Quantum operations

Yiu-Tung Poon Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA (ytpoon@iastate.edu).

Summer School on Quantum Information Science Taiyuan University of Technology, Taiyuan, Shanxi, China July 18 - 22, 2011

This work is supported in part by an USA NSF grant.

Dilation and extension of completely positive map

イロト イヨト イヨト イヨト

æ

- Dilation and extension of completely positive map
- Ompletely positive maps on matrix spaces

Image: A math a math

臣

∢ ≣⇒

- Dilation and extension of completely positive map
- 2 Completely positive maps on matrix spaces
- Ones of positive maps and duality

臣

< 17 ►

- Dilation and extension of completely positive map
- 2 Completely positive maps on matrix spaces
- Ones of positive maps and duality
- Oecomposable positive maps

- Dilation and extension of completely positive map
- 2 Completely positive maps on matrix spaces
- Ones of positive maps and duality
- Oecomposable positive maps
- **5** Completely positive map and entanglement

- Dilation and extension of completely positive map
- 2 Completely positive maps on matrix spaces
- Ones of positive maps and duality
- Oecomposable positive maps
- **5** Completely positive map and entanglement
- Interpolating problems of completely positive map

Yiu-Tung Poon Quantum operations

≣⇒

 \mathcal{H} : Hilbert space

-≣->

 $\mathcal{H}:\mathsf{Hilbert\ space}$

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\mbox{-algebra}\ {\mathcal A}$ is a complex Banach algebra

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on \mathcal{H} .

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

 $||AA^*|| = ||A||^2 \text{ for all } A \in \mathcal{A}.$

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

 $||AA^*|| = ||A||^2$ for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

 $||AA^*|| = ||A||^2$ for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ norm closed *-subalgebra

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

 $||AA^*|| = ||A||^2$ for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ norm closed *-subalgebra

 \mathcal{A} commutative $\Rightarrow \mathcal{A} \cong C_0(X)$, X locally compact Haudorff space.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

 $||AA^*|| = ||A||^2$ for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ norm closed *-subalgebra

 \mathcal{A} commutative $\Rightarrow \mathcal{A} \cong C_0(X)$, X locally compact Haudorff space.

 $C_0(\boldsymbol{X})$ is the set of complex continuous function on \boldsymbol{X}

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

 $||AA^*|| = ||A||^2$ for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ norm closed *-subalgebra

 \mathcal{A} commutative $\Rightarrow \mathcal{A} \cong C_0(X)$, X locally compact Haudorff space.

 $C_0(X)$ is the set of complex continuous function on X such that for all $\epsilon > 0$,

• (1) • (2) • (3) • (3) • (4) • (

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

$$||AA^*|| = ||A||^2$$
 for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ norm closed *-subalgebra

 \mathcal{A} commutative $\Rightarrow \mathcal{A} \cong C_0(X)$, X locally compact Haudorff space.

 $C_0(X)$ is the set of complex continuous function on X such that for all $\epsilon>0,$ there exists a compact subset $K\subseteq X$

<回と < 回と < 回と

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

$$||AA^*|| = ||A||^2$$
 for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ norm closed *-subalgebra

 \mathcal{A} commutative $\Rightarrow \mathcal{A} \cong C_0(X)$, X locally compact Haudorff space.

 $C_0(X)$ is the set of complex continuous function on X such that for all $\epsilon > 0$, there exists a compact subset $K \subseteq X$ such that $|f(x)| < \epsilon$

<回と < 回と < 回と

 $\mathcal{B}(\mathcal{H})$: bounded linear operators on $\mathcal{H}.$

 $C^*\text{-}\mathsf{algebra}\ \mathcal{A}$ is a complex Banach algebra with a conjugate linear map $A\to A^*$ (A^\dagger) satisfying

$$||AA^*|| = ||A||^2$$
 for all $A \in \mathcal{A}$. ($\Rightarrow ||A|| = ||A^*||$)

 $\mathcal{A} \hookrightarrow \mathcal{B}(\mathcal{H})$ norm closed *-subalgebra

 \mathcal{A} commutative $\Rightarrow \mathcal{A} \cong C_0(X)$, X locally compact Haudorff space.

 $C_0(X)$ is the set of complex continuous function on X such that for all $\epsilon > 0$, there exists a compact subset $K \subseteq X$ such that $|f(x)| < \epsilon$ for all $x \in X \setminus K$.

<回と < 回と < 回と

Yiu-Tung Poon Quantum operations

≣⇒

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x\rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \},\$

▲御▶ ▲理▶ ▲理▶

臣

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x\rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{A \in \mathcal{B}(\mathcal{H}) : A \ge 0\}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k),$

▲御▶ ▲臣▶ ▲臣▶

臣

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

(日本) (日本) (日本)

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^{+} = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_{k}(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^{k}), \ M_{k}(\mathcal{B}(\mathcal{H}))^{+} \cong \mathcal{B}(\mathcal{H}^{k})^{+}.$ $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})),$

(4回) (三) (三) (三)

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

Operator space :

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

Operator space : norm-closed subspace S of a C^* -algebra \mathcal{A} ,

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

Operator space : norm-closed subspace S of a C^* -algebra \mathcal{A} , $M_k(S)^+ = M_k(S) \cap M_k(\mathcal{A})^+.$

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

Operator space : norm-closed subspace S of a C^* -algebra \mathcal{A} , $M_k(S)^+ = M_k(S) \cap M_k(\mathcal{A})^+.$

Operator system :

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

Operator space : norm-closed subspace S of a C^* -algebra \mathcal{A} , $M_k(S)^+ = M_k(S) \cap M_k(\mathcal{A})^+.$

Operator system : self-adjoint $(S = S^*)$ operator space containing 1_A .

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

Operator space : norm-closed subspace S of a C^* -algebra \mathcal{A} , $M_k(S)^+ = M_k(S) \cap M_k(\mathcal{A})^+$.

Operator system : self-adjoint $(S = S^*)$ operator space containing 1_A .

 $\Phi: S \to \mathcal{B} \text{ is positive if } \Phi(S^+) \subseteq \mathcal{B}^+$

 $\Phi_k: M_k(S) \to M_k(\mathcal{B}),$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ● の Q ()
$A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle x | Ax \rangle \ge 0$ for all $|x \rangle \in \mathcal{H}$.

 $\mathcal{B}(\mathcal{H})^+ = \{ A \in \mathcal{B}(\mathcal{H}) : A \ge 0 \}, \ M_k(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^k), \ M_k(\mathcal{B}(\mathcal{H}))^+ \cong \mathcal{B}(\mathcal{H}^k)^+.$

 $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H}) \Rightarrow M_k(\mathcal{A}) \subseteq M_k(\mathcal{B}(\mathcal{H})), \ M_k(\mathcal{A})^+ = M_k(\mathcal{A}) \cap M_k(\mathcal{B}(\mathcal{H}))^+$

Operator space : norm-closed subspace S of a C^* -algebra \mathcal{A} , $M_k(S)^+ = M_k(S) \cap M_k(\mathcal{A})^+.$

Operator system : self-adjoint $(S = S^*)$ operator space containing 1_A .

- $\Phi: S \to \mathcal{B}$ is positive if $\Phi(S^+) \subseteq \mathcal{B}^+$
- $\Phi_k: M_k(S) \to M_k(\mathcal{B}), \ \Phi_k((A_{ij})) = (\Phi(A_{ij}))$
- Φ is *k*-positive if $\Phi_k(M_k(S)^+) \subseteq M_k(\mathcal{B})^+$

 Φ is completely positive if Φ is k-positive for all k.

| ◆ □ ▶ ◆ 三 ▶ | 三 | • ○ < ○

Yiu-Tung Poon Quantum operations

≣⇒

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map.

