and if %qi =gq; < % and g3 = g4, where i,j € {1,2} and i # j, then
p¢ is PPT entangled that cannot be detected by the realignment criterion.

We need only deal with p.

For p = qip1 + qap2 + q3ps + 4p4, it is obvious that

p= T(Fi1+Fie+ Fiu+ Fiie+ Fo1 + Fos + Fo11 + Fo16
+Fi11 + Fiie + Fiin + Fiiie + Fieg + Fies + Fie1 + Fiei6)
+L(Fyq+ Fas+ Fupo+ Fyi5+ Fs g+ Fs5 + F510 + Fs 15
+Fi04 + Fros + Fio,i0 + Fioas + Fisa + Fis s + Fis 10 + Fis,15)
+8 (F33+ Fyg + Fog + Fia,14) + 4 (Fop + Fr7 + Fi212 + F1313).

Note that

4o ®I)(p) = diag(2q1 + qa, g3 + 244,42 + 2g3, @1 + 202, @1 + 202, 2q1 + ¢4, g3 + 2qa, g2 + 23,
92 +2g3, 1 +2¢2,2¢1 + qa, 3 + 2q4, 43 + 24, G2 + 2G3, 1 + 242, 2¢1 + qa)
—q1(Fi6+ Fi1+ Fii6 + Fea + Foi1 + Fs 16
+Fi11+ Fii6 + Fi116 + Fie1 + Fie s + Fie11)
—q2(Fu5+ Fa10+ Fas + F5 4 + F510 + F5.15
+Fi04 + Fios + Fio15 + Fisa + Fis s + Fis.10),
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which is unitarily equivalent to the operator A® B & C & D & 0, where

2¢1 + qa —-q1 —q1 —q1 @1+ 2¢2 —q2 —q2 —q2
— 2q1 + - - - +2 — —
A— q1 q1 T g4 q1 q1 ,B _ q2 q1 q2 q2 q2
—q1 —q 2q1 + q4 —q1 —q2 —q2 q1 + 2g2 —q2
—q1 —q1 —q1 2q1 +qa —q2 —q2 —q2 q1 +2¢2
and
q2 + 2q3 0 0 0 q3 + 2q4 0 0 0
0 +2 0 0 0 +2 0 0
C = q2 qs ,D _ q3 q4
0 0 a2+ 2¢3 0 0 0 a3 + 2 0
0 0 0 a2 + 23 0 0 0 a3 + 2qu

It is clear that C, D > 0. For the matrices A and B, by Proposition 5.2, we get that A > 0 if
and only if ¢4 > ¢; and B > 0 if and only if ¢; > ¢2. So (P ® I)(p) is not positive if ¢4 < q1
or q1 < gs. It follows from the elementary operator criterion that p is entangled if ¢4 < ¢ or
41 < q2.

Next, consider the positive partial transpose of p. It is clear that

plt = W(Fi g+ Fos+ F39+ Fiaz+ Fs2 + Foe + Frao + Fsa

+Fy 3+ Fio7 + Fiia1 + Fia1s + Fiza + Flag + Fis12 + Fie,16)
+L(Fig+ Fy12+ F316 + Fau+ Fs 5+ Fo9 + Fri3 + Fy1
+Fo6+ Fio10 + Fii,14 + Fioo + Fiz 7+ Fia11 + Fis15 + Fi3)
+L(F33 4 Fyg+ Fog + Fia14) + G (Fo + Frr + Fio12 + Fi3.13)
A1®©B @ C1 & D10,

12

where
a1 ¢ 0 0 @4 ¢ g2 0
A = 1L @ ¢ 0 @ B = If @ ¢ 0 0
410 0 ¢ @ 41 @ 0 @ ¢
@1 Q2 g3 0 0 o1 @

and

g 0 @ q @2 0 0 @
Oy = {0 @ ¢ O D= L0 @ a1 @
4 o @ g O 41 0 ¢ ¢ O
2 0 0 q @ ¢ 0 q

It is easy to check that A; > 0 if and only if q1g3 > ¢2 and ¢?¢3 — 2q143q3 — ¢} + q5 > 0;
By > 0 if and only if gaqs > ¢F and ¢3¢3 — 2¢°qaqs + ¢f — ¢5 > 0; C1 > 0 if and only if
q1q32, > g3q3 + ¢ and q%q% —2q1¢3g3 — qf + ¢5 > 0; and Dy > 0 if and only if gags > ¢° and
0343 — 24792q4 + ¢ — g3 > 0. Hence
p is PPT if and only if
01(0143 — 6303 — @7) > a3 (q1gs — 43) > 0
and  ¢2(q2q] — afq1 — 43) 2 4t (q2q4 — ¢f) = 0.
Particularly,
if go = 2q1 and ¢3 = q4 > 4q1, then p is PPT entangled. (7.5)
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This fact will be used below.
Now, let us apply the realignment criterion to p. The realignment of p is

