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Quantum Error Correction with syndrome measurement

Quantum Error Correction without syndrome measurement

@ Operator Quantum Error Correction

@ Joint Rank-k Numerical Range

Application on Fully Correlated Noise
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Classical error correction

@ In classical conventional computer, data is stored and processed using
binary bit z € {0, 1}.

@ Suppose in a noisy channel, each bit flips independent with a probability
p << 1.

@ Now a bit x is transmitted through the channel,

T Noisy channel 0

What is x?

@ Majority vote:

. Encoding " Decoding
& Noisy channel |—(0010010)— 0
x = 0! Qv RSttty
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Quantum error correction with syndrome measurement

@ Now suppose in a noisy quantum channel, each qubit flips independent
with a probability p << 1.

@ Due to the No-Cloning Theorem, the classical method cannot be

applicable to qubits! i.e., [2) 4 |¥)])|).

@ Quantum error correction with syndrome measurement:

Noisy
: Syndrome . .
[¥) qC”hZ’;tr:g‘ ™ detection Correction — Decoding [4)

TTRRL]

Raymond Nung-Sing Sze Summer School on Quantum Information Science, Taiyuan



Quantum error correction with syndrome measurement

Step 1: Encoding and transmission:

(" al000) +b111) )

al100) + b|011
: a]010) + b 101
Noisy
|1) = al0) + b|1) a|000) + b[111) quantum — —
channel al101) + bJ010

al011) 4 b[100

al111) + bJ000

) )
) )
) )
al001) + b|110)
al110) + b|001)
) )
) )
) )

® [000) + B|111) # [t:)])¥)!
@ Suppose U is a 8 X 8 unitary matrix such that

U]000) |000)
Ul100) = [111)

Then the encoding can be regarded as
al0) +b|1) +——  (a|0) + b|1)) ® |00) = a|000) + b|100)

— U (a]000) + b|100)) = a|000) + b\111>é§,

TTRR}
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Quantum error correction with syndrome measurement

Step 2: Syndrome detection:

(a]000) + b[111)) (a]000) + b[111))
a|100) + b|011) a|100) + b|011)
al010) + b[101) al010) + b[101)
al001) + b[110) al001) + b|110)
" lal110) + bjoo1) | | | |a|110) + bj001)
al101) + b/010) ) al101) + b010)
al011) + b[100) al011) + b/100)
a|111) + bJ000) |z2) al111) + bJ000)
|z3)

|x4 ® z1 B x2) @

11)

|zs B 1 B x3) |10)

|01)

|00) 01)

|10)

11)

|00)

N
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Quantum error correction with syndrome measurement

Step 3: Syndrome correction and decoding:

(a|000) + b[111)) (a|000) + b[111))
a|100) + bJ011) al000) + b|111)
al010) + b|101) al000) + b|111)
al001) + b[110) a000) + b[111) | @0 01D
" lal|110) + bjo01) | | | lall11) + b/000)
al101) + b/010) al111) + bjoooy | \@D) +l0)
al011) + b/100) | | 100): LOL®I al111) + 000}
al 1) +00000)) | o1y pen e, | \al111)+bj000)
|00> ‘10) : IQ@O'QC@IQ
[11) 11): 0. @ ® I
|10)
|01)
|01)
|10)
|11)
00
)

K POLYTECHNIC UNIVERSITY
Important: The probability of error will be p?(3 — 2p) << p << 1! &P mnits
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@ A NOT gate acting on one qubit:

fo 1
Te=11 0

0) ——— 1) 1) —&—— 10)

@ A controlled-NOT (CNOT) gate acting on 2 qubits:

1 0 0 O
L&os = 8 0 8 (1]
0 0 1 0
1) —e— 1) 0) —e—— 0)
0) —— 1) 0) —&—— |0)
1) ——— 1) 0) ——e—— [0)
1) —&— 0) ) —o— 1@

POLYTECHNIC UNIVERSITY
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Quantum error correction with syndrome measurement

A circuit correcting error for bit-flip channel:

Encoding Syndrome detection Decoding
) |)
: Noisy
|0) B - quantum o— |0)
;| channel : : :
|0) H— | Syndrome [ g — |0)
: : i| correction | :
0) S——o——| A
e —
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Operator Approach to Quantum Error Correction

@ Quantum error correction with syndrome measurement:

Noisy

- Synd .
|[+) quantum d}é:egsi:: Correction — Decoding )

channel

@ Quantum error correction without syndrome measurement:

Noisy
- Recovery -
[1) Encoding qcuhzr:]t:;r — channel Decoding [1)

ég, RS e sy
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Operator Approach to Quantum Error Correction

A quantum channel ® : B(H) — B(H) is a completely positive, trace
preserving linear map of the form

®:p— Y EjpE] with Y EIE; =1 [Choi (1975)]

Jj=1 J

@ Can one find another quantum channel ¥ : B(H) — B(H) such that
Uod(p)=p forall PypPy =p,

where Py is an orthogonal projection onto a k-dimensional subspace V of
H?
@ If one write Py = U(I}; & O)UJr for some unitary U, then

PvaV:p < p—U[g 8:| UT.

