Operator approach to Quantum Error Correction

Raymond Nung-Sing Sze
The Hong Kong Polytechnic University

July 22, 2011

Summer School on Quantum Information Theory Taiyuan University of Technology, Taiyuan, Shanxi, China

Outline

- Quantum Error Correction with syndrome measurement
- Quantum Error Correction without syndrome measurement
- Operator Quantum Error Correction
- Joint Rank-k Numerical Range
- Application on Fully Correlated Noise

Classical error correction

- In classical conventional computer, data is stored and processed using binary bit $x \in \{0,1\}$.
- Suppose in a noisy channel, each bit flips independent with a probability p << 1.
- Now a bit x is transmitted through the channel,

$$x$$
 — Noisy channel — 0

What is x?

Majority vote:

$$x = 0!$$

- Now suppose in a noisy quantum channel, each qubit flips independent with a probability p << 1.
- Due to the No-Cloning Theorem, the classical method cannot be applicable to qubits! i.e., $|\psi\rangle \not\rightarrow |\psi\rangle |\psi\rangle |\psi\rangle$.
- Quantum error correction with syndrome measurement:

Step 1: Encoding and transmission:

$$|\psi\rangle=a|0\rangle+b|1\rangle \qquad \boxed{a|000\rangle+b|111\rangle} \qquad \boxed{ \begin{array}{c} \text{Noisy}\\ \text{quantum}\\ \text{channel} \end{array}} \\ \begin{vmatrix} a|000\rangle+b|011\rangle\\ a|010\rangle+b|101\rangle\\ a|001\rangle+b|110\rangle\\ a|110\rangle+b|001\rangle\\ a|011\rangle+b|100\rangle\\ a|011\rangle+b|100\rangle\\ a|111\rangle+b|000\rangle \\ \end{vmatrix}$$

- $a|000\rangle + b|111\rangle \neq |\psi\rangle|\psi\rangle\psi\rangle!$
- ullet Suppose U is a 8×8 unitary matrix such that

$$U|000\rangle = |000\rangle$$

$$U|100\rangle = |111\rangle$$

Then the encoding can be regarded as

$$\begin{array}{ccc} a|0\rangle+b|1\rangle &\longmapsto & (a|0\rangle+b|1\rangle)\otimes|00\rangle=a|000\rangle+b|100\rangle \\ &\longmapsto & U\left(a|000\rangle+b|100\rangle\right)=a|000\rangle+b|111\rangle & \begin{array}{c} & \text{The four known} \\ & \text{of the final convenient of the property of the$$

Step 2: Syndrome detection:

Step 3: Syndrome correction and decoding:

Important: The probability of error will be $p^2(3-2p) << p << 1!$

Gate

A NOT gate acting on one qubit:

$$\sigma_x = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$
 $0
angle & \longrightarrow 1
angle & |1
angle & \longrightarrow 1
angle$

• A controlled-NOT (CNOT) gate acting on 2 qubits:

$$I_2 \oplus \sigma_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$|1\rangle \longrightarrow |1\rangle \qquad |0\rangle \longrightarrow |0\rangle$$

$$|1\rangle \longrightarrow |1\rangle \qquad |0\rangle \longrightarrow |0\rangle$$

$$|1\rangle \longrightarrow |1\rangle \qquad |0\rangle \longrightarrow |0\rangle$$

A circuit correcting error for bit-flip channel:

Operator Approach to Quantum Error Correction

Quantum error correction with syndrome measurement:

• Quantum error correction without syndrome measurement:

Operator Approach to Quantum Error Correction

A quantum channel $\Phi:B(\mathcal{H})\to B(\mathcal{H})$ is a completely positive, trace preserving linear map of the form

$$\Phi: \rho \mapsto \sum_{j=1}^r E_j \rho E_j^{\dagger}$$
 with $\sum_j E_j^{\dagger} E_j = I.$ [Choi (1975)]

ullet Can one find another quantum channel $\Psi:B(\mathcal{H}) o B(\mathcal{H})$ such that

$$\Psi \circ \Phi(\rho) = \rho \quad \text{for all} \quad P_{\mathcal{V}} \rho P_{\mathcal{V}} = \rho,$$

where $P_{\mathcal{V}}$ is an orthogonal projection onto a k-dimensional subspace \mathcal{V} of \mathcal{H} ?

• If one write $P_{\mathcal{V}} = U(I_k \oplus 0)U^{\dagger}$ for some unitary U, then

$$P_{\mathcal{V}}\rho P_{\mathcal{V}} = \rho \quad \Longleftrightarrow \quad \rho = U \begin{bmatrix} \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger}.$$

• The equation of recovery channel can be restated as

$$\Psi \circ \Phi \left(U \begin{bmatrix} \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \right) = U \begin{bmatrix} \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \quad \text{for all} \quad \tilde{\rho} \in M_k.$$

Operator Approach to Quantum Error Correction

Recovery channel:

$$\Psi\circ\Phi\left(U\begin{bmatrix}\tilde{\rho}&0\\0&0\end{bmatrix}U^{\dagger}\right)=U\begin{bmatrix}\tilde{\rho}&0\\0&0\end{bmatrix}U^{\dagger}\quad\text{for all}\quad\tilde{\rho}\in M_k.$$

- If such $k (= 2^p)$ -dimensional subspace \mathcal{V} exists, \mathcal{V} is called an quantum error correction code (QECC) for Φ (see Definition 1.3).
- When will such quantum error correction code exist??

Theorem 1.5 - Existence of QECC [Knill, Laflamme (1996)]

A quantum channel $\Phi: \rho \mapsto \sum_{j=1}^r E_j \rho E_j^{\dagger}$ is correctable if and only if

$$P_{\mathcal{V}}E_i^{\dagger}E_jP_{\mathcal{V}} = \lambda_{ij}P_{\mathcal{V}}$$
 for all $1 \le i, j \le r$.

NIVERSITY

Quantum Error Correcting code

Example 1.7 Consider the threequbit bit-flip channel $\Phi: M_8 \to M_8$ defined by

$$\Phi(\rho) = \sum_{j=0}^{3} X_j \rho X_j^{\dagger},$$

with error operators

$$X_0 = \sqrt{p_0} I_2 \otimes I_2 \otimes I_2, \qquad X_1 = \sqrt{p_1} \sigma_x \otimes I_2 \otimes I_2,$$

$$X_2 = \sqrt{p_2} I_2 \otimes \sigma_x \otimes I_2, \qquad X_3 = \sqrt{p_3} I_2 \otimes I_2 \otimes \sigma_x,$$

where $\sum_{j=0}^{3} p_j = 1$.