< A > < E

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} ,

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$,

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: H \to \mathcal{K}$

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: H \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$

< (1) > < (1) > <

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: H \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$

Theorem 1.2

Suppose \mathcal{A} is a commutative C^* -algebra

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: H \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$

Theorem 1.2

Suppose \mathcal{A} is a commutative C^* -algebra and $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is positive.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: H \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$

Theorem 1.2

Suppose \mathcal{A} is a commutative C^* -algebra and $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is positive. Then Φ is completely positive.

イロト イポト イヨト イヨト

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: H \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$

Theorem 1.2

Suppose \mathcal{A} is a commutative C^* -algebra and $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is positive. Then Φ is completely positive.

Theorem 1.3

Let S be a self-adjoint subspace of a unital $C^*\text{-algebra}\;\mathcal{A}$

イロト イヨト イヨト イヨト

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: H \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$

Theorem 1.2

Suppose \mathcal{A} is a commutative C^* -algebra and $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is positive. Then Φ is completely positive.

Theorem 1.3

Let S be a self-adjoint subspace of a unital $C^*\text{-algebra}\;\mathcal{A}$ and \mathcal{B} a commutative $C^*\text{-algebra}.$

イロト イヨト イヨト イヨト

(Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V : H \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$

Theorem 1.2

Suppose \mathcal{A} is a commutative C^* -algebra and $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is positive. Then Φ is completely positive.

Theorem 1.3

Let S be a self-adjoint subspace of a unital C^* -algebra \mathcal{A} and \mathcal{B} a commutative C^* -algebra. Every positive linear map from S to \mathcal{B} is completely positive.

イロト イヨト イヨト イヨト

Yiu-Tung Poon Quantum operations

≣⇒

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra

臣

-≣->

< A > < E

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} .

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} .

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Example 1.6 (Arveson [1])

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Example 1.6 (Arveson [1])

Let C(T) be the commutative $C^{\ast}\mbox{-algebra}$ of continuous function on the unit circle of the complex plane

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Example 1.6 (Arveson [1])

Let C(T) be the commutative C^* -algebra of continuous function on the unit circle of the complex plane and S the subspace of C(T) spanned by $\{1, z, \overline{z}\}$.

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Example 1.6 (Arveson [1])

Let C(T) be the commutative C^* -algebra of continuous function on the unit circle of the complex plane and S the subspace of C(T) spanned by $\{1, z, \overline{z}\}$. (Note: S is an operator system of \mathcal{A} .)

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Example 1.6 (Arveson [1])

Let C(T) be the commutative C^* -algebra of continuous function on the unit circle of the complex plane and S the subspace of C(T) spanned by $\{1, z, \overline{z}\}$. (Note: S is an operator system of \mathcal{A} .) Define $\Phi: S \to M_2$ by

$$\Phi(a+bz+c\overline{z}) = \left[\begin{array}{cc} a & 2b\\ 2c & a \end{array}\right].$$

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Example 1.6 (Arveson [1])

Let C(T) be the commutative C^* -algebra of continuous function on the unit circle of the complex plane and S the subspace of C(T) spanned by $\{1, z, \overline{z}\}$. (Note: S is an operator system of \mathcal{A} .) Define $\Phi: S \to M_2$ by

$$\Phi(a+bz+c\overline{z}) = \left[\begin{array}{cc} a & 2b\\ 2c & a \end{array}\right].$$

Then Φ is positive

Theorem 1.4

Let \mathcal{A} be a unital C^* -algebra and S be an operator system (norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$) in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5

Let \mathcal{A} be a unital C^* -algebra and S an operator system in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

Example 1.6 (Arveson [1])

Let C(T) be the commutative C^* -algebra of continuous function on the unit circle of the complex plane and S the subspace of C(T) spanned by $\{1, z, \overline{z}\}$. (Note: S is an operator system of \mathcal{A} .) Define $\Phi: S \to M_2$ by

$$\Phi(a+bz+c\overline{z}) = \left[\begin{array}{cc} a & 2b\\ 2c & a \end{array}\right] \,.$$

Then Φ is positive but Φ cannot be extended to a positive map on C(T).

Yiu-Tung Poon Quantum operations

≣⇒

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T).

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi : C(T) \to M_2$ is completely positive.

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi : C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} ,

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$,

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in C(T).$

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in C(T).$

Since Φ is unital, $V^{\dagger}V = I_2$.

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in C(T).$

Since Φ is unital, $V^{\dagger}V = I_2$. Therefore, VV^{\dagger} is a projection in $\mathcal{B}(\mathcal{K})$.
Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in C(T).$

Since Φ is unital, $V^{\dagger}V = I_2$. Therefore, VV^{\dagger} is a projection in $\mathcal{B}(\mathcal{K})$. So, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Phi(1) = \Phi(z\overline{z}) = V^{\dagger}\pi(z\overline{z})V = V^{\dagger}\pi(z)\pi(\overline{z})V$$

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in C(T).$

Since Φ is unital, $V^{\dagger}V = I_2$. Therefore, VV^{\dagger} is a projection in $\mathcal{B}(\mathcal{K})$. So, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Phi(1) = \Phi(z\overline{z}) = V^{\dagger}\pi(z\overline{z})V = V^{\dagger}\pi(z)\pi(\overline{z})V$$

$$\geq \quad V^{\dagger}\pi(z)VV^{\dagger}\pi(\overline{z})V = \Phi(z)\Phi(\overline{z})$$

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$ such that

$$\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in C(T).$$

Since Φ is unital, $V^{\dagger}V = I_2$. Therefore, VV^{\dagger} is a projection in $\mathcal{B}(\mathcal{K})$. So, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Phi(1) = \Phi(z\overline{z}) = V^{\dagger}\pi(z\overline{z})V = V^{\dagger}\pi(z)\pi(\overline{z})V$$
$$\geq V^{\dagger}\pi(z)VV^{\dagger}\pi(\overline{z})V = \Phi(z)\Phi(\overline{z})$$
$$= \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix},$$

Example 1.6

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbf{C}^2 \to \mathcal{K}$ such that

 $\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in C(T).$

Since Φ is unital, $V^{\dagger}V = I_2$. Therefore, VV^{\dagger} is a projection in $\mathcal{B}(\mathcal{K})$. So, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Phi(1) = \Phi(z\overline{z}) = V^{\dagger}\pi(z\overline{z})V = V^{\dagger}\pi(z)\pi(\overline{z})V$$
$$\geq V^{\dagger}\pi(z)VV^{\dagger}\pi(\overline{z})V = \Phi(z)\Phi(\overline{z})$$
$$= \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix},$$

a contradiction.

Yiu-Tung Poon Quantum operations

≣⇒

Suppose S is an operator space of a C^* -algebra \mathcal{A} .

Suppose S is an operator space of a C^* -algebra \mathcal{A} . A linear map $\Phi : S \to \mathcal{B}(\mathcal{H})$ is called a complete contraction if Φ_k is a contraction $(||\Phi_k|| \leq 1)$ for every k.

Suppose S is an operator space of a C^* -algebra \mathcal{A} . A linear map $\Phi: S \to \mathcal{B}(\mathcal{H})$ is called a complete contraction if Φ_k is a contraction ($||\Phi_k|| \leq 1$) for every k. There is a close connection between the study of complete contraction on operator system and completely positive map on operator system.

Suppose S is an operator space of a C^* -algebra \mathcal{A} . A linear map $\Phi : S \to \mathcal{B}(\mathcal{H})$ is called a complete contraction if Φ_k is a contraction ($||\Phi_k|| \leq 1$) for every k. There is a close connection between the study of complete contraction on operator system and completely positive map on operator system. This stems from the connection between the norm and positivity in $\mathcal{B}(\mathcal{H})$.

