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e The outline of this talk:

1. Introduction

2. Measurement-induced nonlocality(MiN), quantum dis-
cord(QD) and classical-quantum(CQ) state for infinite di-
mension

3. Main result: Nullity of measurement-induced nonlo-
cality
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e Abstract

Measurement-induced nonlocality 1s a measure of nonlo-

cality introduced by Luo and Fu [Phys. Rev. Lett. 106, |
120401(2011)]. We present a sufficient and necessary IF:;eweW
condition for nullity of measurement-induced nonlocality our |
for both finite- and infinite-dimensional bipartite systems.
We highlight the relation between zero measurement-

induced nonlocality states and classical-quantum states sz |
(which have zero quantum discord) in terms of commu- TEN
tativity. It is indicated that measurement-induced nonlo- RO
cality and quantum discord are raised from noncommu- e

tativity rather than entanglement. We find that the set
of states with zero measurement-induced nonlocality is
a proper subset of the set of zero discordant states, and
that they are zero-measure sets. Therefore, there exist not
only quantum nonlocality without entanglement but also =
quantum nonlocality without quantum discord.
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Introduction

« Quantum nonlocality, whereby particles of spatially sepa-
rated quantum systems can instantaneously influence one
another, 1s one of the most elusive features in quantum
theory.

 There are several kinds of nonlocalities, such as entangle-
ment, quantum discord and measurement-induced nonlo-
cality. They can also be viewed as quantum correlations.

o Mathematically, quantumness 1s always associated with
noncommutativity while classical mechanics displays
commutativity In Some sense.

» The quantifying of nonlocality, for instance, entanglement
measure and computation of quantum discord, has been
discussed intensively. The aim of this work 1s to charac-
terize and compare MilN, CQ and QD in terms of noncom-
mutativity mathematically.

Review
Our .

W8 F 7T |
wl» ]
REES

Bamizor |

B [E |

L2HRET |

x M
z‘Etﬂl


http://192.9.200.1

AR

-

o We consider a bipartite quantum system consisting of two
parts labeled by A and B respectively, let [ 4 be the state ’F;,’ev o
space of the subsystem A and Hp be the state space of the T |
subsystem B, dim H4 ® Hp < 4-00.

o Mathematically, a state of the system A+B 1s described by paEn |
. 3 tr & R |

a density operator p acting on the state space Hy ® Hp, e
namely, o
p is positive, and Tr(p) =1, p € B(H4 ® Hp). gomz |
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e We recall some definitions for finite-dimensions. — 3!

Measurement-induced nonlocality (MiN, for short) was
firstly proposed by Luo and Fu [1]. The MiN of p, de- IF;’IeVIeW
noted by N(p), is defined by [1](Note:finite-dimension!) Oour

_ A 9

N(p) = max[|p —1I%(p)]l>; (1) S
where | - |2 is the Hilbert-Schmidt norm (that is || A5 = _emn |
[Tr(ATA)]%), and the max is taken over all local von Neu- [ »
LT measurerrjlqent 4 = {AH;;l} with Y7, I pall = py, Ly ]
%p) = > (I ® Ip)p(Il; ® Ip). _womz |
[1] S.-L. Luo and S.-S. Fu, Measurement-induced nonlocallity, Phys. sRE7 |
Rev. Lett. 106, 120401(2011). =
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e MiIN 1s different from, and in some sense dual to, M”!
the geometric measure of quantum discord(GMQD)

[ 1](Note:finite-dimension!) p——
P Review
De(p) = min [ p = T%(p)|]; Our.
where T14 runs over all local von Neumann measure-
ments (GMQD is originally introduced in [2] as Dg(p) := i
min, ||p — x||3 with x runs over all zero QD states and L
proved in [3] that the two equations coincide). L >
RN
[2] B. Daki€ et al, Necessary and sufficient conditiong for nonzero grmz |
quatnum discord, Phys. Rev. Lett. 105, 190502(2010). e |
2REETF |

[3] S.-L. Luo and S.-S. Fu, Geometric measure of quantum discord, ‘
Phys. Rev. A 82, 034302(2010). x


http://192.9.200.1

e We recall that the quantum discord, which can be viewed .
as a measure of the minimal loss of correlation in the ﬂfﬂm”!
sense of quantum mutual information, is defined by