Consider $V = \mathrm{span}\left\{|000\rangle, |111\rangle\right\}$ with orthogonal projection

$$P = |000\rangle\langle000| + |111\rangle\langle111| = E_{11} + E_{88}.$$

Following the proof of Knill-Laflamme result, one can construct the recovery channel as

$$\Psi(\rho) = P\rho P + (I - P)\rho(I - P).$$

Quantum Error Correcting code

• With syndrome measurement:

Without syndrome measurement:

Quantum Error Correcting code

Remark 1.6

① If we identify $\mathcal H$ with $\mathbb C^n$ and U is an $n \times n$ unitary matrix with columns $|u_1\rangle,\ldots,|u_n\rangle$ so that the first k states $|u_1\rangle,\ldots,|u_k\rangle$ form a basis for $\mathcal V$, where $k=\dim \mathcal V$, then condition (b) of Theorem 1.5 is equivalent to

$$U^{\dagger}E_{i}^{\dagger}E_{j}U = \begin{bmatrix} \lambda_{ij}I_{k} & * \\ * & * \end{bmatrix} \quad \text{for all} \quad 1 \leq i, j \leq r.$$

This will lead to the discussion of joint higher rank numerical range later.

② The proof of Theorem 1.5 is constructive and provides a procedure for constructing a recovery channel Ψ of Φ . However, the recovery channel Ψ may be hard to implement as the construction involves projection operators.

Decoherence free subspace

Quantum error correcting code:

$$\Psi \circ \Phi(\rho) = \rho$$
 for all $\rho \in B(\mathcal{H})$ with $\rho = P_{\mathcal{V}} \rho P_{\mathcal{V}}$.

Definition 1.8 - DFS

A subspace $\mathcal V$ of $\mathcal H$ is said to be a **decoherence free subspace (DFS)** for a quantum channel Φ on $B(\mathcal H)$ if

$$\Phi(\rho) = \rho \quad \text{for all} \quad \rho \in B(\mathcal{H}) \text{ with } \rho = P_{\mathcal{V}} \rho P_{\mathcal{V}}, \tag{1}$$

where $P_{\mathcal{V}}$ is the orthogonal projection of \mathcal{H} onto \mathcal{V} .

Noiseless system

• For decoherence free subspace, the equation can be restated as

$$\Phi\left(U\begin{bmatrix}\tilde{\rho} & 0 \\ 0 & 0\end{bmatrix}U^{\dagger}\right) = U\begin{bmatrix}\tilde{\rho} & 0 \\ 0 & 0\end{bmatrix}U^{\dagger} \quad \text{for all} \quad \tilde{\rho} \in M_k.$$

• For any $\rho^A \in M_p$ and $\rho^B \in M_k$, there is a $\sigma^A \in M_p$ such that

$$\Phi\left(U\begin{bmatrix} \boldsymbol{\rho^A} \otimes \boldsymbol{\rho^B} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \right) = U\begin{bmatrix} \boldsymbol{\sigma^A} \otimes \boldsymbol{\rho^B} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.$$

Definition 1.10 - Noiseless subsystem

A subsystem \mathcal{H}^B is said to be a **noiseless subsystem (NS)** for a quantum channel Φ on $B(\mathcal{H})$ if

- **1** \mathcal{H} has a decomposition $\mathcal{H} = (\mathcal{H}^A \otimes \mathcal{H}^B) \oplus \mathcal{K}$; and
- 2 for any $\rho^A \in B(\mathcal{H}^A)$ and $\rho^B \in B(\mathcal{H}^B)$, there is $\sigma^A \in B(\mathcal{H}^A)$ such that

$$\Phi\left(\rho^A \otimes \rho^B\right) = \sigma^A \otimes \rho^B. \tag{2}$$

Noiseless system will reduce to decoherence free subspace if $\dim \mathcal{H}^A = \mathbb{R}^{\frac{1}{2}}$

QECC vs DFS vs NS

QECC:

DFS:

NS:

Noiseless system

Example 1.12 Consider the quantum channel $\Phi: M_4 \to M_4$ with error operators $E_1 = F_1 \otimes I_2$ and $E_2 = F_2 \otimes I_2$, where

$$F_1 = \begin{bmatrix} \sqrt{\alpha} & 0 \\ 0 & \sqrt{1-\alpha} \end{bmatrix}$$
 and $F_2 = \begin{bmatrix} 0 & \sqrt{\alpha} \\ \sqrt{1-\alpha} & 0 \end{bmatrix}$,

for some $0 \le \alpha \le 1$.

Decompose $\mathbb{C}^4 = \mathcal{H}^A \otimes \mathcal{H}^B$ with respect to the standard basis so that $\mathcal{H}^A = \mathcal{H}^B = \mathbb{C}^2$, i.e., $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$.

Then for any $\rho^A \in B(\mathcal{H}^A)$ and $\rho^B \in B(\mathcal{H}^B)$, $\Phi(\rho^A \otimes \rho^B) = E_1(\rho^A \otimes \rho^B)E_1 + E_2(\rho^A \otimes \rho^B)E_2$ $= \left(F_1\rho^A F_1^{\dagger} + F_2\rho^A F_2^{\dagger}\right) \otimes \rho^B$ $= \sigma^A \otimes \rho^B.$

Equivalent definitions for NS

Proposition 1.13 [Kribs et al (2006)]

Given a decomposition $\mathcal{H}=(\mathcal{H}^A\otimes\mathcal{H}^B)\oplus\mathcal{K}$ and a quantum channel Φ on $B(\mathcal{H})$. The following conditions are equivalent.

- (1) \mathcal{H}^B is a noiseless subsystem.
- (2) For any $\rho^A\in B(\mathcal{H}^A)$ and $\rho^B\in B(\mathcal{H}^B)$, there is $\sigma^A\in B(\mathcal{H}^A)$ such that
- (3) For any $\rho^B \in B(\mathcal{H}^B)$, there is $\sigma^A \in B(\mathcal{H}^A)$ such that

$$\Phi(I_A \otimes \rho^B) = \sigma^A \otimes \rho^B.$$

 $\Phi(\rho^A \otimes \rho^B) = \sigma^A \otimes \rho^B$.

(4) For any $\rho^A \in B(\mathcal{H}^A)$ and $\rho^B \in B(\mathcal{H}^B)$,

$$\operatorname{tr}_{A}\left(P_{AB}\circ\Phi(\rho^{A}\otimes\rho^{B})\right)=\rho^{B},$$

where P_{AB} is the orthogonal projection of \mathcal{H} onto $\mathcal{H}^A \otimes \mathcal{H}^B$.

NIVERSITY

Necessary and sufficient condition for existence of NS

Fixed orthonormal bases $\{|a_1\rangle,\ldots,|a_p\rangle\}$ and $\{|b_1\rangle,\ldots,|b_k\rangle\}$ for \mathcal{H}^A and \mathcal{H}^B , respectively. Let

$$P_{ij} = |a_i\rangle\langle a_j| \otimes I_B$$
 for all $1 \le i, j \le p$.

Notice that $P_{AB}=P_{11}+\cdots+P_{pp}$ is the orthogonal projection of $\mathcal H$ onto $\mathcal H^A\otimes\mathcal H^B$.