Suppose S is an operator space of a C^* -algebra \mathcal{A} . A linear map $\Phi : S \to \mathcal{B}(\mathcal{H})$ is called a complete contraction if Φ_k is a contraction ($||\Phi_k|| \leq 1$) for every k. There is a close connection between the study of complete contraction on operator system and completely positive map on operator system. This stems from the connection between the norm and positivity in $\mathcal{B}(\mathcal{H})$.

Lemma 1.7 (Choi and Effros, [6]) Let $A \in \mathcal{B}(\mathcal{H})$. Then we have $||A|| \le 1 \Leftrightarrow \begin{bmatrix} I & A \\ A^{\dagger} & I \end{bmatrix} \ge 0.$

< 🗇 🕨 < 🖃 🕨

Suppose S is an operator space of a C^* -algebra \mathcal{A} . A linear map $\Phi : S \to \mathcal{B}(\mathcal{H})$ is called a complete contraction if Φ_k is a contraction ($||\Phi_k|| \leq 1$) for every k. There is a close connection between the study of complete contraction on operator system and completely positive map on operator system. This stems from the connection between the norm and positivity in $\mathcal{B}(\mathcal{H})$.

Lemma 1.7 (Choi and Effros, [6]) Let $A \in \mathcal{B}(\mathcal{H})$. Then we have $||A|| \le 1 \Leftrightarrow \begin{bmatrix} I & A \\ A^{\dagger} & I \end{bmatrix} \ge 0.$

The following theorem [2, 14] is an analog to Theorem 1.4.

▲ 御 ▶ ▲ 臣 ▶

Suppose S is an operator space of a C^* -algebra \mathcal{A} . A linear map $\Phi : S \to \mathcal{B}(\mathcal{H})$ is called a complete contraction if Φ_k is a contraction ($||\Phi_k|| \leq 1$) for every k. There is a close connection between the study of complete contraction on operator system and completely positive map on operator system. This stems from the connection between the norm and positivity in $\mathcal{B}(\mathcal{H})$.

Lemma 1.7 (Choi and Effros, [6])

Let $A \in \mathcal{B}(\mathcal{H})$. Then we have

$$\|A\| \leq 1 \, \Leftrightarrow \, \left[\begin{array}{cc} I & A \\ A^{\dagger} & I \end{array} \right] \geq 0 \, .$$

The following theorem [2, 14] is an analog to Theorem 1.4.

Theorem 1.8

Let S be an operator space in a $C^*\text{-algebra}\;\mathcal{A}$ and $\Phi:S\to\mathcal{B}(\mathcal{H})$ a complete contraction.

イロト イヨト イヨト イヨト

Suppose S is an operator space of a C^* -algebra \mathcal{A} . A linear map $\Phi : S \to \mathcal{B}(\mathcal{H})$ is called a complete contraction if Φ_k is a contraction ($||\Phi_k|| \leq 1$) for every k. There is a close connection between the study of complete contraction on operator system and completely positive map on operator system. This stems from the connection between the norm and positivity in $\mathcal{B}(\mathcal{H})$.

Lemma 1.7 (Choi and Effros, [6])

Let $A \in \mathcal{B}(\mathcal{H})$. Then we have

$$\|A\| \leq 1 \, \Leftrightarrow \, \left[\begin{array}{cc} I & A \\ A^{\dagger} & I \end{array} \right] \geq 0 \, .$$

The following theorem [2, 14] is an analog to Theorem 1.4.

Theorem 1.8

Let S be an operator space in a C*-algebra A and $\Phi:S\to \mathcal{B}(\mathcal{H})$ a complete contraction. Then Φ can be extended to a complete contraction on A

イロト イヨト イヨト イヨト

Yiu-Tung Poon Quantum operations

≣⇒

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$.

< A > < A > >

∢ ≣⇒

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

<□ > < □ >

∢ ≣⇒

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \begin{bmatrix} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{bmatrix} : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system in $M_2(\mathcal{A})$.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system in $M_2(\mathcal{A})$. Define $\Psi: S_2 \to \mathcal{B} = M_2(\mathcal{B}(\mathcal{H}))$ by

$$\Psi\left(\left[\begin{array}{cc}\lambda I_{\mathcal{A}} & A\\ A^{\dagger} & \lambda I_{\mathcal{A}}\end{array}\right]\right) = \left[\begin{array}{cc}\lambda I_{\mathcal{B}(\mathcal{H})} & \Phi(A)\\ \Phi(A)^{\dagger} & \lambda I_{\mathcal{B}(\mathcal{H})}\end{array}\right]$$

.

▲御▶ ▲ 臣▶ ▲ 臣▶

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system in $M_2(\mathcal{A})$. Define $\Psi: S_2 \to \mathcal{B} = M_2(\mathcal{B}(\mathcal{H}))$ by

$$\Psi\left(\left[\begin{array}{cc}\lambda I_{\mathcal{A}} & A\\ A^{\dagger} & \lambda I_{\mathcal{A}}\end{array}\right]\right) = \left[\begin{array}{cc}\lambda I_{\mathcal{B}(\mathcal{H})} & \Phi(A)\\ \Phi(A)^{\dagger} & \lambda I_{\mathcal{B}(\mathcal{H})}\end{array}\right]$$

Then Ψ is completely positive on S_2 . (exercise)

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system in $M_2(\mathcal{A})$. Define $\Psi: S_2 \to \mathcal{B} = M_2(\mathcal{B}(\mathcal{H}))$ by

$$\Psi\left(\left[\begin{array}{cc}\lambda I_{\mathcal{A}} & A\\ A^{\dagger} & \lambda I_{\mathcal{A}}\end{array}\right]\right) = \left[\begin{array}{cc}\lambda I_{\mathcal{B}(\mathcal{H})} & \Phi(A)\\ \Phi(A)^{\dagger} & \lambda I_{\mathcal{B}(\mathcal{H})}\end{array}\right]$$

Then Ψ is completely positive on S_2 . (exercise) By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{A})$.

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system in $M_2(\mathcal{A})$. Define $\Psi: S_2 \to \mathcal{B} = M_2(\mathcal{B}(\mathcal{H}))$ by

$$\Psi\left(\left[\begin{array}{cc}\lambda I_{\mathcal{A}} & A\\ A^{\dagger} & \lambda I_{\mathcal{A}}\end{array}\right]\right) = \left[\begin{array}{cc}\lambda I_{\mathcal{B}(\mathcal{H})} & \Phi(A)\\ \Phi(A)^{\dagger} & \lambda I_{\mathcal{B}(\mathcal{H})}\end{array}\right]$$

Then Ψ is completely positive on S_2 . (exercise) By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{A})$. There exist $\Phi_{ij} : \mathcal{A} \to \mathcal{B}(\mathcal{H}), 1 \leq i, j \leq 2$,

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system in $M_2(\mathcal{A})$. Define $\Psi: S_2 \to \mathcal{B} = M_2(\mathcal{B}(\mathcal{H}))$ by

$$\Psi\left(\left[\begin{array}{cc}\lambda I_{\mathcal{A}} & A\\ A^{\dagger} & \lambda I_{\mathcal{A}}\end{array}\right]\right) = \left[\begin{array}{cc}\lambda I_{\mathcal{B}(\mathcal{H})} & \Phi(A)\\ \Phi(A)^{\dagger} & \lambda I_{\mathcal{B}(\mathcal{H})}\end{array}\right]$$

Then Ψ is completely positive on S_2 . (exercise) By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{A})$. There exist $\Phi_{ij} : \mathcal{A} \to \mathcal{B}(\mathcal{H}), 1 \leq i, j \leq 2$, such that for $[A_{ij}] \in M_2(\mathcal{A}),$

・ 同・ ・ ヨ・ ・ ヨ・

Proof. Assume $1_{\mathcal{A}} \in \mathcal{A}$. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system in $M_2(\mathcal{A})$. Define $\Psi: S_2 \to \mathcal{B} = M_2(\mathcal{B}(\mathcal{H}))$ by

$$\Psi\left(\left[\begin{array}{cc}\lambda I_{\mathcal{A}} & A\\ A^{\dagger} & \lambda I_{\mathcal{A}}\end{array}\right]\right) = \left[\begin{array}{cc}\lambda I_{\mathcal{B}(\mathcal{H})} & \Phi(A)\\ \Phi(A)^{\dagger} & \lambda I_{\mathcal{B}(\mathcal{H})}\end{array}\right]$$

Then Ψ is completely positive on S_2 . (exercise) By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{A})$. There exist $\Phi_{ij} : \mathcal{A} \to \mathcal{B}(\mathcal{H}), 1 \leq i, j \leq 2$, such that for $[A_{ij}] \in M_2(\mathcal{A})$, we have

$$\Psi\left(\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right]\right) = \left[\begin{array}{cc} \Phi_{11}(A_{11}) & \Phi_{12}(A_{12}) \\ \Phi_{21}(A_{21}) & \Phi_{22}(A_{22}) \end{array}\right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Yiu-Tung Poon Quantum operations

≣⇒

Therefore, Φ_{12} is an extension of Φ .