R

prE idiag((h,(hvQ1,Q17Q17Q1,Q17Lh,Q1,Q17Q17Q1,Q1,Q1,Q17Q1)
+L(Fra6+ Fouz + F3pa + Fuis + Fs g+ Fs1 + Fro + Fy 3
+Fo g+ Fios + Fii6 + Figr + Fiza2 + Fiag + Fis0 + Fie11)
+B(Fi11 + Fsi6 + Fiig + Fiee) + 4 (Fie + Foi1 + Fii16 + Fien)
>~ Ao BW g0,
where
Q1 94 93 G2 @1 0 0 @
1 1 0 O
A== q2 41 44 g3 . B=- q2 Q1
4l 3 @ @1 @ 410 @ a1 O
44 93 @ 0 0 ¢ «

and B®) denotes the direct sum of 3 copies of B. Then

o™l = 1IAll: + 3] B
- %\/Z?ﬂ @7 — Q1G2 — 243 — 394 — Q1G4
+i\/2?:1 @} +3(q192 + 4203 + q3q1 + q1a)

+9/3+ G - a2+ 3VE + @+ 30

Now a computation reveals that, if ¢ < %, q> = 2q1 and g3 = q4, then the trace norm
|pf]l1 < 1. Note that, by Eq.(7.5), p is PPT in this case. Hence, we get another kind

of examples of entangled states that are PPT and cannot be detected by the realignment

(7.6)

criterion.

Similarly, by using the positive map ®”, we obtain that p is entangled if go < ¢q1 or g3 < ¢o,
and, if g0 < 1—15, q1 = 2q2 and g3 = q4, then p is PPT entangled that cannot be detected by
the realignment criterion.

By using the positive map @', we see that p is entangled if g3 < g1 or q4 < ¢o. In this case,
by Eq.(7.4), p is not PPT because q1g3 — ¢3q3 — ¢ < 0 or q2¢3 — ¢qa — g3 < 0.

8. POSITIVE FINITE RANK ELEMENTARY OPERATORS OF ORDER (n,n)

In this section we consider the general case, that is, constructing positive finite rank ele-
mentary operators of order (n,n). The main purpose is to show that the following result is
true.

Theorem 8.1. Let H and K be Hilbert spaces of dimension > n, and let {|i)}! , and
{14") %_1 be any orthonormal sets of H and K, respectively. For k = 1,2,---,n —1, let
®%) : B(H) — B(K) be defined by

O (A) = (n—1) X0, BaAE} + Y0, By e AE,

® 8.1
- ED)ACSE Byt (8.1)
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for every A € B(H), where 7(i) = 7'(i) = (i + 1) mod n, 7*(i) = (i + k) mod n (k > 1),
i=1,2,---,n and Ej; = |3')(i|. Then ®K*) are positive but not completely positive. Moreover,
®*) s indecomposable whenever either n is odd or k # 5-

Proof. Obviously, ®*) is not completely positive for each k = 1,2,--- ,n — 1. Similar to
the proof of Theorem 7.1, to prove that ® = &) is positive, it is sufficient to show that the

function
fl,n(Tlﬂ“% e )Tn)
(n— 2)1“% + r% —7r1T9 —7riT3 . —r1r,
—7r1T9 (n—2)r3 + r% —7ror3 .. —rory, 7
= —Tirs —T9r3 (n—2)r3+rj - —T3ry (7.2)
—7r17Tn —Tory, —73r, v (n=2)r2 + 1?2
> 0
for all (r1,7g, - ,7y) with 0 <rq,7rg, -+, 7, < 1land Y., r? = 1. Other d*g are dealt with
similarly.
2 2
We may assume that all r;s are nonzero. Let z; = T;%, i=1,2,...,n—1, and z,, = :—5
Then z129---z, = 1 and
fl,n(rla T2, ,’Fn) = (7“17”2 T Tn)2h1,n(331, T2, - axn)v (73)
where
hl,n(-rla €T, - 7$n)
(n—2)+ a1 -1 -1 1
-1 (n—2) + x5 -1 ~1 (7.4)
= -1 -1 (n—2)+ 3 -1
-1 -1 -1 o (n—=2)+a,
with each z; > 0 and zyz2---2, = 1. It follows that fi, > 0 for all (r1,72,---,r,) with
0<ry,re,-,rp <land ), 7“7;2 = 1 if and only if hy, > 0 holds for all (z1,z2,--- ,zy)
with x; >0 (i =1,2,...,n) and z1z9 -+ 2, = 1.