Theorem 1.14 [Kribs. at el (2006)]

Given a decomposition $\mathcal{H}=(\mathcal{H}^A\otimes\mathcal{H}^B)\oplus\mathcal{K}$ and a quantum channel Φ on $B(\mathcal{H})$. Then \mathcal{H}^B is a noiseless subsystem for Φ if and only if

$$E_s P_{AB} = P_{AB} E_s P_{AB} \quad \text{for all} \quad 1 \le s \le r, \tag{3}$$

and there are scalars $\lambda_{i,j,s} \in \mathbb{C}$ such that

$$P_{ii}E_sP_{jj} = \lambda_{i,j,s}P_{ij} \quad \text{for all} \quad 1 \le i, j \le p, \ 1 \le s \le r. \tag{4}$$

The equations (3) and (4) hold if and only if

$$U^\dagger E_s \, U = egin{bmatrix} \Lambda^{(s)} \otimes I_B & * \ 0 & * \end{bmatrix} \quad ext{with} \quad \Lambda^{(s)} = egin{bmatrix} \lambda_{i,j,s} \end{bmatrix} \quad ext{for all} \quad 1 \leq s \leqslant r.$$

Necessary and sufficient condition for existence of DFS

Recall that noiseless system will reduce to decoherence free subspace if $\mathcal{H}^A=1$.

Corollary 1.16

Let $\Phi:B(\mathcal{H})\to B(\mathcal{H})$ be a quantum channel. Then a subspace $\mathcal V$ of $\mathcal H$ is a decoherence free subspace for Φ if and only if there are scalars $\lambda_s\in\mathbb C$ such that

$$E_s P_{\mathcal{V}} = \lambda_s P_{\mathcal{V}} \quad \text{for all} \quad 1 \le s \le r.$$
 (5)

The equation (5) hold if and only if

$$U^{\dagger}E_{s}\,U = \begin{bmatrix} \lambda_{s}I_{B} & * \\ 0 & * \end{bmatrix} \quad \text{for all} \quad 1 \leq s \leq r.$$

NS and DFS

Example 1.17 Consider the quantum channel $\Phi: M_4 \to M_4$ with error operators

$$E_1 = \begin{bmatrix} \sqrt{1 - 2\alpha} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{1 - 2\alpha} \end{bmatrix} \quad \text{and} \quad E_2 = \begin{bmatrix} \sqrt{\alpha} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{\alpha} \\ \sqrt{\alpha} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{\alpha} \end{bmatrix}$$

for some $0 \le \alpha \le 1$. Let $U = E_{11} + E_{24} + E_{33} + E_{42}$. Then

$$U^{\dagger} E_1 U = \underbrace{\begin{bmatrix} \sqrt{1 - 2\alpha} & 0 \\ 0 & 1 \end{bmatrix}}_{\Lambda^{(1)}} \otimes I_2 \quad \text{and} \quad U^{\dagger} E_2 U = \underbrace{\begin{bmatrix} \sqrt{\alpha} & 0 \\ \sqrt{\alpha} & 0 \end{bmatrix}}_{\Lambda^{(2)}} \otimes I_2.$$

Indeed, for any $\rho^B \in M_2$,

$$\Phi\left(U(I_A\otimes\rho^B)U^{\dagger}\right) = U(\sigma^A\otimes\rho^B)U^{\dagger} \quad \text{where} \quad \sigma^A = \begin{bmatrix} 1-\alpha & \alpha\\ \alpha & 1+\alpha \end{bmatrix} \quad \text{(Exercise!!)}$$

Equivalently, \mathcal{H}^B is a noiseless subsystem if one decompose \mathcal{H} to $\mathcal{H}^A \otimes \mathcal{H}^B$, $\dim \mathcal{H}^A = \dim \mathcal{H}^B = 2$, with respect to the basis $\{|00\rangle, |11\rangle, |10\rangle, |01\rangle\}$.

Exercise Show that this channel Φ has a 2-dimensional decoherence free subspace.

DFS vs NS vs QECC

DFS:

$$\Phi\left(U\begin{bmatrix}\tilde{\boldsymbol{\rho}} & 0\\ 0 & 0\end{bmatrix}U^{\dagger}\right) = U\begin{bmatrix}\tilde{\boldsymbol{\rho}} & 0\\ 0 & 0\end{bmatrix}U^{\dagger} \quad \forall \tilde{\boldsymbol{\rho}} \in M_k.$$

• NS: $\forall \rho^A \in M_p, \rho^B \in M_k, \exists \sigma^A \in M_p \text{ s.t.}$

$$\Phi \left(U \begin{bmatrix} \boldsymbol{\rho^A} \otimes \boldsymbol{\rho^B} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \right) = U \begin{bmatrix} \boldsymbol{\sigma^A} \otimes \boldsymbol{\rho^B} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.$$

QECC:

$$\Psi\circ\Phi\left(U\begin{bmatrix}\tilde{\boldsymbol{\rho}} & 0\\ 0 & 0\end{bmatrix}U^\dagger\right)=U\begin{bmatrix}\tilde{\boldsymbol{\rho}} & 0\\ 0 & 0\end{bmatrix}U^\dagger\quad\forall\tilde{\boldsymbol{\rho}}\in M_k.$$

• Under the QECC condition can we say something about Φ without the recovery channel Ψ ? Yes!

$$\Phi\left(U\begin{bmatrix} E_{11}\otimes\tilde{\rho} & 0\\ 0 & 0\end{bmatrix}U^{\dagger}\right) = R\begin{bmatrix} \sigma\otimes\tilde{\rho} & 0\\ 0 & 0\end{bmatrix}R^{\dagger} \quad \forall \tilde{\rho}\in M_k. \text{ The finel known for the properties of the properties$$

QECC Revisited

Theorem 1.18 [Li, Nakahara, Poon, Sze, Tomita (2011)]

Let $\Phi: B(\mathcal{H}) \to B(\mathcal{H})$ be a quantum channel with $n=\dim \mathcal{H}$. Suppose Φ has a k-dimensional quantum error correcting code \mathcal{V} with orthogonal projection $P_{\mathcal{V}}=WW^{\dagger}$ with $W^{\dagger}W=I_k$. Then there is a unitary R and a positive definite $\sigma\in M_q$ with $q\leq n/k$ such that

$$\Phi\left(W\tilde{\rho}W^{\dagger}\right) = R \begin{bmatrix} \sigma \otimes \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} R^{\dagger} \quad \text{for all} \quad \tilde{\rho} \in M_k.$$

In particular, if k divides n so that $B(\mathcal{H})$ can be regarded as $M_{n/k}\otimes M_k$, there is a positive semi-definite $\sigma\in M_{n/k}$ such that

$$\Phi\left(W\tilde{\rho}W^{\dagger}\right) = R(\sigma\otimes\tilde{\rho})R^{\dagger} \quad \text{for all} \quad \tilde{\rho}\in M_k.$$

QECC: bit-flip channel

Example 1.20 Consider the three-qubit bit-flip channel Φ : $M_8 \rightarrow M_8$ defined by

$$\Phi(\rho) = \sum_{j=0}^{3} X_j \rho X_j^{\dagger},$$

with error operators

$$X_0 = \sqrt{p_0} I_2 \otimes I_2 \otimes I_2, \qquad X_1 = \sqrt{p_1} \sigma_x \otimes I_2 \otimes I_2,$$

$$X_2 = \sqrt{p_2} I_2 \otimes \sigma_x \otimes I_2, \qquad X_3 = \sqrt{p_3} I_2 \otimes I_2 \otimes \sigma_x,$$

where $\sum_{j=0}^{3} p_{j} = 1$.