토 > 토

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$.

同下 くほと くほど

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\left[\begin{array}{cc} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{array}\right]$$

個 ト く ヨ ト く ヨ ト

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$

個 ト く ヨ ト く ヨ ト

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right)$$
$$= \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right)^{\dagger}$$

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right)$$
$$= \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$.

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$.

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$. Then we have

$$\left[\begin{array}{cc}I_{\mathcal{A}} & A\\A^{\dagger} & I_{\mathcal{A}}\end{array}\right] \ge 0$$

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right)$$
$$= \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$. Then we have

$$\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \ge 0$$
$$\Rightarrow \quad \Psi\left(\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix}\right)$$

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$. Then we have

$$\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \ge 0$$

$$\Rightarrow \quad \Psi\left(\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix}\right) = \begin{bmatrix} I_{\mathcal{B}(\mathcal{H})} & \Phi_{12}(A)\\ \Phi_{12}(A)^{\dagger} & I_{\mathcal{B}(\mathcal{H})} \end{bmatrix} \ge 0$$

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$. Then we have

$$\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \ge 0$$

$$\Rightarrow \quad \Psi\left(\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix}\right) = \begin{bmatrix} I_{\mathcal{B}(\mathcal{H})} & \Phi_{12}(A)\\ \Phi_{12}(A)^{\dagger} & I_{\mathcal{B}(\mathcal{H})} \end{bmatrix} \ge 0 \Rightarrow \|\Phi_{12}(A)\| \le 1.$$
Dilation and extension of completely positive map

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$. Then we have

$$\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \ge 0$$

$$\Rightarrow \quad \Psi\left(\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix}\right) = \begin{bmatrix} I_{\mathcal{B}(\mathcal{H})} & \Phi_{12}(A)\\ \Phi_{12}(A)^{\dagger} & I_{\mathcal{B}(\mathcal{H})} \end{bmatrix} \ge 0 \Rightarrow \|\Phi_{12}(A)\| \le 1.$$

This shows that Φ_{12} is a contraction.

Dilation and extension of completely positive map

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$. Then we have

$$\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \ge 0$$

$$\Rightarrow \quad \Psi\left(\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix}\right) = \begin{bmatrix} I_{\mathcal{B}(\mathcal{H})} & \Phi_{12}(A)\\ \Phi_{12}(A)^{\dagger} & I_{\mathcal{B}(\mathcal{H})} \end{bmatrix} \ge 0 \Rightarrow \|\Phi_{12}(A)\| \le 1.$$

This shows that Φ_{12} is a contraction. Similar argument applied to $I_k \otimes \Psi$ shows that $I_k \otimes \Phi_{12}$ is a contraction for all $k \ge 1$.

Dilation and extension of completely positive map

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)$$
$$= \Psi \left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix} \right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in A$. Suppose $A \in A$, with $||A|| \leq 1$. Then we have

$$\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \ge 0$$

$$\Rightarrow \quad \Psi\left(\begin{bmatrix} I_{\mathcal{A}} & A\\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix}\right) = \begin{bmatrix} I_{\mathcal{B}(\mathcal{H})} & \Phi_{12}(A)\\ \Phi_{12}(A)^{\dagger} & I_{\mathcal{B}(\mathcal{H})} \end{bmatrix} \ge 0 \Rightarrow \|\Phi_{12}(A)\| \le 1.$$

This shows that Φ_{12} is a contraction. Similar argument applied to $I_k \otimes \Psi$ shows that $I_k \otimes \Phi_{12}$ is a contraction for all $k \ge 1$. Therefore, Φ_{12} is a complete contractive extension of Φ to \mathcal{A} .

Yiu-Tung Poon Quantum operations

臣

< ∃ >

白ト・モート

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

臣

< ∃⇒

イロト イヨト イヨト

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$1 \quad \langle x | Ax \rangle \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

イロト イヨト イヨト イヨト

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$1 \quad \langle x | Ax \rangle \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

・ロト ・日ト ・ヨト ・ヨト

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

Let $P_k(n,m)$ denote the set of k-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n,m)$ for all positive integer k.

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

Let $P_k(n,m)$ denote the set of k-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n,m)$ for all positive integer k.

Example 2.3

イロン 不同 とうほどう ほどう

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

Let $P_k(n,m)$ denote the set of k-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n,m)$ for all positive integer k.

Example 2.3

The map $\Phi: M_n \to M_n$ defined by $\Phi(A) = A^t$ is positive,

イロト 不同 とうほう 不同 とう

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

Let $P_k(n,m)$ denote the set of k-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n,m)$ for all positive integer k.

Example 2.3

The map $\Phi: M_n \to M_n$ defined by $\Phi(A) = A^t$ is positive, but not 2-positive.

・ロト ・日ト ・ヨト ・ヨト

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

Let $P_k(n,m)$ denote the set of k-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n,m)$ for all positive integer k.

Example 2.3

The map $\Phi: M_n \to M_n$ defined by $\Phi(A) = A^t$ is positive, but not 2-positive. To see this, consider $A = \begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix} \in M_{2n}^+$. Then $(I_2 \otimes \Phi)(A) = \begin{bmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{bmatrix}$

イロト イヨト イヨト イヨト

Э

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

Let $P_k(n,m)$ denote the set of k-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n,m)$ for all positive integer k.

Example 2.3

The map
$$\Phi: M_n \to M_n$$
 defined by $\Phi(A) = A^t$ is positive, but not 2-positive.
To see this, consider $A = \begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix} \in M_{2n}^+$. Then
 $(I_2 \otimes \Phi)(A) = \begin{bmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{bmatrix}$ has a principal matrix of the form $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,

イロン 不同 とうほどう ほどう

Lemma 2.1

Let $A \in M_n$. Then the following conditions are equivalent:

$$(x|Ax) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n.$$

2 $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

Definition 2.2

Let $P_k(n,m)$ denote the set of k-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n,m)$ for all positive integer k.

Example 2.3

The map
$$\Phi: M_n \to M_n$$
 defined by $\Phi(A) = A^t$ is positive, but not 2-positive.
To see this, consider $A = \begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix} \in M_{2n}^+$. Then
 $(I_2 \otimes \Phi)(A) = \begin{bmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{bmatrix}$ has a principal matrix of the form $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, which is indefinite.

ヘロア 人間 アメヨア 人間 アー

Э

Yiu-Tung Poon Quantum operations

臣

< ∃ >

白ト・モート

Example 2.4 (Choi [3])

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

イロト イヨト イヨト イヨト

Example 2.4 (Choi [3])

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive

イロト 人間 トイヨト イヨト

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive but not n-positive.

イロト イヨト イヨト イヨト

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive but not n-positive.

Given a linear map $\Phi: M_n \to M_m$,

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive but not n-positive.