@ The equation of recovery channel can be restated as

POl _ 4 |P O] 15t _
Uod (U {0 0} U ) =U [0 0] U' forall pe Mk@*t

Raymond Nung-Sing Sze Summer School on Quantum Information Science, Taiyuan



Operator Approach to Quantum Error Correction

@ Recovery channel:

Wo@(U{p O}W):U{p O]UT forall € M.

0 0 0 0
p-qubit Encoding Noisy  Recovery Decoding
data to m-qubit channel  channel to p-qubit

P o=yl e U H @ v o (UT0) |- 5

@ If such k (= 27)-dimensional subspace V exists, V is called an quantum
error correction code (QECC) for @ (see Definition 1.3).

@ When will such quantum error correction code exist??

Theorem 1.5 - Existence of QECC [Knill, Laflamme (1996)]

A quantum channel ® : p — Z;:1 E]-pE]T is correctable if and only if

PyE'E;Py = \jjPy forall1<i,j<r. sy
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Quantum Error Correcting code

Example 1.7 Consider the three-

qubit bit-flip channel ® : Mg — o _Encoding _ Syndreme.dstection. VDrercp‘rdi:n‘gw>
Ms defined by |0) % @ % |0)
3 |0) Syndro'me |0)
I . : correction | ... .. .:
B(p) = > X;pX], 0 A
j=0 10) A
with error operators
Xo=polo® 12 ® Iz, X1 =p1o: R Iy,
Xo=\/p2l2 ®0: ® Iz, X3=\p3sla® I ® o0y,

3

where ijo pj =1

Consider V = span {|000), |111)} with orthogonal projection
P = [000)(000| + [111)(111] = E11 + Ess.

Following the proof of Knill-Laflamme result, one can construct the recovery
channel as

W(p) = PpP+ (I — P)p(I — P). T

qv ‘4‘, CHNIC UNIVERSITY
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Quantum Error Correcting code

@ With syndrome measurement:

Encoding Syndrome detection Decoding
) — ; : %)
0) —o—— @ ; 0)
o) — | Syndrome 10)
IR : ;| correction
|O> Fan) D

0 ————o——o{ A

@ Without syndrome measurement:

Encoding Decoding
) —4—o— = ——— [v)
0) G d — T &— |0)
0 — - Fe—m @ izicona:
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Quantum Error Correcting code

Remark 1.6

@ If we identify H with C™ and U is an n X n unitary matrix with columns
|u1), ..., |un) so that the first k states |ui), ..., |ux) form a basis for V,
where k = dim V, then condition (b) of Theorem 1.5 is equivalent to

UNE'E;U = [Aiil’c j forall 1<i,j<r
This will lead to the discussion of joint higher rank numerical range later.

@ The proof of Theorem 1.5 is constructive and provides a procedure for
constructing a recovery channel ¥ of ®. However, the recovery channel
WU may be hard to implement as the construction involves projection
operators.

UNIVERSITY
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Decoherence free subspace

Quantum error correcting code:

Wod(p)=p forall pe B(H) with p= PypPy.

p-qubit Encoding Noisy  Recovery Decoding
data to m-qubit channel  channel to p-qubit

p—p=0(00l0pU H & H v i (UhU)

Definition 1.8 - DFS
A subspace V of H is said to be a decoherence free subspace (DFS) for a
quantum channel ® on B(H) if

®(p) =p forall pe B(H) with p = PypPy, (1)

where Py is the orthogonal projection of H onto V.

p-qubit Encoding Noisy Decoding
data to m-qubit channel to p-qubit

p—p=U(0)0l &)U @t (UpU)

Notice that a decoherence free subspace is a QECC with ¥ = id.

Qb\ LY TECHNIC UNIVERSITY

RPN
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Noiseless system

@ For decoherence free subspace, the equation can be restated as
POl ) P Ot .

CI’(U[O O}U)U{O OU for all p e M.