Consider $\mathcal{V}=\mathrm{span}\,\{|000\rangle,|111\rangle\}$. Following the proof of Theorem 1.18, one can construct the unitary matrices

$$U = E_{11} + E_{28} + E_{33} + E_{46} + E_{55} + E_{64} + E_{77} + E_{82}$$

$$R = E_{11} + E_{27} + E_{35} + E_{44} + E_{53} + E_{66} + E_{78} + E_{82}.$$

Then there is $\sigma \in M_4$ such that

$$\Phi\left(U(|00\rangle\langle 00|\otimes\rho)U^{\dagger}\right)=R\left(\sigma\otimes\tilde{\rho}\right)R^{\dagger}\quad\text{for all}\quad\tilde{\rho}\in M_{2}.$$

QECC: bit-flip channel

Original QECC:

New QECC:

Operator quantum error correction

Definition 1.21 - Correctable subsystem

A subsystem \mathcal{H}^B is said to be a **correctable subsystem (CS)** for a quantum channel Φ on $B(\mathcal{H})$ if

- **1** \mathcal{H} has a decomposition $\mathcal{H} = (\mathcal{H}^A \otimes \mathcal{H}^B) \oplus \mathcal{K}$, and
- ② for any $\rho^A \in B(\mathcal{H}^A)$ and $\rho^B \in B(\mathcal{H}^B)$, there is $\sigma^A \in B(\mathcal{H}^A)$ such that

$$\Psi \circ \Phi(\rho^A \otimes \rho^B) = \sigma^A \otimes \rho^B. \tag{6}$$

Equivalently,

$$\operatorname{tr}_{A}\left(P_{AB}\circ\Psi\circ\Phi(\rho^{A}\otimes\rho^{B})\right)=\rho^{B}\quad\text{for all}\quad\rho^{A}\in B(\mathcal{H}^{A})\text{ and }\rho^{B}\in B(\mathcal{H}^{B}),$$

where P_{AB} is the orthogonal projection of \mathcal{H} onto $\mathcal{H}^A \otimes \mathcal{H}^B$.

Operator quantum error correction

A necessary and sufficient condition for the existence of correctable system was also given by Kribs et al.

Theorem 1.23 [Kribs et al. (2006)]

Given a decomposition $\mathcal{H}=(\mathcal{H}^A\otimes\mathcal{H}^B)\oplus\mathcal{K}$ and a quantum channel Φ on $B(\mathcal{H})$. Then \mathcal{H}^B is a correctable subsystem for Φ if and only if there are scalars $\lambda_{i,j,s,t}\in\mathbb{C}$ such that

$$P_{ii}E_s^{\dagger}E_tP_{jj} = \lambda_{i,j,s,t}\,P_{ij} \quad \text{for all} \quad 1 \leq i,j \leq p, \ 1 \leq s,t \leq r. \tag{7} \label{eq:7}$$

The equation (7) holds if and only if there is a unitary U such that

$$U^\dagger E_s^\dagger E_t \, U = \begin{bmatrix} \Lambda^{(s,t)} \otimes I_B & * \\ * & * \end{bmatrix} \quad \text{with} \quad \Lambda^{(s,t)} = \begin{bmatrix} \lambda_{i,j,s,t} \end{bmatrix} \quad \text{for all} \quad 1 \leq s,t \leq r.$$

Summary

$$\mathbf{DFS:} \qquad \forall \tilde{\rho} \qquad \qquad \Phi \left(U \begin{bmatrix} \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger} \right) = U \begin{bmatrix} \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger}$$

$$\text{NS:} \qquad \forall \rho^A, \rho^B, \exists \sigma^A \quad \Phi \left(U \begin{bmatrix} \boldsymbol{\rho^A} \otimes \boldsymbol{\rho^B} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \right) = U \begin{bmatrix} \boldsymbol{\sigma^A} \otimes \boldsymbol{\rho^B} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger$$

$$\mathbf{QECC:} \quad \forall \tilde{\rho} \qquad \qquad \Psi \circ \Phi \left(U \begin{bmatrix} \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger} \right) = U \begin{bmatrix} \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger}$$

$$\mathbf{QECC:} \quad \forall \tilde{\rho} \qquad \qquad \Phi \left(U \begin{bmatrix} E_{11} \otimes \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger} \right) = R \begin{bmatrix} \sigma \otimes \tilde{\rho} & 0 \\ 0 & 0 \end{bmatrix} R^{\dagger}$$

$$\textbf{OQEC:} \quad \forall \rho^A, \rho^B, \exists \sigma^A \quad \Psi \circ \Phi \left(U \begin{bmatrix} \rho^A \otimes \rho^B & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \right) = U \begin{bmatrix} \sigma^A \otimes \rho^B & 0 \\ 0 & 0 \end{bmatrix} U^\dagger$$

Summary

Knill-Laflamme condition

Theorem 1.5 - Existence of QECC [Knill, Laflamme (1996)]

A quantum channel $\Phi: \rho \mapsto \sum_{j=1}^r E_j \rho E_j^\dagger$ is correctable if and only if

$$P_{\mathcal{V}}E_i^{\dagger}E_jP_{\mathcal{V}} = \lambda_{ij}P_{\mathcal{V}}$$
 for all $1 \le i, j \le r$.

Theorem 1.2

Suppose

$$\Phi(
ho) = \sum_{j=1}^r E_j
ho E_j^\dagger$$
 and $\Psi(
ho) = \sum_{k=1}^s F_j
ho F_j^\dagger$

are two quantum channels. By adding zero operators, if necessary, one can assume that r=s. Then $\Phi=\Psi$ if and only if there exists a $r\times r$ unitary matrix $U=[u_{ij}]$ such that

$$E_i = \sum_{j=1}^r u_{ij} F_j$$
 for all $i = 1, \dots, r$.

Proof of the theorem can be found in [Nielsen & Chuang, Theorem 8.2] Proof of the theorem can be found in [Nielsen & Chuang, Theorem 8.2]

Proof of Theorem 1.5

Suppose there is a recovery quantum channel $\Psi:B(\mathcal{H})\to B(\mathcal{H})$ of the form $\Psi(\rho)=\sum_{k=1}^p R_k\rho R_k^\dagger$ such that

$$\Psi \circ \Phi(\rho) = \rho$$
 for all ρ with $\rho = P\rho P$.

Then

$$\sum_{k=1}^p \sum_{j=1}^r \frac{\mathbf{R}_k \mathbf{E}_j \mathbf{P} \rho \mathbf{P} \mathbf{E}_j^{\dagger} \mathbf{R}_k^{\dagger} = \mathbf{P} \rho \mathbf{P} \quad \text{for all} \quad \rho \in B(\mathcal{H}).$$

By Theorem 1.2, there are scalars $c_{jk} \in \mathbb{C}$ such that

$$R_k E_j P = c_{jk} P$$
 for all $1 \le j \le r, \ 1 \le k \le p$.

