Numerical Ranges of Weighted Shift Matrices

Hwa-Long Gau

高華隆,中央大學

Department of Mathematics, National Central University, Chung-Li 320, Taiwan

(jointly with Ming-Cheng Tsaia, Han-Chun Wang)

July 18, 2011

$A \in M_n$

Definition (numerical range of A)

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$$

- (1) $W(A) \subset \mathbb{C}$ is always compact and convex.
- (2) $W(U^*AU) = W(A)$, where U is unitary.
- (3) $\sigma(A) \subset W(A)$
- (4) $N \in M_n$ is normal $\Rightarrow W(N) = \operatorname{conv}(\sigma(N))$

$$W(A) = \begin{pmatrix} a_1 \\ W(N) = \end{pmatrix}$$

- $(5) A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$
- (6) $A \cong A_1 \oplus \cdots \oplus A_k \Rightarrow W(A) = \operatorname{conv}(W(A_1) \cup \cdots \cup W(A_k))$

$A \in M_n$

Definition (numerical range of A)

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$$

- $W(A) \subset \mathbb{C}$ is always compact and convex.
- (2) $W(U^*AU) = W(A)$, where U is unitary.

$$W(A) = \begin{pmatrix} a_1 \\ W(N) = \end{pmatrix}$$

- (6) $A \cong A_1 \oplus \cdots \oplus A_k \Rightarrow W(A) = \operatorname{conv}(W(A_1) \cup \cdots \cup W(A_k))$

 $A \in M_n$

Definition (numerical range of A)

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$$

- (1) $W(A) \subset \mathbb{C}$ is always compact and convex.
- (2) $W(U^*AU) = W(A)$, where U is unitary.
- (3) $\sigma(A) \subset W(A)$
- (4) $N \in M_n$ is normal $\Rightarrow W(N) = \operatorname{conv}(\sigma(N))$

$$W(A) = \begin{pmatrix} a_1 \\ W(N) = \end{pmatrix}$$

- $(5) A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$
- (6) $A \cong A_1 \oplus \cdots \oplus A_k \Rightarrow W(A) = \operatorname{conv}(W(A_1) \cup \cdots \cup W(A_k))$

 $A \in M_n$

Definition (numerical range of A)

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$$

- (1) $W(A) \subset \mathbb{C}$ is always compact and convex.
- (2) $W(U^*AU) = W(A)$, where U is unitary.
- (3) $\sigma(A) \subset W(A)$
- (4) $N \in M_n$ is normal $\Rightarrow W(N) = \operatorname{conv}(\sigma(N))$

$$W(A) = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$$

- $(5) A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$
- (6) $A \cong A_1 \oplus \cdots \oplus A_k \Rightarrow W(A) = \operatorname{conv}(W(A_1) \cup \cdots \cup W(A_k))$

 $A \in M_n$

Definition (numerical range of A)

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$$

- $W(A) \subset \mathbb{C}$ is always compact and convex.
- (2) $W(U^*AU) = W(A)$, where U is unitary.
- (3) $\sigma(A) \subset W(A)$
- (4) $N \in M_n$ is normal $\Rightarrow W(N) = \operatorname{conv}(\sigma(N))$

- (5) $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$
- (6) $A \cong A_1 \oplus \cdots \oplus A_k \Rightarrow W(A) = \operatorname{conv}(W(A_1) \cup \cdots \cup W(A_k))$

$$A \in M_n$$

Definition (numerical range of A)

$$W(A) = \{ \langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1 \}$$

- (1) $W(A) \subset \mathbb{C}$ is always compact and convex.
- (2) $W(U^*AU) = W(A)$, where U is unitary.
- (3) $\sigma(A) \subset W(A)$
- (4) $N \in M_n$ is normal $\Rightarrow W(N) = \operatorname{conv}(\sigma(N))$

$$W(A) = \begin{pmatrix} a_1 & a_2 \\ & & & \end{pmatrix}$$

- $(5) A = \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right]$
- (6) $A \cong A_1 \oplus \cdots \oplus A_k \Rightarrow W(A) = \operatorname{conv}(W(A_1) \cup \cdots \cup W(A_k))$

Weighted Shift Matrices

$$A = \left[\begin{array}{ccc} 0 & a_1 \\ & 0 & \ddots \\ & & \ddots & \\ a_n & & 0 \end{array} \right]$$

A is called a weighted shift matrix with weights a_1, \ldots, a_n .

$$(1) \begin{bmatrix} 0 & 1 & & & \\ & 0 & \ddots & & \\ & & \ddots & 1 \\ 1 & & & 0 \end{bmatrix} A \begin{bmatrix} 0 & & 1 \\ 1 & \ddots & & \\ & \ddots & 0 & \\ & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a_2 & & \\ & 0 & \ddots & \\ & & \ddots & a_n \\ a_1 & & & 0 \end{bmatrix}$$

$$(2) \begin{bmatrix} 0 & a_1 & & & \\ & 0 & \ddots & & \\ & & \ddots & a_{n-1} \\ a_n & & & 0 \end{bmatrix} \cong \begin{bmatrix} 0 & |a_1| & & \\ & 0 & \ddots & & \\ & & & \ddots & |a_{n-1}| \\ |a_n|e^{i\theta} & & & 0 \end{bmatrix} \text{ where }$$

$$\theta = \sum_{i=1}^n \arg(a_i)$$

n-symmetry of W(A)

Hence, we have

$$A \cong \omega_n A, \ \omega_n = e^{2\pi i/n}.$$

That is,

$$W(A) = \omega_n W(A)$$
.