@ Forany p? € M, and p® € Mj, there is a ot e M), such that

A B
pr@pT 0 )
@(U{ 0 O}U>—U

Definition 1.10 - Noiseless subsystem

ot @p? 0|
o ol

A subsystem H® is said to be a noiseless subsystem (NS) for a quantum
channel ® on B(H) if

@ 7 has a decomposition H = (H* ® H?) ® K; and

@ for any p* € B(H*) and p® € B(HP), there is 0 € B(H*) such that

o (p* ®p”) =0 ®p”. (2)

AP POLY TECHNIC UNIVERSITY
Noiseless system will reduce to decoherence free subspace if dim H* :it" B

Summer School on Quantum Information Science, Taiyuan
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QECC vs DFS vs NS

@ QECC:
p-qubit Encoding Noisy  Recovery Decoding
data to m~qubit channel  channel to p-qubit

7 —{p=U(0)0lepU H_ @ F{ v i (UlpU)|— 5

@ DFS:
p-qubit Encoding Noisy Decoding
data to m-qubit channel to p-qubit

p—p=U(0)0l® U @& F— i (U'pU) — 5

@ NS:

p-qubit Encoding Noisy Decoding
data to m-qubit channel to p-qubit
p* =V 0 U2 Hra W) |- o @

TTRRL]
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Noiseless system

Example 1.12 Consider the quantum channel ® : My — My with error
operators F1 = F1 ® Iz and F2 = F» ® I2, where

va 0 0 Va
Fl_[o \/1—4 and FQ_[\/l—oe 0}’

for some 0 < a < 1.

Decompose C* = H* @ HE with respect to the standard basis so that
HA =HP =C? ie, C*' =C* @ C°.
Then for any p* € B(H*) and p? € B(H?),

o(p* @p”) = Ei(p" @ p")E1+ Ea(p” @ p°)E,

(Fio Pl + PoFY) .0

o ®pB.

qb\ LY TECHNIC UNIVERSITY
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Equivalent definitions for NS

Proposition 1.13 [Kribs et al (2006)]

Given a decomposition H = (H* ® H”) @ K and a quantum channel & on
B(H). The following conditions are equivalent.

(1) HPZ is a noiseless subsystem.

(2) For any p* € B(H") and p® € B(HP), there is 0 € B(H") such that
o(p" ®p") =0’ ®p".

(3) For any p? € B(HP), there is 0 € B(H*) such that

d(Is®p®) =0 ®p".

(4) For any p* € B(H") and p? € B(H?),

tra (Pas o @(p” ® p?)) = p°,

where Pap is the orthogonal projection of H onto H” ® HE.

INIVERSITY
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Necessary and sufficient condition for existence of NS

Fixed orthonormal bases {|a1),...,|ap)} and {|b1),..., |bx)} for H* and HP,
respectively. Let

Pij:\a¢><aj|®13 forall 1<i,j <p.

Notice that Pagp = Pi1 + - -+ + P is the orthogonal projection of H onto
HA @ HP.
Theorem 1.14 [Kribs. at el (2006)]

Given a decomposition H = (H* ® H”Z) @ K and a quantum channel ® on
B(H). Then H?Z is a noiseless subsystem for & if and only if

EsPusp = PapEsPap forall 1<s<r, 3)

and there are scalars \; ;s € C such that

P“'ESP]‘J‘ = )\i,j,spij for all 1 S i,j S D, 1 S S S 7 (4)

v

The equations (3) and (4) hold if and only if

A(S) ® IB

T —
UESU—[ 0

:] with A®) = I:)\i,j,s} forall 1< sé}{‘" s
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Necessary and sufficient condition for existence of DFS

Recall that noiseless system will reduce to decoherence free subspace if H* = 1.

Corollary 1.16

Let ® : B(H) — B(H) be a quantum channel. Then a subspace V of H is a
decoherence free subspace for @ if and only if there are scalars As € C such that

E;Py =XsPy forall 1<s<r. (5)

The equation (5) hold if and only if

AslB

T —
UESU[ 0

*
*} forall 1<s<r.

q? POLYTECHNIC UNIVERSITY
v FRATAS
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NS and DFS

Example 1.17 Consider the quantum channel ® : My — M4 with error

operators
Vi=2a 0 0 0 Ja 0 0 0
B 0 10 0 1o 0 0 Va
By = 0 0 1 0 and Ez=1 72 0 0 0
0 0 0 Vvi—-2a 0 0 0 a

for some 0 < o < 1. Let U = E11 + Fos + FE33 + F4o. Then

UTEU = [”0_20‘ ﬂ ®L and U'E,U = [% 8] R,
——
AL A(2)

Indeed, for any p? € Moa,

® (U(IA ® PB)U]L) = U(c*®@p®)UT  where o = {1 ;a 1 _T_[OJ (Exercise!!)

Equivalently, HZ is a noiseless subsystem if one decompose H to HA @ HE,
dim H* = dim H” = 2, with respect to the basis {|00), [11),|10),]01)}.

Exercise Show that this channel ® has a 2-dimensional
decoherence free subspace.

TTRRL]
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DFS vs NS vs QECC
@ DFS:
<1>(U ['g 8} UT> :U[g 8} U Vpe My.