Notice that $\sum_{k=1}^{p} R_k^{\dagger} R_k = I$. Thus for any $1 \leq i, j \leq r$,

$$PE_{i}^{\dagger}E_{j}P = \sum_{k=1}^{p} PE_{i}^{\dagger}R_{k}^{\dagger}R_{k}E_{j}P = \sum_{k=1}^{p} \overline{c}_{ik}c_{jk}P.$$

Then the condition holds with $\lambda_{ij} = \sum_{j=1}^{p} \overline{c}_{ik} c_{jk}$.

Proof of Theorem 1.5

Suppose that

$$PE_i^{\dagger}E_jP = \lambda_{ij}P$$
 for all $1 \le i, j \le r$.

Let $\Lambda = [\lambda_{ij}]$.

Assumption: Λ is a $r \times r$ diagonal matrix with positive diagonal entires.

By polar decomposition, there is a unitary U_k such that

$$E_k P = U_k (P F_k^{\dagger} E_k P)^{\frac{1}{2}} = \sqrt{\lambda_{kk}} U_k P.$$

Let

$$P_k = U_k P U_k^\dagger = E_k P U_k^\dagger / \sqrt{\lambda_{kk}} \quad \text{for } k = 1, \dots, r.$$

Then for any $1 \le k, \ell \le r$,

$$P_k^{\dagger} P_{\ell} = \begin{cases} U_k P U_k^{\dagger} & k = \ell, \\ 0 & k \neq \ell. \end{cases} \implies U_k^{\dagger} P_k^{\dagger} P_{\ell} U_k = \begin{cases} P & k = \ell, \\ 0 & k \neq \ell. \end{cases}$$

Thus, the projections P_1, \ldots, P_r are pairwise orthogonal. Let

$$P_{r+1} = I - \sum_{k=1}^r P_k \quad \text{and} \quad U_{r+1} = I.$$

Notice that $P_{r+1}^2 = P_{r+1}$ and $P_{r+1}^{\dagger} P_j = 0$ for all $1 \leq j \leq r$.

Proof of Theorem 1.5

Define the recovery channel $\Psi: B(\mathcal{H}) \to B(\mathcal{H})$ by

$$\Psi(\rho) = \sum_{k=1}^{r+1} U_k^{\dagger} P_k \rho P_k U_k.$$

Clearly, $\sum_{k=1}^{r+1} P_k U_k U_k^{\dagger} P_k = \sum_{k=1}^{r+1} P_k = I$ and hence Ψ is trace preserving.

Notice that

$$\phi(\rho) = \sum_{k=1}^{r} E_k P \rho P E_k^{\dagger} = \sum_{k=1}^{r} \lambda_{kk} P_k U_k \rho U_k^{\dagger} P_k,$$

and so

$$\Psi \circ \Phi(\rho) = \sum_{\ell=1}^{r+1} \sum_{k=1}^r \lambda_{kk} \overbrace{U_\ell^\dagger P_\ell P_k U_k}^P \rho \overbrace{U_k^\dagger P_k P_\ell U_\ell}^P = \sum_{k=1}^r \lambda_{kk} P \rho P = P \rho P = \rho.$$

Thus, V is a quantum error correcting code for Φ .

Knill-Laflamme condition

Theorem 1.5 - Existence of QECC [Knill, Laflamme (1996)]

A quantum channel $\Phi: \rho \mapsto \sum_{j=1}^r E_j \rho E_j^\dagger$ is correctable if and only if

$$P_{\mathcal{V}}E_i^{\dagger}E_jP_{\mathcal{V}} = \lambda_{ij}P_{\mathcal{V}} \quad \text{for all } 1 \leq i, j \leq r.$$

The condition of Theorem 1.5 is equivalent to

$$U^{\dagger}E_{i}^{\dagger}E_{j}U = \begin{bmatrix} \lambda_{ij}I_{k} & * \\ * & * \end{bmatrix} \quad \text{for all} \quad 1 \leq i,j \leq r.$$

Choi, Kribs, and Życzkowski (2006) suggested the following:

Definition 2.1 - Joint rank-k numerical range

Given $A_1, \ldots, A_m \in M_n$. The (joint) rank-k numerical range $\Lambda_k(\mathbf{A})$ of the matrices $\mathbf{A} = (A_1, \ldots, A_m)$ is defined as the collection of $(a_1, \ldots, a_m) \in \mathbb{C}^{1 \times m}$ such that

$$PA_jP = a_jP, \qquad j = 1, \dots, m,$$

for some rank-k orthogonal projection P, i.e., That is,

$$\Lambda_k(\mathbf{A}) = \{(a_1, \dots, a_m) \in \mathbb{C}^m : PA_jP = a_jP$$

for some rank-k orthogonal projection P}.

ullet A channel Φ has a k-dimensional correction code if and only if

$$\Lambda_k(E_1^{\dagger}E_1, E_1^{\dagger}E_2, \dots, E_r^{\dagger}E_r) \neq \emptyset.$$

Equivalently,

$$\Lambda_k(\mathcal{A}) = \{(a_1, \dots, a_m) \in \mathbb{C}^m : X^{\dagger} A_j X = a_j I_k \text{ with } X^{\dagger} X = I_k \}.$$

• Also, $(a_1, \ldots, a_m) \in \Lambda_k(\mathcal{A})$ if and only if there is a unitary U such that

$$U^{\dagger}A_{j}U = \begin{bmatrix} a_{j}I_{k} & * \\ * & * \end{bmatrix}$$
 for $1 \leq j \leq m$.

Example 2.2 A simple case. Given a bi-unitary channel

$$\Phi: \rho \mapsto tU_1\rho U_1^{\dagger} + (1-t)U_2\rho U_2^{\dagger}$$
 where U_1 and U_2 are unitary.

The channel Φ is correctable if and only if

$$\Lambda_k(U_1^{\dagger}U_1, U_1^{\dagger}U_2, U_2^{\dagger}U_1, U_2^{\dagger}U_2) \neq \emptyset \quad \Longleftrightarrow \quad \Lambda_k(U_1^{\dagger}U_2) \neq \emptyset.$$

Rank-k numerical range

The rank-k numerical range of A on M_n is defined by

$$\Lambda_k(A) = \{ \mu \in \mathbb{C} : PAP = \mu P \text{ for some rank-}k \text{ orthogonal projection } P \}.$$

• Equivalently,

$$\Lambda_k(A) = \{ \mu \in \mathbb{C} : X^{\dagger} A X = \mu I_k \text{ with } X^{\dagger} X = I_k \}.$$

• For k=1, it reduces to the classical numerical range defined as

$$W(A) = \{ \langle x | A | x \rangle : | x \rangle \in \mathbb{C}^n \text{ with } \langle x | x \rangle = 1 \}.$$

Basic properties of rank-k numerical range:

- (P1) For any $a, b \in \mathbb{C}$, $\Lambda_k(aA + bI) = a\Lambda_k(A) + b$.
- (P2) For any unitary $U \in M_n$, $\Lambda_k(U^{\dagger}AU) = \Lambda_k(A)$.
- (P3) For any $n \times r$ matrix V with $r \geq k$ and $V^{\dagger}V = I_r$, we have $\Lambda_k(V^{\dagger}AV) \subseteq \Lambda_k(A)$.
- (P4) Suppose n < 2k. The set $\Lambda_k(A)$ has at most one element.
- (P5) $\Lambda_k(A)$ can be empty.

