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• The outline of this talk:

1. Introduction

2. Measurement-induced nonlocality(MiN), quantum dis-
cord(QD) and classical-quantum(CQ) state for infinite di-
mension

3. Main result: Nullity of measurement-induced nonlo-
cality
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• Abstract

Measurement-induced nonlocality is a measure of nonlo-
cality introduced by Luo and Fu [Phys. Rev. Lett. 106,
120401(2011)]. We present a sufficient and necessary
condition for nullity of measurement-induced nonlocality
for both finite- and infinite-dimensional bipartite systems.
We highlight the relation between zero measurement-
induced nonlocality states and classical-quantum states
(which have zero quantum discord) in terms of commu-
tativity. It is indicated that measurement-induced nonlo-
cality and quantum discord are raised from noncommu-
tativity rather than entanglement. We find that the set
of states with zero measurement-induced nonlocality is
a proper subset of the set of zero discordant states, and
that they are zero-measure sets. Therefore, there exist not
only quantum nonlocality without entanglement but also
quantum nonlocality without quantum discord.

http://192.9.200.1


Introduction

Review . . .

Our . . .

�¯Ì�

I K �

JJ II

J I

1 4� 27

� £

�¶w«

' 4

ò Ñ

1 Introduction

• Quantum nonlocality, whereby particles of spatially sepa-
rated quantum systems can instantaneously influence one
another, is one of the most elusive features in quantum
theory.

• There are several kinds of nonlocalities, such as entangle-
ment, quantum discord and measurement-induced nonlo-
cality. They can also be viewed as quantum correlations.

• Mathematically, quantumness is always associated with
noncommutativity while classical mechanics displays
commutativity in some sense.

• The quantifying of nonlocality, for instance, entanglement
measure and computation of quantum discord, has been
discussed intensively. The aim of this work is to charac-
terize and compare MiN, CQ and QD in terms of noncom-
mutativity mathematically.

http://192.9.200.1
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• We consider a bipartite quantum system consisting of two
parts labeled by A and B respectively, let HA be the state
space of the subsystem A and HB be the state space of the
subsystem B, dimHA ⊗HB ≤ +∞.

• Mathematically, a state of the system A+B is described by
a density operator ρ acting on the state space HA ⊗ HB,
namely,

ρ is positive, and Tr(ρ) = 1, ρ ∈ B(HA ⊗HB).

http://192.9.200.1
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• We recall some definitions for finite-dimensions.

Measurement-induced nonlocality (MiN, for short) was
firstly proposed by Luo and Fu [1]. The MiN of ρ, de-
noted by N(ρ), is defined by [1](Note:finite-dimension!)

N(ρ) = max
ΠA

‖ρ− ΠA(ρ)‖2
2, (1)

where ‖ · ‖2 is the Hilbert-Schmidt norm (that is ‖A‖2 =

[Tr(A†A)]
1
2), and the max is taken over all local von Neu-

mann measurement ΠA = {ΠA
k } with

∑
k ΠA

k ρAΠA
k = ρA,

ΠA(ρ) =
∑

k(Π
A
k ⊗ IB)ρ(ΠA

k ⊗ IB).

[1] S.-L. Luo and S.-S. Fu, Measurement-induced nonlocallity, Phys.
Rev. Lett. 106, 120401(2011).

http://192.9.200.1
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• MiN is different from, and in some sense dual to,
the geometric measure of quantum discord(GMQD)
[1](Note:finite-dimension!)

DG(ρ) := min
ΠA

‖ρ− ΠA(ρ)‖2
2

where ΠA runs over all local von Neumann measure-
ments (GMQD is originally introduced in [2] asDG(ρ) :=
minχ ‖ρ − χ‖2

2 with χ runs over all zero QD states and
proved in [3] that the two equations coincide).

[2] B. Dakić et al, Necessary and sufficient conditiong for nonzero
quatnum discord, Phys. Rev. Lett. 105, 190502(2010).

[3] S.-L. Luo and S.-S. Fu, Geometric measure of quantum discord,
Phys. Rev. A 82, 034302(2010).

http://192.9.200.1
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• We recall that the quantum discord, which can be viewed
as a measure of the minimal loss of correlation in the
sense of quantum mutual information, is defined by
[4](Note:finite-dimension!)