@ NS: Vp? € My, p% € My, 304 € M, s.t.

A o B A B
@(U" i—?" O}UT):U[U ©p O]UT.

0 0 0
TV I N V2] IS R
ve 0]y o) =ufy Yot wpem

@ Under the QECC condition can we say something about ® without the
recovery channel U? Yes!

Euvn@p O 4\ _ 5l0®@p Of 51
@(U[ . O]U =r|7" B vee M

@ QECC:

FRATAS
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QECC Revisited

Theorem 1.18 [Li, Nakahara, Poon, Sze, Tomita (2011)]

Let ® : B(H) — B(H) be a quantum channel with n = dim H. Suppose ® has
a k-dimensional quantum error correcting code V with orthogonal projection
Py = WWT with wiw = Ii. Then there is a unitary R and a positive
definite 0 € M, with ¢ < n/k such that

o(wiwt) =R |77 O\ Rt forall pe M,
0 0
In particular, if k divides n so that B(?) can be regarded as M,, /;, ® My, there

is a positive semi-definite o € M,/ such that

o (WpW') = R(e ® p)R" forall j € M.

p-qubit Encoding Noisy Decoding
data to m~qubit channel to p-qubit
P —p=U(0)0|@ p")UT @ J—tra(R'pR) |— p* o

qunm Kacunversiry
v FHATAS
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QECC: bit-flip channel

Example 1.20 Consider the
three-qubit bit-flip channel & :

Mg — Mg defined by )
o )
®(p) = > X;pX], o

§=0

with error operators
Xo :\/170[2@)[2@[27
Xo=\p2l2®o0:® Iz,

where Z?:o p; = 1.

Encoding

e

Decoding

A

X1 =/p10: @12 ® I3,
X3 = /3o ®I® o,

b

Consider V = span {|000), [111)}. Following the proof of Theorem 1.18, one

can construct the unitary matrices

U = FEi1+ Ex+ Ezs+ Ess + Ess + Eea + Evr + Esa

R = Eiu + Far+ E35 + Eya + Es3 + Ege + Evs + Ego.

Then there is o € My such that

%)
|0)
|0)

@ (U(j00)(00| @ p)UT) = R(c @ p) RT forall j € Ms. @7

Raymond Nung-Sing Sze
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QECC: bit-flip channel

@ Original QECC:

Encoding Decoding
) ——4——9— — ——— [v)
|0) > — v |0)
|0) © — & |0)

@ New QECC:

Encoding Decoding
0) —& ® &
|*)
10) — ® —&
[Nakahara, Tomita (2011)] Q&Hwﬂi
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Operator quantum error correction

Definition 1.21 - Correctable subsystem

A subsystem H” is said to be a correctable subsystem (CS) for a quantum
channel ® on B(H) if

@ H has a decomposition H = (H* @ H?) @ K, and
@ for any p” € B(H*) and p? € B(H?), there is 0* € B(H") such that

Vo d(p* @ p®) =0’ ®p°. (6)
Equivalently,

tr a (PAB oW o d(p? ®pB)) =p? forall p* e B(H*) and p® € B(HP),

where Pap is the orthogonal projection of H onto HA @ HE.

p-qubit Encoding Noisy  Recovery Decoding

data to m~qubit channel  channel to p-qubit

B =U(p”* @ pP)U? > H w tra (UTpU) B
P 14 14 14 A p P

TTRRL]
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Operator quantum error correction

A necessary and sufficient condition for the existence of correctable system was
also given by Kribs et al.

Theorem 1.23 [Kribs et al. (2006)]

Given a decomposition H = (H* ® H®) @ K and a quantum channel ® on
B(H). Then H? is a correctable subsystem for & if and only if there are
scalars \; js,+ € C such that

P,EIE.P i =Nijse Py forall 1<4,57<p, 1<s,t<r. @)

The equation (7) holds if and only if there is a unitary U such that

A(.s t) ®Ig

*

U'EIE, U = { j with A = [\ o] forall 1<st<r

qb\ LY TECHNIC UNIVERSITY

RPN

Raymond Nung-Sing Sze Summer School on Quantum Information Science, Taiyuan



DFS: Vjp ) <U {g 8} Uf) =U [g 8] Ut

NS: Vot pB, 304 @ <U o ?’)B 8} UT) —U ["A%”B 8] Ut
QECC: Vjp Vod (U {6’ 8} UT) =U [g 8} Ut

QECC: Vj ® <U {E“O@Qﬁ 8} UT> R {”%@ﬁ 8] R'

OQEC: Vp*,p” 30" ilo@(U{p ©p 0] UT)—U[" ©p O]UT
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p-qubit Encoding Noisy  Recovery Decoding
data to m-qubit channel  channel to p-qubit