Example Let $A = \operatorname{diag}(1, 1, 0, 0)$. Then $\Lambda_3(A) = \emptyset$.

Proof. Suppose $\Lambda_3(A) \neq \emptyset$. Then there is $U \in M_4$ such that

$$U^{\dagger}AU = \begin{bmatrix} \lambda I_3 & * \\ * & * \end{bmatrix}.$$

Then by interlacing inequality,

$$0 \le \lambda \le 0 \le \lambda \le 1 \le \lambda \le 1$$
.

THE HONG KONG
POLYTECHNIC UNIVERSITY
香港理工大學

But this is impossible!

Theorem 2.3

Let $A \in M_n$ and $k \in \{1, \ldots, n\}$.

- (a) If $n \geq 3k 2$, then $\Lambda_k(A)$ is non-empty.
- (b) If n < 3k 2, there is $B \in M_n$ such that $\Lambda_k(B) = \emptyset$.
- (c) If $A = A^{\dagger}$ has eigenvalues $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$, then

$$\Lambda_k(A) = [\lambda_{n-k+1}(A), \lambda_k(A)],$$

where the interval is an empty set if $\lambda_{n-k+1}(A) > \lambda_k(A)$ when k > n/2.

Theorem 2.3

(d) For any $A \in M_n$,

$$\Lambda_k(A) = \bigcap_{\xi \in [0,2\pi)} \left\{ \mu \in \mathbb{C} : e^{-i\xi} \mu + e^{i\xi} \bar{\mu} \le \lambda_k (e^{-i\xi} A + e^{i\xi} A^{\dagger}) \right\},\,$$

where $\lambda_k(H)$ denotes the k-th largest eigenvalue of Hermitian $H \in M_n$.

NIVERSITY

Example Let
$$A = \operatorname{diag}(i, -i, -1) \oplus \begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix}$$
. Then
$$\Lambda_k(A) = \bigcap_{\xi \in [0, 2\pi)} \left\{ \mu \in \mathbb{C} : e^{-i\xi} \mu + e^{i\xi} \bar{\mu} \le \lambda_k (e^{-i\xi} A + e^{i\xi} A^{\dagger}) \right\},$$

The rank-2 numerical range of A is

Theorem 2.3

(d) For any $A \in M_n$,

$$\Lambda_k(A) = \bigcap_{\xi \in [0,2\pi)} \left\{ \mu \in \mathbb{C} : e^{-i\xi}\mu + e^{i\xi}\bar{\mu} \le \lambda_k(e^{-i\xi}A + e^{i\xi}A^{\dagger}) \right\},\,$$

where $\lambda_k(H)$ denotes the k-th largest eigenvalue of Hermitian $H \in M_n$.

- (e) $\Lambda_k(A)$ is always convex. [Woerdeman (2008)]
- (f) If $A \in M_n$ is a normal matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$\Lambda_k(A) = \bigcap_{1 \le j_1 < \dots < j_{n-k+1} \le n} \operatorname{conv} \{\lambda_{j_1}, \dots, \lambda_{j_{n-k+1}}\}.$$

Rank-1 and rank-2 numerical ranges of some matrices.

Recall that the joint rank-k numerical range of $\mathbf{A}=(A_1,\dots,A_m)$ with A_j on M_n is defined by

$$\Lambda_k(\mathbf{A}) = \{(a_1, \dots, a_m) \in \mathbb{C}^m : PA_jP = a_jP$$
 for some rank- k orthogonal projection $P\}.$

• Write $A_j = H_{2j-1} + iH_{2j}$ with Hermitian matrices

$$H_{2j-1} = rac{1}{2}(A_j + A_j^\dagger) \quad ext{and} \quad H_{2j} = rac{1}{2i}(A_j - A_j^\dagger).$$

One can always identify

$$\Lambda_k(A_1,\ldots,A_m) \cong \Lambda_k(H_1,H_2,\ldots,H_{2m-1},H_{2m})$$

$$\bigcap_{\mathbb{P}^{2m}}$$

- One can focus on $\Lambda_k(A_1,\ldots,A_m)$ with A_1,\ldots,A_m Hermitian.
- In particular, $\Lambda_k(A_1 + iA_2) \cong \Lambda_k(A_1, A_2)$.

Proposition 2.4

Suppose $\mathbf{A}=(A_1,\ldots,A_m)\in H_n^m$, and $T=[t_{ij}]$ is an $m\times r$ real matrix. If

$$B_j = \sum_{i=1}^m t_{ij} A_i \quad \text{for} \quad j = 1, \dots, r,$$

and $\mathbf{B} = (B_1, \dots, B_r)$, then

$$\{(a_1,\ldots,a_m)T:(a_1,\ldots,a_m)\in\Lambda_k(\mathbf{A})\}\subseteq\Lambda_k(\mathbf{B}).$$

The inclusion becomes equality if $\{A_1,\ldots,A_m\}$ is linearly independent and

$$\operatorname{span}\left\{A_1,\ldots,A_m\right\} = \operatorname{span}\left\{B_1,\ldots,B_r\right\}.$$

In view of the above proposition, in the study of the geometric properties of $\Lambda_k(\mathbf{A})$, we may always assume that A_1, \ldots, A_m are linearly independent.

Proposition 2.5

Let $\mathbf{A} = (A_1, \dots, A_m) \in H_n^m$, and let k < n.

(a) For any real vector $\mu = (\mu_1, \dots, \mu_m)$,

$$\Lambda_k(A_1 - \mu_1 I, \dots, A_m - \mu_m I) = \Lambda_k(\mathbf{A}) - \mu.$$

- (b) If $(a_1, ..., a_m) \in \Lambda_k(\mathbf{A})$, then $(a_1, ..., a_{m-1}) \in \Lambda_k(A_1, ..., A_{m-1})$.
- (c) $\Lambda_{k+1}(\mathbf{A}) \subseteq \Lambda_k(\mathbf{A})$.
- (d) For any unitary $U \in M_n$,

$$\Lambda_k(U^{\dagger}A_1U,\ldots,U^{\dagger}A_mU)=\Lambda_k(A_1,\ldots,A_m).$$

Non-emptyness

Question:

When will $\Lambda_k(\mathbf{A})$ be always non-empty for all Hermitian $\mathbf{A}=(A_1,\ldots,A_m)$?

Partial Answers:

- \bullet $\Lambda_1(A_1, A_2, \dots, A_m)$ is always non-empty.
- ② If $n \geq 2k-1$, then $\Lambda_k(A_1) \neq \emptyset$. [Choi al et. (2006)]

$$\Lambda_k(A_1, A_2) \equiv \Lambda_k(A_1 + iA_2) \neq \emptyset.$$

Proposition 2.6 [Knill, Laflamme, Viola (2000)]

Let $\mathbf{A} \in H_n^m$ and 1 < k < n. Then $\Lambda_k(\mathbf{A})$ is non-empty if

$$n \ge (k-1)(m+1)^2.$$

However, the bound is not sharp.