Special Cases

If
$$|a_1| = |a_2| = \cdots = |a_n| \equiv r$$
.

Then

$$A\cong re^{i heta}\left[egin{array}{cccc} 0&1&&&&&\ &&0&\ddots&&&\ &&&\ddots&&1\ 1&&&&0 \end{array}
ight].$$

In this case, A is normal.

If $a_j = 0$, for some j.

Then

$$A \cong \left[egin{array}{cccc} 0 & a_{j+1} & & & & & & \\ & 0 & \ddots & & & & & \\ & & \ddots & & & & \\ & & & \ddots & & & \\ 0 & & & & 0 \end{array}
ight].$$

In this case,

$$W(A) = \{z \in \mathbb{C} : |z| \le r\}$$

where r is the maximal root of the equation

$$\sum_{l=0}^{\lfloor \frac{n}{2} \rfloor} S_l(|a_{j+1}|^2, \dots, |a_{j-1}|^2, 0) (-\frac{1}{4})^l z^{n-2l} = 0.$$

In particular,
$$J_n=\left[egin{array}{ccc} 0 & 1 & & 0 \ & 0 & \ddots & \ & & \ddots & 1 \ 0 & & & 0 \end{array}
ight]\Rightarrow W(J_n)=\{z\in\mathbb{C}: |z|\leq\cosrac{\pi}{n+1}\}.$$

$(n-1) \times (n-1)$ principal submatrices

$$A[1] = \begin{bmatrix} 0 & a_2 & & & & \\ & 0 & \ddots & & & \\ & & \ddots & a_{n-1} \\ 0 & & & 0 \end{bmatrix}, \dots, A[j] \cong \begin{bmatrix} 0 & a_{j+1} & & & & \\ & 0 & \ddots & & & \\ & & & \ddots & a_{j-2} \\ 0 & & & 0 \end{bmatrix}, \dots$$

Now, if $\partial W(A)$ has a line segment on the line $x=r,\ r>0$. Then r is the maximal eigenvalue of Re A with multiplicity at least two. By the interlacing property, r is also the maximal eigenvalue of Re A[j] for all j. That is,

$$W(A[j]) = \{z \in \mathbb{C} : |z| \le r\}$$
 for all j .

Theorem (Tsai & Wu, 2011)

$$A = \left[egin{array}{cccc} 0 & a_1 & & & & & \\ & 0 & \ddots & & & & \\ & & \ddots & & & \\ a_n & & & 0 \end{array}
ight], \, a_j
eq 0 ext{ for all } j.$$
 has a line segment if and only if $W(A[1]) = \cdots =$

Then $\partial W(A)$ has a line segment if and only if $W(A[1]) = \cdots = W(A[n])$.

Results of Tsai and Wu, 2011

Lemma 1

If $w(A[j-1]) = w(A[j]) = w(A[j+1]) \equiv r$, then r is either the largest or the second largest eigenvalue of Re $(e^{i\theta}A)$ for some θ .

Proof.

May assume j = n, $a_n < 0$ and $a_i > 0$ for j = 1, ..., n - 1. Compute the determinant of $(rI_n - \text{Re } A)$ and obtain $\det(rI_n - \text{Re } A) = 0$.

Lemma 2

If $w(A[1]) = \cdots = w(A[n]) \equiv r$, then r is a multiple eigenvalue of Re $(e^{i\theta}A)$ for some θ .

Proof.

Let $p(z) = \det(z \ln - \operatorname{Re} A)$, then $p'(r) = \sum_{n=1}^{n} \det(r \ln - 1 - \operatorname{Re} A[j]) = 0$. Hence r is a multiple eigenvalue of Re A.

Lemma 3

If the maximal eigenvalue r of Re A is multiple, then $\partial W(A)$ has a line segment on the line x = r

Proof. Take a vector $x \in \ker(rI_n - \operatorname{Re} A)$ such that $\langle \operatorname{Im} Ax, x \rangle \neq 0$.

Refinements

Lemma 1'

If $w(A[j]) = w(A[k]) = w(A[l]) \equiv r$ for some $1 \le j < k < l \le n$, then r is either the largest or the second largest eigenvalue of $\text{Re}\left(e^{i\theta}A\right)$ for some θ .

Proof.

May assume $a_n < 0$ and $a_i > 0$ for j = 1, ..., n - 1.

Compute the determinant of $(rI_n - \operatorname{Re} A)$ and obtain $\det(rI_n - \operatorname{Re} A) = 0$.

Refinements

Lemma 2'

If $w(A[j]) = w(A[k]) = w(A[l]) \equiv r$ for some $1 \le j < k < l \le n$, then r is a multiple eigenvalue of Re $(e^{i\theta}A)$ for some θ .