5 —p=U(l0)(0] ® p)UT tr1 (UTpU) |— 5 (DFS)

Lo |
B _ A Byrrt P B
P’ —p=U(p" @)U @ | tra (UTpU) — p” (NS)

F—{p=v(00lepu o v o1 (UTpU) = 5 (QECC)

7 —p=U(0)0|® ") - @] tra (RIpR) | — 5 (QECC)

p? —{p:U(pAQQpB)UT}—{ ) H v trA(UTpU) o® (OQEC)

Qz POLYTECHNIC UNIVERSITY
v A TAR
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Knill-Laflamme condition

Theorem 1.5 - Existence of QECC [Knill, Laflamme (1996)]

A quantum channel ® : p — Z;zl EjpE; is correctable if and only if

PyElE;Py = \yPy forall1<4,j <

Theorem 1.2
Suppose

ZE pE! and V(p ZFpFT

Jj=1
are two quantum channels. By adding zero operators, if necessary, one can
assume that » = s. Then ® = W if and only if there exists a r X r unitary
matrix U = [u;;] such that

E; = Zuiij forall i=1,...,r

POLYTECHNIC UNIVERSITY

Proof of the theorem can be found in [Nielsen & Chuang, Theorem 8. 2&" =S
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Proof of Theorem 1.5

Suppose there is a recovery quantum channel ¥ : B(H) — B(H) of the form
Wip)=>"r_, RipR] such that
Wod(p)=p forall pwith p= PpP.

Then
p

> RuB;PpPEIR] = PpP forall pe B(H).
k=1 j=1

By Theorem 1.2, there are scalars c;i € C such that
RryE;P =cjpP forall 1<j<r, 1<k <p.

Notice that » 7| Rl R, =1. Thus forany 1 <i,j <,

3 P
PEE;P = PE[RLRyE;P = Cuc;rP.
k=1 k=1
Then the condition holds with Xi; = > 7| Circjr.
@ :\‘u\ TECHNIC UNIVERSITY

TTRRL]
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Proof of Theorem 1.5

Suppose that
PE!E;P = \;P forall 1<i,j<r.
Let A = [)\”}
Assumption: A is a r X r diagonal matrix with positive diagonal entires.

By polar decomposition, there is a unitary Uy such that

ExP = Uy(PF] ExP)? = /Mo Ui P.
Let
Py = Uy PU} = ExPU} /\/Aer fork=1,....7.
Then forany 1 < k, ¢ <,

UpePU! k=2¢ P k=1t
P;Pg_{ok , k;«é£7 = U,IP,IPgUk—{O k#’

Thus, the projections P, ..., P. are pairwise orthogonal.
Let

Po1=1— Zpk and U,y =1
k=1

TTRRL]

Notice that P2, = P,41 and P{, | P; =0forall 1 <j <r.
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Proof of Theorem 1.5

Define the recovery channel ¥ : B(H) — B(H) by

r+1

k=1
Clearly, T+1 PkUkU P, = T+1 Pk = I and hence V is trace preserving.
Notice that . .
p) = Z E,PpPE} = Z Ak PeUx pU,f Py,
k=1 k=1
and so
P P

r+l r —_——N— —— r

Vod(p) =N Mk Ul PPUs pU PPUs = A PpP = PpP = p.
(=1 k=1 k=1

Thus, V is a quantum error correcting code for ®.

qb\ LY TECHNIC UNIVERSITY

RPN
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Knill-Laflamme condition

Theorem 1.5 - Existence of QECC [Knill, Laflamme (1996)]

A quantum channel @ : p — Z;.:l EjpEJT is correctable if and only if

PyEE;jPy = \jPy forall1<id,j<r.

The condition of Theorem 1.5 is equivalent to

UTEJEJ-U:{)‘ZI’“ j forall 1<i,j<r

TTRRL]
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Joint rank-k numerical range

Choi, Kribs, and Zyczkowski (2006) suggested the following:

Definition 2.1 - Joint rank-k numerical range

Given Ay,..., Ay € M,. The (joint) rank-k numerical range Ax(A) of the
matrices A = (A, ..., A,) is defined as the collection of
(a1,...,am) € C**™ such that

PAjP:ajP, jzl,...,m,

for some rank-k orthogonal projection P, i.e., That is,
Ak(A) = {(al, ce ,am) € c™: PA]P = a]-P

for some rank-k orthogonal projection P}.

v

@ A channel ® has a k-dimensional correction code if and only if
A(EIE\, ElEs, ... EIE,) #0.
@ Equivalently,
Aw(A) ={(a1,...,am) € C™: XTA; X = a; I}, with XTX = I} }.
@ Also, (ai1,...,am) € Ax(A) if and only if there is a unitary U such that

vav=[ ] eigism @
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Rank-%£ numerical range

Example 2.2 A simple case. Given a bi-unitary channel
D:p— tUlpUlT +(1- 1E)U2pU2T where U; and U, are unitary.
The channel ® is correctable if and only if

A (UTUL U U, US UL USUL) #0 = Ap(UfU) # 0.