Given a linear map $\Phi: M_n \to M_m$, define the Choi matrix of Φ by

$$C(\Phi) = (\Phi(E_{ij}))_{i\,j=1}^n = \sum_{i,j} E_{ij} \otimes \Phi(E_{ij}).$$

- 4 同 ト 4 三 ト 4 三 ト

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive but not n-positive.

Given a linear map $\Phi: M_n \to M_m$, define the Choi matrix of Φ by

$$C(\Phi) = (\Phi(E_{ij}))_{ij=1}^n = \sum_{i,j} E_{ij} \otimes \Phi(E_{ij}).$$

Theoretically, Φ is completely determined by its Choi matrix.

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive but not n-positive.

Given a linear map $\Phi: M_n \to M_m$, define the Choi matrix of Φ by

$$C(\Phi) = (\Phi(E_{ij}))_{i\,j=1}^n = \sum_{i,j} E_{ij} \otimes \Phi(E_{ij}).$$

Theoretically, Φ is completely determined by its Choi matrix. In this section, we will explore the relationship between Φ and $C(\Phi)$.

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive but not n-positive.

Given a linear map $\Phi: M_n \to M_m$, define the Choi matrix of Φ by

$$C(\Phi) = (\Phi(E_{ij}))_{i\,j=1}^n = \sum_{i,j} E_{ij} \otimes \Phi(E_{ij}).$$

Theoretically, Φ is completely determined by its Choi matrix. In this section, we will explore the relationship between Φ and $C(\Phi)$.

Let
$$S_k(n,m) = \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, |y_i\rangle \in \mathbf{C}^m\}$$

For every n > 1, the map $\Phi: M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n-1-positive but not n-positive.

Given a linear map $\Phi: M_n \to M_m$, define the Choi matrix of Φ by

$$C(\Phi) = (\Phi(E_{ij}))_{i\,j=1}^n = \sum_{i,j} E_{ij} \otimes \Phi(E_{ij}).$$

Theoretically, Φ is completely determined by its Choi matrix. In this section, we will explore the relationship between Φ and $C(\Phi)$.

Let $S_k(n,m) = \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, |y_i\rangle \in \mathbf{C}^m\}$ be the set of vectors in $\mathbf{C}^n \otimes \mathbf{C}^m$ with Schmidt rank $\leq k$.

ヘロア 人間 アメヨア 人間 アー

Yiu-Tung Poon Quantum operations

臣

< ∃ >

日ト・モート

Theorem 2.5

Given a linear map $\Phi: M_n \to M_m$ and $k \ge 1$, the following conditions are equivalent:

イロト イヨト イヨト イヨト

Given a linear map $\Phi: M_n \to M_m$ and $k \ge 1$, the following conditions are equivalent:

(a) Φ is k-positive.

イロト イヨト イヨト イヨト

Given a linear map $\Phi: M_n \to M_m$ and $k \ge 1$, the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z | C(\Phi) z \rangle \ge 0$ for all $|z\rangle \in S_k(n,m)$.

▲圖▶ ▲屋▶ ▲屋▶

Given a linear map $\Phi: M_n \to M_m$ and $k \ge 1$, the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z | C(\Phi) z \rangle \ge 0$ for all $|z\rangle \in S_k(n,m)$.
- (c) $(I_n \otimes P)C(\Phi)(I_n \otimes P)$ is positive for all orthogonal projection P with rank $\leq k$.

イロト イヨト イヨト イヨト

Given a linear map $\Phi: M_n \to M_m$ and $k \ge 1$, the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z | C(\Phi) z \rangle \ge 0$ for all $|z\rangle \in S_k(n,m)$.

(c) $(I_n \otimes P)C(\Phi)(I_n \otimes P)$ is positive for all orthogonal projection P with rank $\leq k$.

For k = 1, in (b), we have $z \in S_k(n, m)$ is of the form $z = |x\rangle |y\rangle$.

イロト イヨト イヨト イヨト

Given a linear map $\Phi: M_n \to M_m$ and $k \geq 1,$ the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z | C(\Phi) z \rangle \ge 0$ for all $|z\rangle \in S_k(n,m)$.

(c) $(I_n \otimes P)C(\Phi)(I_n \otimes P)$ is positive for all orthogonal projection P with rank $\leq k$.

For k = 1, in (b), we have $z \in S_k(n,m)$ is of the form $z = |x\rangle|y\rangle$. $\langle z|C(\Phi)z\rangle$ is a biquadratic form in x_i and y_j ,

イロト イヨト イヨト イヨト

Given a linear map $\Phi: M_n \to M_m$ and $k \ge 1$, the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z | C(\Phi) z \rangle \ge 0$ for all $|z\rangle \in S_k(n,m)$.

(c) $(I_n \otimes P)C(\Phi)(I_n \otimes P)$ is positive for all orthogonal projection P with rank $\leq k$.

For k = 1, in (b), we have $z \in S_k(n, m)$ is of the form $z = |x\rangle|y\rangle$. $\langle z|C(\Phi)z\rangle$ is a biquadratic form in x_i and y_j , homogeneous polynomial, with every term of the form $x_i \overline{x_j} y_k \overline{y_\ell}$.

イロト イヨト イヨト イヨト

Given a linear map $\Phi: M_n \to M_m$ and $k \geq 1,$ the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z | C(\Phi) z \rangle \ge 0$ for all $|z\rangle \in S_k(n,m)$.

(c) $(I_n \otimes P)C(\Phi)(I_n \otimes P)$ is positive for all orthogonal projection P with rank $\leq k$.

For k = 1, in (b), we have $z \in S_k(n,m)$ is of the form $z = |x\rangle|y\rangle$. $\langle z|C(\Phi)z\rangle$ is a biquadratic form in x_i and y_j , homogeneous polynomial, with every term of the form $x_i \overline{x_j} y_k \overline{y_\ell}$.

On the other hand, in (c), to study $(I_n \otimes P)C(\Phi)(I_n \otimes P) \ge 0$,

イロト イヨト イヨト イヨト

Given a linear map $\Phi: M_n \to M_m$ and $k \geq 1,$ the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z|C(\Phi)z\rangle \ge 0$ for all $|z\rangle \in S_k(n,m)$.

(c) $(I_n \otimes P)C(\Phi)(I_n \otimes P)$ is positive for all orthogonal projection P with rank $\leq k$.

For k = 1, in (b), we have $z \in S_k(n, m)$ is of the form $z = |x\rangle|y\rangle$. $\langle z|C(\Phi)z\rangle$ is a biquadratic form in x_i and y_j , homogeneous polynomial, with every term of the form $x_i \overline{x_j} y_k \overline{y_\ell}$.

On the other hand, in (c), to study $(I_n \otimes P)C(\Phi)(I_n \otimes P) \ge 0$, we only need to consider quadratics in y_j . (see Example 4.2)

Yiu-Tung Poon Quantum operations

臣

< ∃ >

日ト・モート
Theorem 2.6 (Choi [4])

イロト イヨト イヨト イヨト

æ

- $(a) \ \Phi$ is completely positive.
- (b) Φ is *n*-positive.
- (c) The Choi matrix $C(\Phi) = (\Phi(E_{ij}))$ is positive.
- $(d)~\Phi$ admits an operator-sum representation:

$$\Phi(A) \mapsto \sum_{j=1}^{r} F_j A F_j^{\dagger}.$$
 (1)

臣

イロト イヨト イヨト イヨト

- $(a) \ \Phi$ is completely positive.
- (b) Φ is *n*-positive.
- (c) The Choi matrix $C(\Phi) = (\Phi(E_{ij}))$ is positive.
- $(d)~\Phi$ admits an operator-sum representation:

$$\Phi(A) \mapsto \sum_{j=1}^{r} F_j A F_j^{\dagger}.$$
 (1)

臣

イロト イポト イヨト イヨト

Furthermore, suppose (d) holds. Then we have

(1) The map Φ is unital $(\Phi(I_n) = I_m)$

- $(a) \ \Phi$ is completely positive.
- (b) Φ is *n*-positive.
- (c) The Choi matrix $C(\Phi) = (\Phi(E_{ij}))$ is positive.
- $(d)~\Phi$ admits an operator-sum representation:

$$\Phi(A) \mapsto \sum_{j=1}^{r} F_j A F_j^{\dagger}.$$
 (1)

イロト イヨト イヨト イヨト

3

Furthermore, suppose (d) holds. Then we have

(1) The map Φ is unital $(\Phi(I_n) = I_m)$ if and only if $\sum_{j=1}^r F_j F_j^{\dagger} = I_m$.