[4](Note:finite-dimension!) Itrocton
| P Review
D(p) = min{I(p) - {pIl1*)}, 2 | Our

where the min is taken over all local von Neumann mea-

surements [14. I(p) = S(p4) + S(pg) — S(p) is inter- BLLELE
preted as the quantum mutual information, where S(p) = FE |
—Tr(plog p) is the von Neumann entropy, I(p|I14)} := KIS
S(pp) — S(pl?), S(p|T4) == 3. pkS(pr), and pr = | pesjus
L (I ®15)p(IT;®1p) with p, = Tr[(T}®1p)p(ITR15)), gans |
k=1,2,...,dim H4. Throughout this talk, all loga- 5@ |
rithms are taken to base 2. srar |
[4] H. Ollivier and W.H. Zurek, Quantum discord: a measure of the : Z |

quantumness of correlations, Phys. Rev. Letters, 88, 017901(2001).
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QD is nonnegative [4-5].

e For finite-dimensional case, it 1s known that a state has cion
zero QD if and only if it is a classical-quantum(CQ) state, Review
where a state p is said to be a CQ state if it has the form Our.
of(Note:finite-dimension!)

EE R |

,O:Zpi|i><7;’®p§, <3> war |

Z’ RS

for some orthonomal basis {|i)} of H4, where p’s are IR
states of the subsystem B, p; > 0, > . p; = 1. wom |
& [ |

[5] A. Datta, A condition for the nullity of quantum discord, arXiv: srar |

1003.5256v2(2010). % i
e a4 |
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2 MiN, QD and CQ states for infinite-
dimension

e The following results 1s based on

Y. Guo, J.-C. Hou, Nullity of measurement-induced non- Introduction

locality, arXiv:1107.0355v1(2011). geV’eW
o With the same spirit as that of the finite-dimensional case, ur

we can generalize MiN, QD and CQ states to infinite-

dimensional case straightforward. sz |
e In this section, we always assume that dim H4 ® Hg = L EN

+00, p € S(Hs ® Hp). Let 1! = {112 = |k)(k|} be a | »
set of mutually orthogonal rank-one projections that sum ]
up to the identity of H 4(we also call II* = {II:'} a local gz |
von Neumann measurement). Where >_, (TI£® I5)"(I14 ® £a |
Tz =9 Hf ® Ip = I4p, the series converges under the NTTH
strongly operator topology [6].

x i
[6] J.-C. Hou, A characterization of positive linear maps and cri- e 4|

teria for entangled quantum states, J. Phys A: Math. Theor. 43,
385201(2010).
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e Measurement-induced nonlocality for infinite-
dimension- We define the MiN of p by

N(p) = sup[lp — (o)l (4)
where the sup is taken over all local von Neumann mea-
surement [ = {II!} that satisfying >, [IZpAll =
pA. || - ||2 denotes the Hilbert-Schmidt norm: ||Alls =
Tr(ATA))2.
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e The following properties are straightforward for both ﬂfﬂm”!
finite- and infinite-dimensional cases.

(i) N(p) = 0 for any product state p = p4 @ pp. ———

(i) N(p) is locally unitary invariant, namely, N[(U ® Review
V)p(U ® V)] = N(p) for any unitary operators U and V| [0S
acting on H 4 and H p, respectively.

(iii) N(p) > 0 whenever p is entangled since I14(p) is —Ii’::
a.lways a classical-quantum state and thus 1s separable. —Iﬂﬁ
(iv) 0 < N(p) < 4. S

(v) The MiN of pure state can be easily obtained. Let wra |

Y) € Hy ® Hp and |[¢) = >, A\p|k)|K') be its Schmidt .
decomposition. For the finite-dimensional case, Luo and S|
Fu in [6] showed that N (|1)) =1 — >, A7. It is also true
for infinite-dimensional case.
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z‘Etﬂl
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e The quantum discord for infinite-dimensional systems
was firstly discussed in [5].

i
Let -

I(p) = S(pa) + S(ps) — S(p) o

denote the quantum mutual information of p, where Review
S(p) = —Tr(plogp) denotes the von Neumann entropy Our.
of the state p (remark here that S(p) maybe +o00). Let