Rank-k numerical range

The rank-k numerical range of A on M, is defined by

Ar(A) = {p € C: PAP = pP for some rank-k orthogonal projection P}.

@ Equivalently,
Ap(A) ={peC: XTAX = ul; with XTX = I} }.
@ For k =1, it reduces to the classical numerical range defined as

W(A) = {{z|A|z) : |z) € C" with (z|z) = 1}. égﬁx%

BATA
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Rank-%£ numerical range

Basic properties of rank-k numerical range:
(P1) For any a,b € C, Agx(aA+bl) = ali(A)+ 0.
(P2) For any unitary U € M, A, (UTAU) = Ax(A).

(P3) For any n x 7 matrix V with » > k and VTV = I,., we have
Ax(VTAV) C Ax(A).

(P4) Suppose n < 2k. The set Ai(A) has at most one element.
(P5) Ak(A) can be empty.
Example Let A = diag(1,1,0,0). Then As(A) = 0.
Proof. Suppose As(A) # (). Then there is U € My such that
UtAu = {MS *] :
O

Then by interlacing inequality,

0<A<0<ALSI<ALL

qu POLYTEC) T?u UNIVERSITY
But this is impossible! e
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Rank-%£ numerical range

Theorem 2.3

Let Ae M, and k € {1,...,n}.
(a) If n >3k — 2, then Ax(A) is non-empty.

(b) If n < 3k — 2, there is B € M, such that Ax(B) = 0.
(c) If A= A% has eigenvalues A1 (A) > --- > \,(A), then
Ar(A) = [A—rt1(A), Ae(A)],

where the interval is an empty set if \,_x1+1(A) > A\e(A) when k > n/2.

Theorem 2.3

(d) Forany A € M,,

Ax(A) = ﬂ {,u €C:e “u+en< (e A+ eigAT)} ,
€(0,2m)

where A\, (H) denotes the k-th largest eigenvalue of Hermitian H € M,,. | suwm
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Rank-%£ numerical range

Example Let A = diag (i,—i,—1) & _02 (1) . Then

Ax(A) = ﬂ {/,L €C:e “p+en<i(e ™A+ e,l&AT)} ,
£€[0,27)

The rank-2 numerical range of A is
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Rank-%£ numerical range

Theorem 2.3

(d) Forany A e M,,

Ax(A) = m {,u €C:e “u+en< (e A+ eiEAf)} ,
£€[0,27)

where A\, (H) denotes the k-th largest eigenvalue of Hermitian H € M,,.
(e) Ar(A) is always convex. [Woerdeman (2008)]

(f) If A€ M, is a normal matrix with eigenvalues \1,..., A,, then

Aw(A) = N conv {1,y Njn_ppa }-

1<j1<<jn—ktr1<n

TTRRL]
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Rank-k numerical range

Rank-1 and rank-2 numerical ranges of some matrices.
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Joint rank-k£ numerical range

Recall that the joint rank-k numerical range of A = (A,
M., is defined by

.., Am) with A; on
Ax(A) = {(as,.

.,am)ECm:PAjP:ajP

for some rank-k orthogonal projection P}.

@ Write A; = Hazj—1 + iH2; with Hermitian matrices

1 1
H2j71 = i(AJ -I—A;) and sz =

. T
E(AJ —A)).
@ One can always identify
Ak(A1,...,An) = Ay(Hi,Ha,...,Ham—1,How)
N N
(c”l

RZTIL
@ One can focus on Ay (A1,

. Am) with A1,
@ In particular, Ax (A1 +iA2)

, ..., Ay Hermitian.
= Ak(Ah AQ)

@ B Sy
Raymond Nung-Sing Sze
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Joint rank-k£ numerical range

Proposition 2.4

Suppose A = (A1,...,Am) € H', and T = [t;;] is an m X r real matrix. If
Bj = Ztiin fOI’ j = 1,...,7‘,
i=1

and B = (Bu,...,B;), then
{(a1,...,am)T : (a1,...,am) € Ax(A)} C Ax(B).

The inclusion becomes equality if {A1,..., An} is linearly independent and

span{Ai1,...,An} =span{Bi,..., B}

In view of the above proposition, in the study of the geometric properties of
Ar(A), we may always assume that A1, ..., A are linearly independent.

TTRRL]

Raymond Nung-Sing Sze Summer School on Quantum Information Science, Taiyuan



Joint rank-k£ numerical range

Proposition 2.5

Let A = (Ai1,...,An) € H', and let k < n.
(a) For any real vector p = (p1, ..., fim),

Ak(Al 7}1,1[,...,Am */Jlmf) :Ak(A) — K.