Proof.

Assume j = 1, l = n and Re A has eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$.

We want to show that $r = \lambda_1 = \lambda_2$.

If
$$r = \lambda_1$$
.

Take $x, y \in \mathbb{C}^{n-1}$ such that $(\operatorname{Re} A[1])x = rx$ and $(\operatorname{Re} A[n])y = ry$.

Let
$$x' = \begin{bmatrix} 0 \\ x \end{bmatrix} \in \mathbb{C}^n$$
 and $y' = \begin{bmatrix} y \\ 0 \end{bmatrix} \in \mathbb{C}^n$.

Then $x', y' \in \ker(\lambda_1 I_n - \operatorname{Re} A)$.

Since every entry of x and y is nonzero, hence dim $\ker(\lambda_1 I_n - \operatorname{Re} A) \geq 2$.

Hence r is a multiple eigenvalue of Re A.

Refinements

Next, if $r = \lambda_2 < \lambda_1$.

Let u and v are unit eigenvectors of Re A w.r.t. λ_1 and λ_2 , resp.,

 $N = \text{span } \{u, v\}$. We have

$$x' \equiv \begin{bmatrix} x \\ 0 \end{bmatrix} \in \left(\left(\mathbb{C}^{n-1} \oplus \{0\} \right) \cap N \right) \text{ and } y' \equiv \begin{bmatrix} 0 \\ y \end{bmatrix} \in \left(\left(\{0\} \oplus \mathbb{C}^{n-1} \right) \cap N \right).$$
Say $x' = au + bv$ and $y' = cu + dv$ with $|a|^2 + |b|^2 = 1 = |c|^2 + |d|^2$.

Then

$$r = w(A[n]) \ge \langle (\operatorname{Re}(A[n])) \times, x \rangle = \langle (\operatorname{Re}A) \times', x' \rangle = \lambda_1 |a|^2 + \lambda_2 |b|^2 \ge r|a|^2 + r|b|^2 = r,$$

the inequality here are actually equalities.

$$\Rightarrow \lambda_1 = \lambda_2 = r$$
.

Theorem

$$A=\left[egin{array}{cccc}0&a_1&&&&&\\&0&\ddots&&&\\&&\ddots&a_{n-1}&\\a_n&&&0\end{array}
ight],\,a_j
eq0 ext{ for all }j.$$
 wing are equivalent:

Then the following are equivalent:

- \bigcirc $\partial W(A)$ has a line segment;
- ② $W(A[1]) = \cdots = W(A[n]);$
- **3** W(A[j]) = W(A[k]) = W(A[l]) for some $1 \le j < k < l \le n$.

Theorem 1 (Tsai, 2011)

If A is an $n \times n$ weighted shift matrix with nonzero periodic weights $a_1, \ldots, a_k, a_1, \ldots, a_k, \ldots, a_1, \ldots, a_k, n = km$.

Then $\partial W(A)$ has a line segment.

Moreover,

where
$$C = \left[egin{array}{cccc} 0 & a_1 & & & & \\ & 0 & \ddots & & & \\ & & \ddots & & \\ a_k & & & 0 \end{array} \right].$$

Questions

Theorem 2 (Tsai, 2011)

 $\partial W(A)$ contains a noncircular elliptic arc if and only if the *aj*'s are nonzero, *n* is even, $|a_1| = |a_3| = \cdots = |a_{n-1}|, |a_2| = |a4| = \cdots = |a_n|and|a_1| \neq |a_2|$.

Question 1

If A is an $n \times n$ weighted shift matrix and $\partial W(A)$ has a line segment. Are the weights periodic?

Ans. No!

We can find a 5×5 weighted shift matrix A such that $\partial W(A)$ has a line segment.

Question 2

Let A and B are $n \times n$ weighted shift matrices. If the weights of A are periodic and W(A) = W(B).

Are the weights of B periodic?

Ans. I don't know!

Theorem

Let A and B are $n \times n$ ($n \ge 3$) weighted shift matrices with nonzero weights a_1, \ldots, a_n and b_1, \ldots, b_n . The following are equivalent :

- **1** W(A) = W(B);
- 2 $p_A(x, y, z) = p_B(x, y, z);$
- **3** $S_l(|a_1|^2,\ldots,|a_n|^2) = S_l(|b_1|^2,\ldots,|b_n|^2)$, for all $1 \leq l \leq \lfloor \frac{n}{2} \rfloor$ and $\prod_{i=1}^n a_i = \prod_{i=1}^n b_i$.

Note.

- ② Our formulae involve the circularly symmetric function $S_r(a_1,\ldots a_n)$, where n and r are nonnegative integers. S_0 is define to be 1, while for $r\geq 1$, $S_r(a_1,\ldots a_n)=\sum \left\{\prod_{k=1}^r a_{\pi(k)}\,|\,\pi:(1,\ldots,r)\to (1,\ldots,n)\right\}$, where $\pi(k)+1<\pi(k+1)$ for $1\leq k< r$, and if $\pi(1)=1$ then $\pi(r)\neq n$.

Thank you for your attention!