D(ρ) = min
ΠA

{I(ρ)− I(ρ|ΠA)}, (2)

where the min is taken over all local von Neumann mea-
surements ΠA. I(ρ) = S(ρA) + S(ρB) − S(ρ) is inter-
preted as the quantum mutual information, where S(ρ) =
−Tr(ρ log ρ) is the von Neumann entropy, I(ρ|ΠA)} :=
S(ρB) − S(ρ|ΠA), S(ρ|ΠA) :=

∑
k pkS(ρk), and ρk =

1
pk

(ΠA
k⊗IB)ρ(ΠA

k⊗IB) with pk = Tr[(ΠA
k⊗IB)ρ(ΠA

k⊗IB)],
k = 1, 2, . . . , dimHA. Throughout this talk, all loga-
rithms are taken to base 2.

[4] H. Ollivier and W.H. Zurek, Quantum discord: a measure of the
quantumness of correlations, Phys. Rev. Letters, 88, 017901(2001).

http://192.9.200.1
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• QD is nonnegative [4-5].

• For finite-dimensional case, it is known that a state has
zero QD if and only if it is a classical-quantum(CQ) state,
where a state ρ is said to be a CQ state if it has the form
of(Note:finite-dimension!)

ρ =
∑
i

pi|i〉〈i| ⊗ ρBi , (3)

for some orthonomal basis {|i〉} of HA, where ρBi s are
states of the subsystem B, pi ≥ 0,

∑
i pi = 1.

[5] A. Datta, A condition for the nullity of quantum discord, arXiv:
1003.5256v2(2010).

http://192.9.200.1


Introduction

Review . . .

Our . . .

�¯Ì�

I K �

JJ II

J I

1 10� 27

� £

�¶w«

' 4

ò Ñ

2 MiN, QD and CQ states for infinite-
dimension

• The following results is based on

Y. Guo, J.-C. Hou, Nullity of measurement-induced non-
locality, arXiv:1107.0355v1(2011).

• With the same spirit as that of the finite-dimensional case,
we can generalize MiN, QD and CQ states to infinite-
dimensional case straightforward.

• In this section, we always assume that dimHA ⊗ HB =
+∞, ρ ∈ S(HA ⊗ HB). Let ΠA = {ΠA

k = |k〉〈k|} be a
set of mutually orthogonal rank-one projections that sum
up to the identity of HA(we also call ΠA = {ΠA

k } a local
von Neumann measurement). Where

∑
k(Π

A
k ⊗IB)†(ΠA

k ⊗
IB) =

∑
k ΠA

k ⊗ IB = IAB, the series converges under the
strongly operator topology [6].
[6] J.-C. Hou, A characterization of positive linear maps and cri-
teria for entangled quantum states, J. Phys A: Math. Theor. 43,
385201(2010).

http://192.9.200.1
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• Measurement-induced nonlocality for infinite-
dimension- We define the MiN of ρ by

N(ρ) := sup
ΠA

‖ρ− ΠA(ρ)‖2
2, (4)

where the sup is taken over all local von Neumann mea-
surement ΠA = {ΠA

k } that satisfying
∑

k ΠA
k ρAΠA

k =
ρA. ‖ · ‖2 denotes the Hilbert-Schmidt norm: ‖A‖2 =

[Tr(A†A)]
1
2 .

http://192.9.200.1
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• The following properties are straightforward for both
finite- and infinite-dimensional cases.

(i) N(ρ) = 0 for any product state ρ = ρA ⊗ ρB.

(ii) N(ρ) is locally unitary invariant, namely, N [(U ⊗
V )ρ(U †⊗V †)] = N(ρ) for any unitary operators U and V
acting on HA and HB, respectively.

(iii) N(ρ) > 0 whenever ρ is entangled since ΠA(ρ) is
always a classical-quantum state and thus is separable.

(iv) 0 ≤ N(ρ) ≤ 4.
(v) The MiN of pure state can be easily obtained. Let
|ψ〉 ∈ HA ⊗ HB and |ψ〉 =

∑
k λk|k〉|k′〉 be its Schmidt

decomposition. For the finite-dimensional case, Luo and
Fu in [6] showed that N(|ψ〉) = 1−

∑
k λ

4
k. It is also true

for infinite-dimensional case.

http://192.9.200.1
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• The quantum discord for infinite-dimensional systems
was firstly discussed in [5].