- $(a) \ \Phi$ is completely positive.
- (b) Φ is *n*-positive.
- (c) The Choi matrix $C(\Phi) = (\Phi(E_{ij}))$ is positive.
- $(d)~\Phi$ admits an operator-sum representation:

$$\Phi(A) \mapsto \sum_{j=1}^{r} F_j A F_j^{\dagger}.$$
 (1)

Furthermore, suppose (d) holds. Then we have

- (1) The map Φ is unital $(\Phi(I_n) = I_m)$ if and only if $\sum_{j=1}^r F_j F_j^{\dagger} = I_m$.
- (2) The map Φ is trace preserving $(\operatorname{Tr}(\Phi(A)) = \operatorname{Tr}(A))$

- $(a) \ \Phi$ is completely positive.
- (b) Φ is *n*-positive.
- (c) The Choi matrix $C(\Phi) = (\Phi(E_{ij}))$ is positive.
- $(d)~\Phi$ admits an operator-sum representation:

$$\Phi(A) \mapsto \sum_{j=1}^{r} F_j A F_j^{\dagger}.$$
 (1)

イロン イヨン イヨン ・

3

Furthermore, suppose (d) holds. Then we have

- (1) The map Φ is unital $(\Phi(I_n) = I_m)$ if and only if $\sum_{j=1}^r F_j F_j^{\dagger} = I_m$.
- (2) The map Φ is trace preserving $(\operatorname{Tr}(\Phi(A)) = \operatorname{Tr}(A))$ if and only if $\sum_{j=1}^{r} F_j^{\dagger} F_j = I_n$.

Yiu-Tung Poon Quantum operations

臣

< ∃ >

白ト・モート

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \text{Tr}(X^{\dagger}Y)$.

< @ ► < E ►

∢ ≣⇒

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \text{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map.

<回ト < Eト

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

 $\langle B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$

(日本) (日本) (日本)

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

 $\langle B | \Phi^{\dagger}(A) \rangle = \langle \Phi(B) | A \rangle$

for all $A \in M_m$ and $B \in M_n$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Define an inner product on $M_{p,q}$ by $\langle X|Y\rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$.

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$\langle B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$,

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Suppose $\Phi: M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger}: M_m \to M_n$ is given by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_j^{\dagger} B F_j \,.$$

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Suppose $\Phi: M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger}: M_m \to M_n$ is given by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_{j}^{\dagger} B F_{j} \,.$$

Consequently, Φ^\dagger is also completely positive.

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Suppose $\Phi: M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger}: M_m \to M_n$ is given by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_j^{\dagger} B F_j \,.$$

Consequently, Φ^{\dagger} is also completely positive. Furthermore, Φ is

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Suppose $\Phi: M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger}: M_m \to M_n$ is given by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_{j}^{\dagger} B F_{j} \,.$$

Consequently, Φ^{\dagger} is also completely positive. Furthermore, Φ is unital

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Suppose $\Phi: M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger}: M_m \to M_n$ is given by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_{j}^{\dagger} B F_{j} \,.$$

Consequently, Φ^{\dagger} is also completely positive. Furthermore, Φ is unital (trace preserving, respectively)

Define an inner product on $M_{p,q}$ by $\langle X|Y\rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$\langle B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Suppose $\Phi: M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger}: M_m \to M_n$ is given by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_{j}^{\dagger} B F_{j} \,.$$

Consequently, Φ^{\dagger} is also completely positive. Furthermore, Φ is unital (trace preserving, respectively) if and only if Φ^{\dagger} is trace preserving

Define an inner product on $M_{p,q}$ by $\langle X|Y\rangle = \operatorname{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$|B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9

Let $\Phi: M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Theorem 2.10

Suppose $\Phi: M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger}: M_m \to M_n$ is given by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_{j}^{\dagger} B F_{j} \,.$$

Consequently, Φ^{\dagger} is also completely positive. Furthermore, Φ is unital (trace preserving, respectively) if and only if Φ^{\dagger} is trace preserving (unital, respectively).

Yiu-Tung Poon Quantum operations

臣

< ∃ >

白ト・モート

Theorem 2.11

Yiu-Tung Poon Quantum operations

・ロト ・日ト ・ヨト

< ∃⇒

æ

Let $\Phi: M_n \to M_m$ be a linear map.

< ロ > < 回 > < 回 > < 回 > <</p>

臣

-<> ∃ →

Let $\Phi: M_n \to M_m$ be a linear map. Then Φ is a completely positive if and only if Φ is k-positive for $k = \min\{m, n\}$.

臣

Let $\Phi: M_n \to M_m$ be a linear map. Then Φ is a completely positive if and only if Φ is k-positive for $k = \min\{m, n\}$. In particular, if n or m equals to 1,

< A > < A > >

Let $\Phi: M_n \to M_m$ be a linear map. Then Φ is a completely positive if and only if Φ is k-positive for $k = \min\{m, n\}$. In particular, if n or m equals to 1, then Φ is positive if and only if Φ is completely positive.

イロト イポト イヨト イヨト

Yiu-Tung Poon Quantum operations

白ト・モート

∢ ≣⇒

Given an inner product space \mathcal{V} ,

-≣->

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone

< 3 >

Given an inner product space \mathcal{V} , a non-empty subset \mathcal{C} of \mathcal{V} is said to be a cone if it satisfies:

∃ >

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

1
$$C + C \subseteq C$$
,
2 $rC \subseteq C$ for all $r \ge 0$,

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

- $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \geq 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V.

・ 同 ト ・ ヨ ト ・ ヨ ト
Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $C + C \subseteq C,$

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$,

・ 同 ト ・ ヨ ト ・ ヨ ト

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 rC \subseteq C for all r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \left\{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \geq 0 \ \text{ for all } |x\rangle \in S \right\}.$$

Given an inner product space \mathcal{V} , a non-empty subset \mathcal{C} of \mathcal{V} is said to be a cone if it satisfies:

 $2 rC \subseteq C \text{ for all } r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x | v \rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Given an inner product space \mathcal{V} , a non-empty subset \mathcal{C} of \mathcal{V} is said to be a cone if it satisfies:

 $2 rC \subseteq C for all r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x | v \rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

```
Suppose C, C_1, C_2 are cones of V.
```

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \geq 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose $\mathcal{C}, \mathcal{C}_1, \mathcal{C}_2$ are cones of \mathcal{V} . We have

```
  0   C^* is a closed cone of <math>  V.
```

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \geq 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

- 2 C^* is pointed (full) if and only if C is full (pointed, respectively).

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \geq 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

- $0 C^* is a closed cone of <math> V.$
- 2 C^* is pointed (full) if and only if C is full (pointed, respectively).

Given an inner product space \mathcal{V} , a non-empty subset \mathcal{C} of \mathcal{V} is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

- 2 C^* is pointed (full) if and only if C is full (pointed, respectively).
- $\textbf{3} \ \mathcal{C} \subseteq (\mathcal{C}^*)^*. \ \mathcal{C} = (\mathcal{C}^*)^* \text{ if and only if } \mathcal{C} \text{ is closed.}$

Given an inner product space \mathcal{V} , a non-empty subset \mathcal{C} of \mathcal{V} is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

2 C^* is pointed (full) if and only if C is full (pointed, respectively).

3
$$\mathcal{C} \subseteq (\mathcal{C}^*)^*$$
. $\mathcal{C} = (\mathcal{C}^*)^*$ if and only if \mathcal{C} is closed.