Note that, the determinant in Eq.(8.4) can be formulated as

n
hlm(l'l,m'g, s ,a:n) = —My+ M; Zi:l x; + Moy Zi<j TiTj+ -
+ My, Zi1<iz<-~~<z‘k Tijy Tig *** Ty, v

+M,_1 Zi1<i2<--~<in,1 Tiy iy =+ Ti,_, + Mpz120 -+ - 2.
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The case of n = 3 is obvious. So we assume that n > 4 in the sequel. Since, by Proposition
5.2, h1,(0,0,---,0) = =My < 0, we have My > 0. Taking x; = 0 for 2 < i < n, we see that

n-2)+1 -1 -1 .. -1

1 (n—2) -1 1

—Mo + Mizy = hyp(21,0,...,0) = -1 -1 (n-2) .- -1
1 1 1 (n—2)

(n—2) -1 -1 ... -1 0 0 0

1 (n-2) -1 1 (n—2) -1 .

| 4 1 (n-2) 1|y 1 (n—2) 1
1 1 1 (n—2) 0 -1 1 (n—2)

= —Mp+ hl,nfl(la L..., 1)$1
Thus we have My = hyp—1(1,1,---,1) > 0 by Proposition 5.2. Let z; = 0 for i > 3. A

computation reveals that My = hj ,—2(2,2,---,2) > 0. In general, one can check that
My =hip-p(kk,-- k) >0, k=1,2,--- n. (8.5)

For example,

n—2 -1 —1
M, 3= h173(n—3,n—3,n—3): -1 n-2 —1
-1 -1 n-2
= n—-22-3(n-2)—2>0,
n—2 -1

Mn_2:h172(n—2,n—2): :(n—2)2—120,

-1 n-2
M,—1 =hin-1=n—-22>0and M, = 1. Thus we have shown that My, My, M>,--- M, €
NU {0}. It is easily checked that hy,(1,1,---,1) = 0. This leads to

n

> M; = My, (8.6)

i=1
Next, observe that if a; > 0 and ajas---a,, = 1, then Z;”Zl aj > 1. This fact implies that
Z Ljy Ljy =+ + Ty, Z 1 (8.7)

1<t <---<ip
holds for each 1 < k < n. Eq.(8.7), together with Eq.(8.6), yields that hy (21,22, - ,2,) >0

holds for all (1,9, -+ ,x,) With 129 -+ -2, = 1.

The last assertion will be proved by Example 8.4 below. The proof is finished. O

Remark 8.2. Let 7 be any permutation of (1,2,--- ,n) and let ¥ : M, (C) — M, (C) be
the map defined by

U (A) = diag{(n — 1)ai1 + arz1yr(1): (0 — )az2 + az@)r2): > (0 = Dann + r@ynn)t — A



34

for every A = (a;5) € M,(C). By Corollary 2.6, Proposition 5.3 and the proof of Theorem
8.1, it is easily seen that W, is a positive linear map that is not completely positive whenever
T # id.

Remark 8.3. For any n-dimensional Hilbert space H, define

E—1
Dy, = ]{;(;m(;E —(k—=1)Ew), k=1,2,---,n—1,
M;; = 12(Ew + Ej;) for i < j,
and
N;j = %(ZEZ —iEj;) fori<j.
Relabel these n? — 1 matrices as Ji, J2, - - - , J,2_1. Then the n? —1 matrices form a completely

orthonormal traceless set and any n X n Hermitian matrix S can be written as the form

n?—1

1
S=-(
~(I+ > medi),
k=1
where n, € R, k = 1,2,--- ,n?> — 1. Hence it is clear that the n x n hermitian matrices

with trace 1 and the points in R -1 (the real linear space) are in one-to-one correspondence.

The image A, of the set of all density matrices is a closed convex set in R -1

. Then every
positive linear map ® : M, (C) — M, (C) corresponds to a linear map Mg : R -1 Rr°-1
that sends A,, into A,,. It was shown in [41] that every map represented by a matrix of the form
M = (n—1)"'Ris positive, where R € O(n?—1), the orthogonal group of proper and improper
rotations in R"°~! ([41, Theorem 4]). Some more can be said. In fact, M = (n —1)"'R
corresponds a positive map whenever ||R|| < 1. The positive maps in Theorem 6.2 may be
obtained from this way. However, the positive maps in Theorem 7.1 can not be obtained from

this way. For example, consider the map ® in Theorem 7.1. By a simple calculation, we get

9 33 0
Me=:| —V3 11 42
—2v6 —2v2 10

It is clear that ||Ms| > %, and so [41, Theorem 4] is not applicable to our map & here.

In the following we give two examples that generalize the examples in Sections 3-4.

The states p in Example 8.4 were suggested for n x n system in [13] without analyzing their
entanglement.