When (m, k) = (3, 2)

Proposition 2.6:

$$\Lambda_2(A_1, A_2, A_3) \neq \emptyset$$
 if $n \ge (k-1)(m+1)^2 = 16$.

It has been proved that

$$\Lambda_2(A_1, A_2, A_3) \neq \emptyset$$
 if $n \geq 7$

and

$$\Lambda_2(A_1, A_2, A_3) = \emptyset \quad \text{if} \quad n \le 4.$$

Open problem

Is $\Lambda_2(A_1, A_2, A_3)$ always nonempty when n = 5 or 6?

Partial Answer:

Suppose A_1, \ldots, A_m is a commuting family.

$$\Lambda_2(H_1,\dots,H_m)\neq\emptyset\quad\text{if}\quad n\geq m+2.\qquad \text{[Holbrook (2008)]}$$

Star-shapeness

A set $S\subseteq\mathbb{R}^n$ is said to be star-shaped if there exists $a\in S$ such that

$$ta+(1-t)b\in S \quad \text{ for all } b\in S \text{ and } 0\leq t\leq 1.$$

The point a is called a star-center of S.

Theorem 2.9 [Li and Poon (2009)]

Given Hermitian $\mathbf{A} = (A_1, \dots, A_m)$.

• If $\Lambda_{\ell}(\mathbf{A}) \neq \emptyset$ with $\ell \geq (m+2)k$ and $a \in \Lambda_{\ell}(\mathbf{A})$, then $\Lambda_{k}(\mathbf{A})$ is star-shaped with a as a star center.

In particular, when $n \geq 55$,

$$\Lambda_{10}(A_1, A_2, A_3) \neq \emptyset \implies \Lambda_2(A_1, A_2, A_3)$$
 is star-shaped.

Pauli matrices

• The Pauli matrices, also known as the spin matrices, and defined by

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \text{and} \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Notice that

$$\sigma_x|0\rangle = |1\rangle \qquad \sigma_y|0\rangle = i|1\rangle \qquad \sigma_z|0\rangle = |0\rangle$$

$$\sigma_x |1\rangle = |0\rangle \qquad \sigma_y |1\rangle = -i|0\rangle \qquad \sigma_z |1\rangle = -|1\rangle$$

• In general, for $|\psi\rangle = a|0\rangle + b|1\rangle$,

$$\sigma_x |\psi\rangle = \sigma_x(a|0\rangle + b|1\rangle) = a|1\rangle + b|0\rangle$$

 $\sigma_y |\psi\rangle = \sigma_y(a|0\rangle + b|1\rangle) = ia|1\rangle - ib|0\rangle$

$$\sigma_z |\psi\rangle = \sigma_z(a|0\rangle + b|1\rangle) = a|0\rangle - b|1\rangle$$

For any positive integer n, define

$$X_n = \sigma_x^{\otimes n}, \quad Y_n = \sigma_y^{\otimes n}, \quad \text{and} \quad Z_n = \sigma_z^{\otimes n}.$$

Then

$$X_3|001\rangle=|110\rangle$$
 $Y_3|001\rangle=i|110\rangle$ $Z_3|001\rangle=-|001\rangle$. Presence of the statement of the sta

- A noisy quantum channel is called fully correlated when all the qubits constituting the codeword are subject to the same error operators.
- This situation happens when size of the system is much smaller than the wavelength of the external disturbance causing the error.
- In general, such quantum channel has error operator of the form

$$W^{\otimes n} = W \otimes \cdots \otimes W$$
 with unitary $W \in M_2$.

ullet Consider a fully correlated quantum channel $\Phi:M_{2^n} o M_{2^n}$ of the form

$$\Phi(\rho) = p_0 \rho + p_1 X_n \rho X_n^{\dagger} + p_2 Y_n \rho Y_n^{\dagger} + p_3 Z_n \rho Z_n^{\dagger}$$

with $p_0 + \cdots + p_4 = 1$.

By the Knill-Laflamme result, the fully correlated quantum channel $\Phi:M_{2^n}\to M_{2^n}$ by

$$\Phi(\rho) = p_0 \rho + p_1 X_n \rho X_n^{\dagger} + p_2 Y_n \rho Y_n^{\dagger} + p_3 Z_n \rho Z_n^{\dagger}$$

has a k-dimensional quantum error correction code if and only if

$$\Lambda_k \begin{pmatrix} I_n & X_n & Y_n & Z_n \\ X_n^\dagger & X_n^\dagger X_n & X_n^\dagger Y_n & X_n^\dagger Z_n \\ Y_n^\dagger & Y_n^\dagger X_n & Y_n^\dagger Y_n & Y_n^\dagger Z_n \\ Z_n^\dagger & Z_n^\dagger X_n & Z_n^\dagger Y_n & Z_n^\dagger Z_n \end{pmatrix} \neq \emptyset.$$

As

$$\sigma_x \sigma_y = i \sigma_z, \quad \sigma_y \sigma_z = i \sigma_x, \quad \text{and} \quad \sigma_z \sigma_x = i \sigma_y,$$

it follows that

$$X_n^\dagger Y_n = i^n Z_n, \quad Y_n^\dagger Z_n = i^n X_n, \quad \text{and} \quad Z_n^\dagger X_n = i^n X_n.$$

It follows that QECC exists if and only if

$$\Lambda_k(X_n, Y_n, Z_n) \neq \emptyset.$$

Theorem 3.1

Suppose n > 2 is odd. Then $\Lambda_{2^{n-1}}(X_n, Y_n, Z_n) \neq \emptyset$.

Indeed, $(0,0,1) \in \Lambda_{2^{n-1}}(X_n,Y_n,Z_n)$. (Exercise!)

By Theorem 1.18,

Theorem 3.2

Suppose n is odd and $\Phi:M_{2^n}\to M_{2^n}$ is a fully correlated quantum channel given by

$$\Phi(\rho) = p_0 \rho + p_1 X_n \rho X_n^{\dagger} + p_2 Y_n \rho Y_n^{\dagger} + p_3 Z_n \rho Z_n^{\dagger}.$$

There exist a unitary $R \in M_{2^n}$ and a density matrix $\rho_a \in M_2$ such that

$$\Phi\left(R(|\mathbf{0}\rangle\langle\mathbf{0}|\otimes\tilde{\rho})R^{\dagger}\right) = R\left(\rho_{a}\otimes\tilde{\rho}\right)R^{\dagger} \quad \text{for all} \quad \tilde{\rho}\in M_{2^{n-1}}.$$

So one can encode (n-1)-data qubit states to n-qubit codewords.

The unitary matrix R can be constructed explicitly.