4 = {11! = |k)(k|} be a local von Neumann mea- wazm |
surement. We perform 11 on p, the outcome I1%(p) = mEn |
> Drpks Where pr = o= (11} @ Ip)p(11;! ® I) with prob- L]
ability pr = Tr[(I1} ® I5)p(I12 @ I5)]. Define I(p|T14) := Ly ]
S(pp) — S(p|lT4) and S(p|T1?) := >=, pr.S(pr). The dif- eme]
ference ﬁ—'ﬁ'_l

D(p) = I(p) — sup I(p|TT*) 5) || —

HA *x i
1s defined to be the quantum discord of p, where the sup =T
1s taken over all local von Neumann measurement.
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Introduction

e It is proved in [5] that D(p) > 0 for any state p € S(H4® Review

Hp). One can check that QD can also be calculated as Our.
D(p) = I(p) — sup I[TT*(p)] (6)
14 i E £ R |
for both finite- and infinite dimensional cases. Namely, A 7

QD is defined as the infimum of the difference of mutual RES
information of the pre-state p and that of the post-state RS
_#umz |

[14(p) with 1 runs over all local von Neumann measure- i
ments. Em |

N |
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e For finite-dimensional systems, the CQ states attracted ms.m’;
much attention since they can be used for quantum broad- -
casting [7]. We extend it into infinite-dimensional case
via the same scenario. Review

Our.
Classical-quantum state- Similar to Eq.(3), for p €
S(Hi® Hp), dim H4® Hp = +00, if p has the following
form _waz7 |
tr & 7T
p=_wilk) (k| ® pp, (7 |
; ¢ L » |
where {|k)} is a orthonormal set of H 4, pPs are states of jﬁ
the subsystems B, p;, > 0 and >, p; = 1, then we call p —I_ .
1s a classical-quantum state. e

2R E T |
[7] S.-L. Luo, On quantum no-broadcasting, Lett. Math. Phys. 92, x A
143-153(2010). 4|
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eletdimHy® Hg < +o00,
Sy ={p € S(Hs® Hp) : N(p) =0},
Sc={p e S(Hs® Hp) : pis CQ},
S) ={p€ S(Hs® Hp) : D(p) =0}
and S, be the set of all separable states acting on H4 ®

Hpg. Then
Sy € Sc € 8) C S (8)
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o It is known that S?, is a zero-measure set [8](that is, each s

point of this set can be approximated by a sequence of

states that not belong to this set with respect to the trace oducion
norm) for the finite-dimensional case and S, 18 also Review
a zero-measure set for the infinite-dimensional case [9], Our.

thus Sy is a zero-measure set in both finite- and infinite-
dimensional cases. (We know now that S} is also a zero-

measure set in infinite-dimensional cases, which answer MCEE
the question suggested in [5].) sER
R
[8] A. Ferraro et al, Almost all quantum states have onnclassical cor- RERN
relations, Phys. Rev. A 81, 052318(2010). wirme |
[9] R. Clifton and H. Halvorson, Bipartite mixed states of infinite- CEe ]
dimensional systems are generically nonseparable, Phys. Rev. A 61, EEE
012108(1999). %

B |
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3 Main result: Nullity of MiN il

e In order to state the main result, we need a lemma:

Introduction

e Lemma 1. Letdim Hy ® Hp < +00. Take orthonomal gfl‘;l ew
bases {|k)} and {|/)} of H4 and Hp, respectively. We
write F;; = |¢)(j'|. Then, for any p € S(H4 ® Hp), we
can write p as pEEn |

R RE
p= ; A ® F; (9) —ILILI
where A;;s are trace-class operators acting on H 4 and the ]
series converges in the trace norm [10]. ﬂl
[10] Y. Guo and J.-C. Hou, Comment on “Remarks on the structure e

of states of composite quantum systems and envariance”’[Phys.Lett. A
355(2006)], Phys. Lett. A, 375, 1160-1162(2011).