Example 8.4. Let H and K be Hilbert spaces of dimension > n and let {|i)}}' ; and
{15")}7=1 be any orthonormal sets of H and K, respectively. Let |w) = L5 | |ii’). Define
pr = el pp = L (T ® S)iWH (T © S, ps = LS, (T @ S)it)it|(T © 8,
ey Ppo= 2SR (T @ SPTY]E) (i |(I @ S™TD)T, where S is the operator on K defined by
Sl =1G+1))ifj=1,2,--- ,;n—1, S0’y =|1') and S|j’) =0if j > n. Let p=> 7" | gipi
and py = (1—t)p+tpo, where ¢; > 0fori=1,2,--- ,nwith > ;¢ =1,¢t€[0,1], and pg is a
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state on H® K. Then for sufficiently small ¢, or for pg with (®*)@1)py =0,k =1,2,--- ,n—1,
the following statements are true.

(1) If ¢; < qq for some i = 2,3,--- ,n, then p; is entangled.

(2) Let pg be PPT. Then p; is a PPT state if and only if ¢;q; > q? fori,j with i +j = n+2,
1=3,4,--- ,n.

It is enough to discuss the entanglement of p. For p = ", ¢;p;, by using of the map
® = &) in Theorem 8.1, it is easily checked that

n(®® I)(p)
(n—2)q1 + qn —q —q e —q
-q (n—=2)q1 + qn —q T —q
= —q1 —q1 n=2)g1 +qn - —q1
—q1 —q1 —q1 e (n—=2)g1 +gn

B((n—2)qn + gn-1)1n ® (n —2)gn-1+ gn—2)nn® - ® ((n — 2)q2 + q1) I, 0.

Thus, by Proposition 5.2, we get that p is entangled if ¢, < ¢1.

Similarly, by applying the map ®*) in Theorem 8.1, we have p is entangled if g, 11 < q1,
where £k =2,3,--- ,n— 1.

It is easily checked that p is PPT if and only if ¢;q; > q?, where i +j = n + 2 and
i1=3,4,---,n.

Moreover, if n is odd, or if n is even but k # &, we can choose qi1,q2, g, so that
Gn+1—k < q1 < % and q;q; > q? whenever i + j = n + 2. It follows that p = Yo qipi is PPT
entangled which can be recognized by ®*). Hence, ®*) is not decomposable. This completes
the proof of the last assertion of Theorem 8.1.

Example 8.5. Let H and K be complex Hilbert spaces of dimension > n and let {|i)}” ;
and {[5')}_; be any orthonormal sets of H and K, respectively. Let |wi) = % oy lid)
and Jwp) = —=(112') +[23) + -~ +|(n — 1)n’) + [n1")). Define p1 = |w1){wil, p2 = |w2)(wal,
p3 =230 (T S?))id!)(ii'|(I @ S*), ..., pp = 30 (I @ S™1)|ii) (3’| (I ® S("~VT), where
S is the same operator as in Example 8.4. Let p = > | ¢ip; and p; = (1 — t)p + tpo, where
¢ >0fori=1,2--- ,nwith )" ,¢ =1,¢te0,1], and pg is a state on H ® K. By using
of the positive finite rank elementary operators ®*) in Theorem 8.1, one can get that, for
sufficiently small ¢ or for any py with (CIJ(k) ®@DNpp =0,k =1,2--- n—1,if 1 # g2 or
q1 = g2 > ¢; for some i € {3,4,--- ,n}, then p; is entangled.
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Still, we only need to consider the entanglement of p. For p = >"" | ¢;p;, with ® = oW as

in Theorem 8.1, it is clear that

(n—2)q1 + qn —q1 —q1 e _—
—q1 (n—2)q1 + qn —q1 .. —q
n(®®I)(p) = —0 —q n=2)g+¢qn - —q
—q —1 —1 o (n=2)q1+gn
(n - 2)Q2 +q —q2 —q2 A —qo
—q2 (n—2)g2 +q1 —q2 e —q2
@ —q2 —G2 n—2)p+q -+ —G2
2 a2 —q2 o (n=2)gt+aq

Di—s((n = 2)qx + @r—1) 1, S0

So, by Proposition 5.4, (& ® I)(p) is not positive if ¢, < ¢1 or ¢1 < g2, which implies that p
is entangled if ¢, < g1 or ¢1 < ¢o.

Similarly, by applying the map (k) (k=2,3,---,n—1) in Theorem 8.1, one gets that
p is entangled if g,11-x < q1 or @1 < g2. Thus, we obtain that p is entangled if ¢; # ¢ or
@1 = q2 > q; for some i € {3,4,--- ,n}.

Before the end of this section, we propose a question.

Question 8.6. Let n > 4 be an even integer. Is the positive map ®(3) defined in Theorem
8.1 indecomposable? Particularly, is the positive map ® defined in Theorem 7.1 indecompos-
able?

We guess that the answer is affirmative, but we are not able to prove it by now.
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