• If
$$\mathcal{C}_1 \subseteq \mathcal{C}_2$$
, then $\mathcal{C}_1^* \supseteq \mathcal{C}_2^*$.

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

2 C^* is pointed (full) if and only if C is full (pointed, respectively).

3
$$\mathcal{C} \subseteq (\mathcal{C}^*)^*$$
. $\mathcal{C} = (\mathcal{C}^*)^*$ if and only if \mathcal{C} is closed.

• If
$$\mathcal{C}_1 \subseteq \mathcal{C}_2$$
, then $\mathcal{C}_1^* \supseteq \mathcal{C}_2^*$.

$$(\mathcal{C}_1\cap\mathcal{C}_2)^*\supseteq\mathcal{C}_1^*+\mathcal{C}_2^*$$
 ,

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

2 C^* is pointed (full) if and only if C is full (pointed, respectively).

3
$$\mathcal{C} \subseteq (\mathcal{C}^*)^*$$
. $\mathcal{C} = (\mathcal{C}^*)^*$ if and only if \mathcal{C} is closed.

 $\textbf{ (} \mathcal{C}_1 \cap \mathcal{C}_2)^* \supseteq \mathcal{C}_1^* + \mathcal{C}_2^* \text{, and } (\mathcal{C}_1 \cap \mathcal{C}_2)^* = \mathcal{C}_1^* + \mathcal{C}_2^* \text{,}$

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 \quad r\mathcal{C} \subseteq \mathcal{C} \text{ for all } r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

 $0 C^* is a closed cone of <math>\mathcal{V}.$

2 C^* is pointed (full) if and only if C is full (pointed, respectively).

3
$$\mathcal{C} \subseteq (\mathcal{C}^*)^*$$
. $\mathcal{C} = (\mathcal{C}^*)^*$ if and only if \mathcal{C} is closed.

 $\textbf{(}\mathcal{C}_1 \cap \mathcal{C}_2)^* \supseteq \mathcal{C}_1^* + \mathcal{C}_2^*, \text{ and } (\mathcal{C}_1 \cap \mathcal{C}_2)^* = \mathcal{C}_1^* + \mathcal{C}_2^*, \text{ if } \mathcal{C}_1 \text{ and } \mathcal{C}_2 \text{ are closed.}$

Given an inner product space $\mathcal V,$ a non-empty subset $\mathcal C$ of $\mathcal V$ is said to be a cone if it satisfies:

 $2 rC \subseteq C for all r \ge 0,$

C is said to be pointed if $C \cap (-C) = \{0\}$ and full if C - C = V. Given a subset $S \subset V$, define the dual cone of S in V is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x | v \rangle \ge 0 \text{ for all } |x\rangle \in S \} \,.$$

Theorem 3.1

Suppose C, C_1, C_2 are cones of V. We have

 $0 C^* is a closed cone of <math>\mathcal{V}.$

2 C^* is pointed (full) if and only if C is full (pointed, respectively).

3
$$\mathcal{C} \subseteq (\mathcal{C}^*)^*$$
. $\mathcal{C} = (\mathcal{C}^*)^*$ if and only if \mathcal{C} is closed.

$$④ \ \, \mathsf{lf} \ \, \mathcal{C}_1 \subseteq \mathcal{C}_2, \ \, \mathsf{then} \ \, \mathcal{C}_1^* \supseteq \mathcal{C}_2^*.$$

 $\textbf{(}\mathcal{C}_1 \cap \mathcal{C}_2)^* \supseteq \mathcal{C}_1^* + \mathcal{C}_2^*, \text{ and } (\mathcal{C}_1 \cap \mathcal{C}_2)^* = \mathcal{C}_1^* + \mathcal{C}_2^*, \text{ if } \mathcal{C}_1 \text{ and } \mathcal{C}_2 \text{ are closed.}$

$$(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$$

Yiu-Tung Poon Quantum operations

白ト・モート

∢ ≣⇒

Take $\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$

▲御▶ ▲屋▶ ▲屋▶

Take $\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$

 $S_k(n,m) = \quad \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in {\bf C}^n, \ |y_i\rangle \in {\bf C}^m\} \quad {\rm Schmidt \ rank} \le k$

A (1) < A (1)</p>

Take
$$\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$$

$$S_k(n,m) = \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, |y_i\rangle \in \mathbf{C}^m\}$$
Schmidt rank $\leq k$
$$BP_k(n,m) = \{|u\rangle\langle u| : u \in S_k(n,m)\}^*$$
k-block positive

きょう き

Take
$$\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$$

$$S_k(n,m) = \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, |y_i\rangle \in \mathbf{C}^m\}$$
Schmidt rank $\leq k$
$$BP_k(n,m) = \{|u\rangle \langle u| : u \in S_k(n,m)\}^*$$
k-block positive
$$= \{C(\Phi) : \Phi \text{ is } k\text{-positive}\}$$

• • • • • • • • •

きょう き

Take
$$\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$$

$$\begin{split} S_k(n,m) &= \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, \ |y_i\rangle \in \mathbf{C}^m\} \quad \text{Schmidt rank} \le k \\ BP_k(n,m) &= \{|u\rangle \langle u| : u \in S_k(n,m)\}^* \qquad k\text{-block positive} \\ &= \{C(\Phi) : \Phi \text{ is } k\text{-positive}\} \\ Ent_k(n,m) &= BP_k(n,m)^* \qquad k\text{-entangled} \end{split}$$

æ

≣⇒

< 🗗 🕨 🔸

Take
$$\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$$

$$\begin{split} S_k(n,m) &= \{\sum_{i=1}^k |x_i\rangle | y_i\rangle : |x_i\rangle \in \mathbf{C}^n, \ |y_i\rangle \in \mathbf{C}^m\} \quad \text{Schmidt rank} \le k \\ BP_k(n,m) &= \{|u\rangle \langle u| : u \in S_k(n,m)\}^* \qquad k\text{-block positive} \\ &= \{C(\Phi) : \Phi \text{ is } k\text{-positive}\} \\ Ent_k(n,m) &= BP_k(n,m)^* \qquad k\text{-entangled} \\ SP_k(n,m) &= \{\Phi : M_n \to M_m : C(\Phi) \in Ent(n,m)\} \qquad k\text{-super positive} \end{split}$$

æ

≣⇒

< 17 > <

Take
$$\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$$

$$\begin{split} S_k(n,m) &= \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, \ |y_i\rangle \in \mathbf{C}^m\} \quad \text{Schmidt rank} \leq k \\ BP_k(n,m) &= \{|u\rangle \langle u| : u \in S_k(n,m)\}^* \qquad k\text{-block positive} \\ &= \{C(\Phi) : \Phi \text{ is } k\text{-positive}\} \\ Ent_k(n,m) &= BP_k(n,m)^* \qquad k\text{-entangled} \\ SP_k(n,m) &= \{\Phi : M_n \to M_m : C(\Phi) \in Ent(n,m)\} \qquad k\text{-super positive} \\ \Phi \in SP_k(n,m) \text{ if and only if there exist } F_i \in M_{m,n} \text{ with rank } F_i \leq k, \end{split}$$