Let
I(ρ) = S(ρA) + S(ρB)− S(ρ)

denote the quantum mutual information of ρ, where
S(ρ) = −Tr(ρ log ρ) denotes the von Neumann entropy
of the state ρ (remark here that S(ρ) maybe +∞). Let
ΠA = {ΠA

k = |k〉〈k|} be a local von Neumann mea-
surement. We perform ΠA on ρ, the outcome ΠA(ρ) =∑

k pkρk, where ρk = 1
pk

(ΠA
k ⊗ IB)ρ(ΠA

k ⊗ IB) with prob-
ability pk = Tr[(ΠA

k ⊗ IB)ρ(ΠA
k ⊗ IB)]. Define I(ρ|ΠA) :=

S(ρB) − S(ρ|ΠA) and S(ρ|ΠA) :=
∑

k pkS(ρk). The dif-
ference

D(ρ) := I(ρ)− sup
ΠA

I(ρ|ΠA) (5)

is defined to be the quantum discord of ρ, where the sup
is taken over all local von Neumann measurement.

http://192.9.200.1
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• It is proved in [5] that D(ρ) ≥ 0 for any state ρ ∈ S(HA⊗
HB). One can check that QD can also be calculated as

D(ρ) = I(ρ)− sup
ΠA

I [ΠA(ρ)] (6)

for both finite- and infinite dimensional cases. Namely,
QD is defined as the infimum of the difference of mutual
information of the pre-state ρ and that of the post-state
ΠA(ρ) with ΠA runs over all local von Neumann measure-
ments.

http://192.9.200.1
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• For finite-dimensional systems, the CQ states attracted
much attention since they can be used for quantum broad-
casting [7]. We extend it into infinite-dimensional case
via the same scenario.

Classical-quantum state- Similar to Eq.(3), for ρ ∈
S(HA⊗HB), dimHA⊗HB = +∞, if ρ has the following
form

ρ =
∑
k

pk|k〉〈k| ⊗ ρBk , (7)

where {|k〉} is a orthonormal set of HA, ρBk s are states of
the subsystems B, pk ≥ 0 and

∑
k pk = 1, then we call ρ

is a classical-quantum state.

[7] S.-L. Luo, On quantum no-broadcasting, Lett. Math. Phys. 92,
143-153(2010).

http://192.9.200.1
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• Let dimHA ⊗HB ≤ +∞,

S0
N = {ρ ∈ S(HA ⊗HB) : N(ρ) = 0},

SC = {ρ ∈ S(HA ⊗HB) : ρ is CQ},
S0
D = {ρ ∈ S(HA ⊗HB) : D(ρ) = 0}

and Ssep be the set of all separable states acting on HA ⊗
HB. Then

S0
N ⊆ SC ⊆ S0

D ⊆ Ssep. (8)

http://192.9.200.1
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• It is known that S0
D is a zero-measure set [8](that is, each

point of this set can be approximated by a sequence of
states that not belong to this set with respect to the trace
norm) for the finite-dimensional case and Ssep is also
a zero-measure set for the infinite-dimensional case [9],
thus S0

N is a zero-measure set in both finite- and infinite-
dimensional cases. (We know now that S0

D is also a zero-
measure set in infinite-dimensional cases, which answer
the question suggested in [5].)

[8] A. Ferraro et al, Almost all quantum states have onnclassical cor-
relations, Phys. Rev. A 81, 052318(2010).

[9] R. Clifton and H. Halvorson, Bipartite mixed states of infinite-
dimensional systems are generically nonseparable, Phys. Rev. A 61,
012108(1999).

http://192.9.200.1
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3 Main result: Nullity of MiN
• In order to state the main result, we need a lemma:

• Lemma 1. Let dimHA ⊗ HB ≤ +∞. Take orthonomal
bases {|k〉} and {|i′〉} of HA and HB, respectively. We
write Fij = |i′〉〈j′|. Then, for any ρ ∈ S(HA ⊗ HB), we
can write ρ as

ρ =
∑
i,j

Aij ⊗ Fij (9)

where Aijs are trace-class operators acting on HA and the
series converges in the trace norm [10].
[10] Y. Guo and J.-C. Hou, Comment on “Remarks on the structure
of states of composite quantum systems and envariance”[Phys.Lett.A
355(2006)], Phys. Lett. A, 375, 1160-1162(2011).

http://192.9.200.1
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It is proved in [11] that, for any density matrix ρ ∈ S(HA ⊗
HB) with dimHA ⊗ HB < +∞, if ρ =

∑
ij Aij ⊗ Fij with

Aijs are mutually commuting normal matrices, then ρ is
separable. In fact, we can prove that such state ρ is not only
separable but also a CQ state and that ρ is a CQ state if and
only if it admits the form above. Moreover, it can be ex-
tended into infinite-dimensional cases:

Theorem 1. Let dimHA ⊗ HB ≤ +∞, ρ ∈ S(HA ⊗ HB).
Assume ρ =

∑
ij Aij ⊗ Fij as in Eq.(9) with respect to some

given bases of HA and HB. Then ρ is a CQ state if and only
if Aijs are mutually commuting normal operators acting
on HA.