For the quantum channel $\Phi:M_8 o M_8$ given by

$$\Phi(\rho) = p_0 \rho + p_1 X_3 \rho X_3^{\dagger} + p_2 Y_3 \rho Y_3^{\dagger} + p_3 Z_3 \rho Z_3^{\dagger},$$

then

$$R^\dagger \Phi \left(R(|\mathbf{0}\rangle \langle \mathbf{0}| \otimes \tilde{\rho}) R^\dagger \right) R = \frac{\rho_a}{\rho_a} \otimes \tilde{\rho} \quad \text{for all} \quad \tilde{\rho} \in M_4,$$

where

$$R = E_{11} + E_{42} + E_{73} + E_{64} + E_{85} + E_{56} + E_{27} + E_{38}$$
$$= |000\rangle\langle000| + |011\rangle\langle001| + |110\rangle\langle010| + |101\rangle\langle011|$$
$$+ |111\rangle\langle100| + |100\rangle\langle101| + |001\rangle\langle110| + |010\rangle\langle111|.$$

$$R = E_{11} + E_{42} + E_{73} + E_{64} + E_{85} + E_{56} + E_{27} + E_{38} = R_1 R_2 R_3$$

For the quantum channel $\Phi:M_{32} o M_{32}$ given by

$$\Phi(\rho) = p_0 \rho + p_1 X_5 \rho X_5^{\dagger} + p_2 Y_5 \rho Y_5^{\dagger} + p_3 Z_5 \rho Z_5^{\dagger},$$

then

$$R^\dagger \Phi \left(R(|0\rangle\langle 0| \otimes \tilde{\rho}) R^\dagger \right) R = \rho_a \otimes \tilde{\rho} \quad \text{for all} \quad \tilde{\rho} \in M_{16},$$

where R is a unitary matrix constructed by the following circuit.

Theorem 3.4

Suppose n > 2 is even. Then

- $\bullet \quad \Lambda_{2^{n-2}}(X_n, Y_n, Z_n) \neq \emptyset.$

In this case, $(1,1,1) \in \Lambda_{2^{n-2}}(X_n,Y_n,Z_n)$.

Theorem 3.5

Suppose n is even and $\Phi:M_{2^n}\to M_{2^n}$ is a fully correlated quantum channel given by

$$\Phi(\rho) = p_0 \rho + p_1 X_n \rho X_n^{\dagger} + p_2 Y_n \rho Y_n^{\dagger} + p_3 Z_n \rho Z_n^{\dagger}.$$

There exists a unitary $R \in M_{2^n}$ such that

$$\Phi\left(R(|00\rangle\langle 00|\otimes \tilde{\rho})\,R^{\dagger}=R\left(|00\rangle\langle 00|\otimes \tilde{\rho}\right)R^{\dagger}\quad\text{for all}\quad \tilde{\rho}\in M_{2^{n-2}}.$$

The output density matrix is the same as the input.

For the quantum channel $\Phi:M_{16}\to M_{16}$ given by

$$\Phi(\rho) = p_0 \rho + p_1 X_4 \rho X_4^{\dagger} + p_2 Y_4 \rho Y_4^{\dagger} + p_3 Z_4 \rho Z_4^{\dagger},$$

then

$$R^{\dagger}\Phi\left(R(|00\rangle\langle00|\otimes\tilde{\rho})R^{\dagger}\right)R=|00\rangle\langle00|\otimes\tilde{\rho}\quad\text{for all}\quad\tilde{\rho}\in M_4,$$

where R is a unitary matrix constructed by the following circuit.

Remark that Φ indeed has a 4-dimensional DFS.

Recent work

Recently, we also considered quantum channels of the form

$$\rho \mapsto \sum_{j=1}^r p_j W_j^{\otimes n} \rho W_j^{\otimes n \dagger} \quad \text{where} \quad W_j^{\otimes n} = \underbrace{W_j \otimes \cdots \otimes W_j}_n$$

is a tensor product of n copies of unitary matrix $W_j \in M_2$.

Let α, β, γ be any real numbers and let

$$X_{\alpha} = (e^{i\alpha\sigma_x})^{\otimes 3}, Y_{\beta} = (e^{i\beta\sigma_y})^{\otimes 3}, Z_{\gamma} = (e^{i\gamma\sigma_z})^{\otimes 3}.$$

Consider a quantum channel $\Phi:M_8 o M_8$ given by

$$\Phi(\rho) = p_0 \rho + p_1 X_{\alpha} \rho X_{\alpha}^{\dagger} + p_2 Y_{\beta} \rho Y_{\beta}^{\dagger} + p_3 Z_{\gamma} \rho Z_{\gamma}^{\dagger}$$

for some $p_i > 0$ such that $\sum_{i=0}^{3} p_i = 1$.

Recent work

The 3-qubit case:

Theorem [arXiv:1106.5210]

Let α, β, γ be any real numbers and let

$$X_{\alpha} = (e^{i\alpha\sigma_x})^{\otimes 3}, Y_{\beta} = (e^{i\beta\sigma_y})^{\otimes 3}, Z_{\gamma} = (e^{i\gamma\sigma_z})^{\otimes 3}.$$

Consider a quantum channel $\Phi: M_8 \to M_8$ given by

$$\Phi(\rho) = p_0 \rho + p_1 X_{\alpha} \rho X_{\alpha}^{\dagger} + p_2 Y_{\beta} \rho Y_{\beta}^{\dagger} + p_3 Z_{\gamma} \rho Z_{\gamma}^{\dagger}$$

for some $p_i>0$ such that $\sum_{i=0}^3 p_i=1$. Then there is a unitary $U_3\in M_8$ such that for any data state $\tilde{\rho}\in M_2$,

$$\Phi\left(U_3(\rho_a\otimes|0\rangle\langle 0|\otimes\tilde{\rho})U_3^{\dagger}\right) = U_3\left(\left(\sum_{j=0}^3 p_j V_j \rho_a V_j^{\dagger}\right)\otimes|0\rangle\langle 0|\otimes\tilde{\rho}\right)U_3^{\dagger}, \quad (8)$$

Here ρ_a is an initial single qubit ancilla state and

$$V_0 = I_2, \ V_1 = e^{i\alpha\sigma_x}, \ V_2 = e^{i\beta\sigma_y}, \ V_3 = e^{i\gamma\sigma_z}.$$

Recent work

Let U_3 be the 8×8 unitary matrix with columns

$$\begin{array}{llll} |u_{1}\rangle & = & \frac{1}{\sqrt{2}}(|100\rangle - |001\rangle) & |u_{2}\rangle & = & \frac{1}{\sqrt{6}}(|100\rangle + |001\rangle - 2|010\rangle) \\ |u_{3}\rangle & = & |111\rangle & |u_{4}\rangle & = & \frac{1}{\sqrt{3}}(|100\rangle + |001\rangle + |010\rangle) \\ |u_{5}\rangle & = & -(\sigma_{x})^{\otimes 3}|u_{1}\rangle & |u_{6}\rangle & = & -(\sigma_{x})^{\otimes 3}|u_{2}\rangle \\ |u_{7}\rangle & = & -(\sigma_{x})^{\otimes 3}|u_{3}\rangle & |u_{8}\rangle & = & -(\sigma_{x})^{\otimes 3}|u_{4}\rangle \end{array}$$