(b) If (al,...,am) € Ak(A), then (al,...,am_1) € Ak(Al,...,Am_l).
() Akt1(A) S Ax(A).

(d) For any unitary U € M,,

A(UTALU, ..., UYALU) = Ak(Ay, ..., Am).

q? POLYTECHNIC UNIVERSITY
v A TAS
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Non-emptyness

Question:
When will Ax(A) be always non-empty for all Hermitian A = (A, ..., A:)?

Partial Answers:

Q Ai(A1,As, ..., Ap) is always non-empty.
Q If n > 2k — 1, then Ax(A:1) # 0. [Choi al et. (2006)]
@ Ifn >3k —2, then

Ak(Al,AQ) = Ak(Al =+ iAQ) ;é 0.

Proposition 2.6 [Knill, Laflamme, Viola (2000)]

Let A € H;" and 1 < k < n. Then Agx(A) is non-empty if

n> (k—1)(m+ 1)

However, the bound is not sharp.

TTRRL]
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When (m, k)

@ Proposition 2.6:
A2(A1, Az, A3) # 0 if n> (k—1)(m+1)° = 16.
@ It has been proved that
Ao(A1,Ax, A3) #0 if n>7
and

AQ(A1,A2,A3) = (Z) if n S 4.

Open problem
Is A2(A1, A2, As) always nonempty when n =5 or 67

Partial Answer:
Suppose Ai,..., Ay, is a commuting family.

A(Hy,...,Hn) #0 if n>m+2. [Holbrook (2008)]
Qz :“:’lw’wuxk’w;uzL\m»mw

Raymond Nung-Sing Sze Summer School on Quantum Information Science, Taiyuan



Star-shapeness

A set S C R" is said to be star-shaped if there exists
a€esS
such that

ta+(1—t)beS forallbe Sand0<t< 1.

The point a is called a star-center of S.

Theorem 2.9 [Li and Poon (2009)]

Given Hermitian A = (A1,...,An).

@ If Ag(A) # 0 with £> (m + 2)k and a € A¢(A), then Ax(A) is
star-shaped with a as a star center.

In particular, when n > 55,
A1o(A1, A2, A3) #0 = A2(A1, As, A3) is star-shaped.

TTRRL]
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Pauli matrices

@ The Pauli matrices, also known as the spin matrices, and defined by
101 10— and /10
=11 o]0 YT i oo’ == 1o -1
@ Notice that

oz|0) = [1)  oyl0) = 1) 0:0) |0)
or|l) = 10)  oll) = —il0) o:fl) = —[D)

@ In general, for |¢)) = al0) + b|1),

oult) = oualo) +b[1) = al1)+bl0)
o) = o,(alo) +b1)) = ialt) —ib]0)
o) = ou(al0) +B[1) = alo) - b[1)

@ For any positive integer n, define
X, =0c%" Y, = o,", and Z,=o0.".
Then
X3[001) = [110)  Y3J001) = i[110)  Z5/001) = —|001). G Eummmnn
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Fully correlated noise

@ A noisy quantum channel is called fully correlated when all the qubits
constituting the codeword are subject to the same error operators.

@ This situation happens when size of the system is much smaller than the
wavelength of the external disturbance causing the error.

@ In general, such quantum channel has error operator of the form

WE" =W ®---@W with unitary W € Ms.

@ Consider a fully correlated quantum channel ® : Man — Man of the form

with po + -+ +ps = 1.

UNIVERSITY
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Fully correlated noise

By the Knill-Laflamme result, the fully correlated quantum channel
(O3 Mgn ad M2n by

D(p) = pop + P Xnp X} + p2YnpVyl + p3ZupZ)
has a k-dimensional quantum error correction code if and only if

I, Xa. Y, Zn,

X xix, Xly., Xz,
vi vix, viv., viz,
zt zZtx, ztv., ziz,

Ay £ 0.

As

OO0y =10z, Oy0, =10y, and 0.0, = ioy,
it follows that
XY, =i"Zn, Y Z,=i"X,, and Z!X,=i"X,.
It follows that QECC exists if and only if

TTRRL]
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Fully correlated noise

Suppose n > 2 is odd. Then Ayn—1(Xn, Yy, Zn) # 0.

Indeed, (0,0,1) € Agn-1(Xn,Yn, Zyn). (Exercisel)
By Theorem 1.18,

Theorem 3.2

Suppose n is odd and ® : Man — Mon is a fully correlated quantum channel
given by

®(p) = pop + PrXnp X} + p2YupY,! + p3ZnpZ.
There exist a unitary R € Ma2» and a density matrix p, € Ma> such that

@ (R(|0)(0| ® p)R") = R(pa @ p) R! forall p € Myn-i.