[11] K.-C. Ha, Sufficient criterion for separability of bipartite states, Phys.
Rev. A 82, 014102(2010).

http://192.9.200.1
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• Theorem 1 implies that QD stems from noncommutativ-
ity not from entanglement.
We can also find this kind of noncommutativity from an-
other perspective: For finite-dimensional case, it is proved
in [8] that if ρ ∈ SC(= S0

D) then [ρ, ρA ⊗ IB] = 0. It is
easy to check that it is also valid for infinite-dimensional
systems as well:

Proposition 1. Let dimHA ⊗ HB ≤ +∞, ρ ∈ S(HA ⊗
HB). Then

ρ ∈ SC ⇒ [ρ, ρA ⊗ IB] = 0. (10)

http://192.9.200.1
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• The following is the main result of this talk.

Theorem 2. Let dimHA⊗HB ≤ +∞, {|k〉} and {|i′〉} be
orthonormal bases of HA and HB, respectively, and ρ ∈
S(HA⊗HB). Assume that ρ =

∑
i,j Aij ⊗Fij ∈ S(HA⊗

HB) as in Eq.(9) with respect to the given bases. Then
N(ρ) = 0 if and only if Aijs are mutually commuting
normal operators and each eigenspace of ρA contained
in some eigenspace of Aij for all i and j.

http://192.9.200.1
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• Equivalently, Theorem 2 means that N(ρ) = 0 if and only
if

ρ =
∑
k

pk|k〉〈k| ⊗ ρBk

as in Eq.(7) with the property that ρBk = ρBl whenever
pk = pl.

• Theorem 2 indicates that the phenomenon of MiN is a
manifestation of quantum correlations due to noncom-
mutativity rather than due to entanglement as well.
And we claim that the commutativity for a state to have
zero MiN is ‘stronger’ than that of zero discordant
state. We illustrate it with the following example.

http://192.9.200.1
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• Example. We consider a 3⊗ 2 system. Let

ρ =



a · · e · ·
· a · · f ·
· · b · · g
ē · · c · ·
· f̄ · · c ·
· · ḡ · · d


.

(Here, dots denotes the vanished matrix elements.) It is
clear that ρ is a CQ state for any positive numbers a, b, c,
d and complex numbers e, f , g that make ρ be a state.

http://192.9.200.1
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However, taking ΠA = {|ψi〉〈ψi|}3
i=1 with

|ψ1〉 =
1√
2

 1

1

0

 , |ψ2〉 =
1√
2

 1

−1

0

 , |ψ3〉 =

 0

0

1

 ,

it is easy to see that
∑

k ΠA
k ρAΠA

k = ρA and ΠA(ρ) 6= ρ when-
ever e 6= f . If a + c = b + d, one can easily conclude that
N(ρ) = 0 if and only if a = b, c = d and e = f = g. Hence,
there are many CQ states with nonzero MiN.

http://192.9.200.1
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• The above example shows that, S0
N is a proper subset of

S0
D. In addition, ρ1, ρ2 ∈ S0

N doesn’t imply ερ1 + (1 −
ε)ρ2 ∈ S0

N generally, 0 ≤ ε ≤ 1, so S0
N is not a convex set.

Similarly, S0
D (or SC) is not convex, either.

http://192.9.200.1
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• From Theorem 2, the following conclusions are clear:

Proposition 2. Let dimHA ⊗ HB ≤ +∞, ρ ∈ S(HA ⊗
HB). Suppose that each eigenspace of ρA is of one-
dimension and ρA =

∑
k pk|k〉〈k| is the spectral decom-

position. Then the local von Neumann measurement ΠA

that makes ρA invariant is uniquely (up to permutation)
induced from {|k〉〈k|}, and vice versa.

Corollary 1. Let dimHA ⊗ HB ≤ +∞ and ρ ∈ SC.
Then N(ρ) = 0 provided that each eigenspace of ρA is of
one-dimension.

http://192.9.200.1
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