N |
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It is proved in [11] that, for any density matrix p € S(H4 ®
HB) with dim H4 ® Hp < o0, if p = Zij Aij 0% Fz'j with
A;;s are mutually commuting normal matrices, then p is
separable. In fact, we can prove that such state p is not only
separable but also a CQ state and that p 1s a CQ state if and
only if it admits the form above. Moreover, it can be ex-
tended into infinite-dimensional cases:

Theorem 1. Let dim Hy ® Hp < 400, p € S(H4 ® Hp).
Assume p = ) . i Aij @ Fij as in Eq.(9) with respect to some
given bases of 4 and Hp. Then p 1s a CQ state if and only
if A;;s are mutually commuting normal operators acting
on H 4.

[11] K.-C. Ha, Sufficient criterion for separability of bipartite states, Phys.
Rev. A 82, 014102(2010).
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e Theorem 1 implies that QD stems from noncommutativ-
ity not from entanglement.

Introduction

We can also find this kind of noncommutativity from an- Review

other perspective: For finite-dimensional case, it 1s proved Our.

in [8] that if p € Sc(= S%) then [p, pa @ Ig] = 0. It is

easy to check that it is also valid for infinite-dimensional pazn |

systems as well: sEn |

Proposition 1. Let dim H4 ® Hp < 400, p € S(H4 ® ﬂi

HB). Then o027 |
pe€Sc=|p,pa®Ip]=0. (10) s

N |
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Introduction

 The following i1s the main result of this talk. Review
Our.

Theorem 2. Let dim Hy® Hp < +o00, {|k)} and {|i')} be
orthonormal bases of H 4 and H g, respectively, and p € -
S(Ha® Hp). Assumethatp =, . A;; @ Fij € S(HA® ﬂl
Hp) as in Eq.(9) with respect to the given bases. Then e
N(p) = 0 if and only if A;;s are mutually commuting SRR
normal operators and each eigenspace of p4 contained e
in some eigenspace of A;; for all : and ;. gamz |
& [ |

x M
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« Equivalently, Theorem 2 means that N (p) = 0 if and only
if

Introduction

p = Zpk|k><k| ® pi Review
: Our.
as in Eq.(7) with the property that p” = p” whenever
Pk = DI-

A £ 7T |

e Theorem 2 indicates that the phenomenon of MiN is a ﬁ
manifestation of quantum correlations due to noncom- RS
mutativity rather than due to entanglement as well. weme |
And we claim that the commutativity for a state to have 5@ |
zero MIN is ‘stronger’ than that of zero discordant spex |

state. We illustrate it with the following example.

x M
J‘E:ﬂl
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o Example. We consider a 3 ® 2 system. Let

(a - e -

ca |- f -

e - -|lc -
I
(Here, dots denotes the vanished matrix elements.) It is

clear that p i1s a CQ state for any positive numbers a, b, c,
d and complex numbers e, f, g that make p be a state.
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However, taking [T = {|¢;) (x| }3_, with
! 1 | 1 0

)y =—= 11|, |1¥=—7%]| -1 |.l¥3)=1]0|,
ﬂ 0 \@ 0 1

it is easy to see that >, [12pl12 = p4 and [14(p) # p when-
ever e # f. If a + ¢ = b+ d, one can easily conclude that
N(p) =0ifand onlyifa =b,c =dand e = f = g. Hence,
there are many CQ states with nonzero MiN.
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« The above example shows that, SY; is a proper subset of
SY. In addition, p;, po € SY doesn’t imply ep; + (1 —
€)pa € 8]({, generally, 0 < e < 1, s0 SR, 1S not a convex set.
Similarly, S%, (or S¢) is not convex, either.
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e From Theorem 2, the following conclusions are clear:

Introduction

Proposition 2. Let dim Hy ® Hg < 400, p € S(H4 ® Review

Hp). Suppose that each eigenspace of p4 is of one- Our.
dimension and p4 = ), pi|k) (k| is the spectral decom-
position. Then the local von Neumann measurement 5 _waEn |
that makes p4 invariant 1s uniquely (up to permutation) BT E
induced from {|k)(k|}, and vice versa. EUHIA
]
Corollary 1. Let dmH4 ® Hg < +oo and p € Sc¢. weme |
Then N(p) = 0 provided that each eigenspace of p4 is of 5@ |
one-dimension. sRer |
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