So one can encode (n — 1)-data qubit states to n-qubit codewords.

The unitary matrix R can be constructed explicitly. @%

TTRRL]
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For the quantum channel ® : Mg — Ms given by
D(p) = pop + p1 X3pXJ + p2YapYy + psZspZl,

then
R'® (R(|0)(0] @ p)R") R=pa @ forall pe Mi,

where

R = Eun+ FEio+ B+ Ees + Ess + Ese + Ear + E3s

|000) (000 + [011)(001] + [110)(010| + |101)(011|

+]111)(100] + [100)(101| + [001)(110| 4 |010)(111].

0 —e e )
) W
T 5 AR vy
R Rt Q&Vﬂﬁm‘ﬁ*““*
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E11 + Eyo + E73 + Eey + Ess + Ese + Ear + E3s = Ri1R2R3

R=

. R1
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R RrRT

|o11) |001) [001) ) |001) |0y ® |01)
|100) |100) |100) [101) 1) ® |01)
ore o —i|100) —i|100) —i|100) —i|101) —i|1) ® |01)
|o11) |o01) loo1) | [001) |0y ® |01)
[101) [111) jo11y |011) [0y ® [11)
|010) |o10) |110) [111) 1) ® |11)
—i]010) —i|010) —i|110) —i|111) —i[1) ® [11)
[101) [111) [o11) [011) % 5519 Loy

Raymond Nung-Sing Sze Summer School on Quantum Information Science, Taiyuan



For the quantum channel ® : M3y — M3z given by
D(p) = pop + prXspXJ + p2YspYd + psZspZi,

then
R'® (R(10)(0|® p)R) R=pa @ forall p e Mis,

where R is a unitary matrix constructed by the following circuit.

|0) o ——————o—¢ [%a)

TTRRL]
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Fully correlated noise

Theorem 3.4

Suppose n > 2 is even. Then
QO Aon—2(Xn,Yn, Zyn) #0.
Q A1 (Xn,Yn, Zn) = 0.

In this case, (1,1,1) € Agn—2(Xn, Yn, Zn).

Suppose n is even and ® : Man — Mon is a fully correlated quantum channel
given by

®(p) = pop + prXnp X} + p2YupY, + psZnpZ}.
There exists a unitary R € Ma» such that

® (R(|00)(00| ® 5) R' = R(|00)(00| ® ) R" forall j € Myn—2.

The output density matrix is the same as the input.
@ B icoavmmsy

TTRRL]
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For the quantum channel ® : Mg — Mg given by
®(p) = pop + pr XapX] + p2YapY, + psZapZ},
then
R'® (R(00)(00| ® p)R") R = 00)(00| ® 5 for all j € My,

where R is a unitary matrix constructed by the following circuit.

|0) ] |0)
|0) b S2 |0)
P
D) ).
1) V)
a
‘R Rt
Remark that ® indeed has a 4-dimensional DFS. @“W‘*" —
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Recently, we also considered quantum channels of the form

pr ZPJW]®"pWJ®"T where WE" =W, @ ---@ W,
—

j=1 n

is a tensor product of n copies of unitary matrix W; € Mo.

Let «, B, be any real numbers and let

X = (£°°0)%3, Y = (57)3, 2, = (772)%,
Consider a quantum channel ® : Mg — Mg given by

®(p) = pop + p1 XapXL + p2YspY] + psZypZ}

for some p; > 0 such that Z?:o p; = 1.

UNIVERSITY
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Recent work

The 3-qubit case:

Theorem [arXiv:1106.5210]

Let o, 3,y be any real numbers and let

X = (£°°2)%3, Y = (¢¥57)3, Z, = (77%)%5,
Consider a quantum channel ® : Mg — Mg given by

®(p) = pop + prXapXl + p2YapY] + psZypZ]

for some p; > 0 such that Zf:o p; = 1. Then there is a unitary Uz € Mg such
that for any data state p € Mo,

® (Us(pa ©10)(0] @ p)US) = <(Zpg paV, )®o><oxﬁ> vl. (8)

Here p, is an initial single qubit ancilla state and

% :1—27 ‘/1 :ezao'z’ ‘/2 :ezﬁo'y’ V3 :6“/0-2.

INIVERSITY
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Let Us be the 8 x 8 unitary matrix with columns

lu1) 5(1100) —1001))  |u2) = —=(]100) +[001) — 2|010))
luz) = |111) lua) = (]100) +]001) + |010))
lus) = —(02)%ur) lus) = —(00)%|u2)
lur) = —(02)%%|us) lus) = —(00)®|ua)
3 )
Us ud
R SN NS UEVE] I O N
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The Rank-k Numerical Range of A
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