æ

Take
$$\mathcal{V} = H_{nm} = \{A \in M_{nm} : A = A^{\dagger}\}.$$

$$\begin{split} S_k(n,m) &= \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, \ |y_i\rangle \in \mathbf{C}^m\} \quad \text{Schmidt rank} \leq k \\ BP_k(n,m) &= \{|u\rangle \langle u| : u \in S_k(n,m)\}^* \qquad k\text{-block positive} \\ &= \{C(\Phi) : \Phi \text{ is } k\text{-positive}\} \\ Ent_k(n,m) &= BP_k(n,m)^* \qquad k\text{-entangled} \\ SP_k(n,m) &= \{\Phi : M_n \to M_m : C(\Phi) \in Ent(n,m)\} \qquad k\text{-super positive} \\ \Phi \in SP_k(n,m) \text{ if and only if there exist } F_i \in M_{m,n} \text{ with rank } F_i \leq k, \\ 1 \leq i \leq r \text{ such that} \\ \Phi(X) &= \sum_{i=1}^r F_i X F_i^{\dagger} \text{ for all } X \in M_n \,. \end{split}$$

æ

Yiu-Tung Poon Quantum operations

白ト・モート

∢ ≣⇒

Let $d=\min(n,m).$ For convenience of notation, we have omitted (n,m) in the following

臣

Let $d=\min(n,m).$ For convenience of notation, we have omitted (n,m) in the following

Φ	$SP_1 \subseteq SP_2 \subseteq$	•••	$SP_d = CP = P_d$	\subseteq	P_{d-1}	$\subseteq \cdots P_1$
\$						
$C(\Phi)$	$Ent_1 \subseteq Ent_2 \subseteq$	•••	$Ent_d = P = BP_d$	\subseteq	BP_{d-1}	$\subseteq \cdots BP_1$

臣

< A > < E

Let $d=\min(n,m).$ For convenience of notation, we have omitted (n,m) in the following

Φ	$SP_1 \subseteq S$	$P_2 \subseteq$	••••	$SP_d = C$	$P = P_{a}$	ı ⊆	P_{d-}	-1	$\subseteq \cdots P_1$
\uparrow	$(b) = E_{nt} \subset E_{nt}$	Ent. C		$T_{nt} = 1$) — RD	. с	RD.	. (
	$(2) \mid Em_1 \subseteq E$	$m_2 \subseteq$	1	$m_d - 1$	- D1	$d \succeq$	DId	-1 2	$\leq \cdots DI_1$
C	$SP_1 \subset SP_2$	C	SP_d	= CP	Ent_1	\subset	Ent_2	$\subset \cdots$	$\cdot Ent_d = P$
\$		_	_		-	_	_	_	-
\mathcal{C}^*	$P_1 \supseteq P_2$	$\supseteq \cdots$	P_d	= CP	BP_1	\supseteq	BP_2	$\supseteq \cdots$	$\cdot BP_d = P$

< 17 > <

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

臣

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$.

イロト 不同 とうほう 不同 とう

æ

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$,

< 🗇 🕨 < 🖃 🕨

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity.

▲ 同 ▶ ▲ 三

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A)$,

< 🗇 🕨 < 🖃 🕨

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \ \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B})).$

< 🗇 🕨 < 🖃 🕨

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \ \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive.

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \ \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k.

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \ \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \ \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$,
Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \ \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \ \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive.

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is *decomposable* if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$.

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$,

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

(4月) トイヨト イヨト

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose Φ is decomposable. Then $\Phi=\Theta+\Psi$ where where Θ is completely positive

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose Φ is decomposable. Then $\Phi = \Theta + \Psi$ where where Θ is completely positive and Ψ is completely copositive.

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose Φ is decomposable. Then $\Phi = \Theta + \Psi$ where where Θ is completely positive and Ψ is completely copositive. For $k \ge 1$, (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$,

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose Φ is decomposable. Then $\Phi = \Theta + \Psi$ where where Θ is completely positive and Ψ is completely copositive. For $k \ge 1$, (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$, $\Theta_k((A_{ij})) \ge 0$

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose Φ is decomposable. Then $\Phi = \Theta + \Psi$ where where Θ is completely positive and Ψ is completely copositive. For $k \ge 1$, (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$, $\Theta_k((A_{ij})) \ge 0$ and $\Psi_k((A_{ij})) = (\Psi(A_{ij}))$

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose Φ is decomposable. Then $\Phi = \Theta + \Psi$ where where Θ is completely positive and Ψ is completely copositive. For $k \ge 1$, (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$, $\Theta_k((A_{ij})) \ge 0$ and $\Psi_k((A_{ij})) = (\Psi(A_{ij})) = \Psi_k^T((A_{ji})) \ge 0$.

Suppose $\Phi : \mathcal{A} \to \mathcal{B}$. For each k, define $\Phi_k^T : M_k \otimes \mathcal{A} \to M_k \otimes \mathcal{B}$ by $\Phi_k^T(C \otimes A) = C^T \otimes \Phi(A)$, and extend by linearity. Note that for $(A_{ij}) \in M_k(A), \Phi_k^T((A_{ij})) = (\Phi(A_{ji})) \in M_k(\mathcal{B}))$. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Theta + \Psi$, where Θ is completely positive and Ψ is completely copositive. For $n + m \leq 5$, every positive $\Phi : M_n \to M_m$ is decomposable.

Theorem 4.1

Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof of Theorem 4.1

Suppose Φ is decomposable. Then $\Phi = \Theta + \Psi$ where where Θ is completely positive and Ψ is completely copositive. For $k \ge 1$, (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$, $\Theta_k((A_{ij})) \ge 0$ and $\Psi_k((A_{ij})) = (\Psi(A_{ij})) = \Psi_k^T((A_{ji})) \ge 0$. Therefore, $\Phi_k((A_{ij})) \ge 0$.

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Proof of Theorem 4.1

イロト イヨト イヨト イヨト

æ

Proof of Theorem 4.1

Conversely, suppose for all $k \ge 1$,

イロト イヨト イヨト イヨト

Conversely, suppose for all $k\geq 1,$ whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$

イロン 不同 とうほどう ほどう

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

イロト イヨト イヨト イヨト

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} .

臣

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$.

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$. Fix an orthonormal basis $\{|e_i\rangle\}$ of \mathcal{K}

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$. Fix an orthonormal basis $\{|e_i\rangle\}$ of \mathcal{K} and let the elements in $\mathcal{B}(\mathcal{K})$ be represented by $A = (a_{ij})$, with $a_{ij} = \langle e_i | A e_j \rangle$.

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$. Fix an orthonormal basis $\{|e_i\rangle\}$ of \mathcal{K} and let the elements in $\mathcal{B}(\mathcal{K})$ be represented by $A = (a_{ij})$, with $a_{ij} = \langle e_i | A e_j \rangle$. Then we can define the transpose in $\mathcal{B}(\mathcal{K})$, $A^T = (a_{ji})$.

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$. Fix an orthonormal basis $\{|e_i\rangle\}$ of \mathcal{K} and let the elements in $\mathcal{B}(\mathcal{K})$ be represented by $A = (a_{ij})$, with $a_{ij} = \langle e_i | Ae_j \rangle$. Then we can define the transpose in $\mathcal{B}(\mathcal{K})$, $A^T = (a_{ji})$. Let $S = \{ \begin{bmatrix} A & 0 \\ 0 & A^T \end{bmatrix} \in M_2(\mathcal{B}(\mathcal{K})) : A \in \mathcal{A} \}.$

・ロト ・回ト ・ヨト ・ヨト

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$. Fix an orthonormal basis $\{|e_i\rangle\}$ of \mathcal{K} and let the elements in $\mathcal{B}(\mathcal{K})$ be represented by $A = (a_{ij})$, with $a_{ij} = \langle e_i | Ae_j \rangle$. Then we can define the transpose in $\mathcal{B}(\mathcal{K})$, $A^T = (a_{ji})$. Let $S = \{ \begin{bmatrix} A & 0 \\ 0 & A^T \end{bmatrix} \in M_2(\mathcal{B}(\mathcal{K})) : A \in \mathcal{A} \}$. Then S is an operator system in $M_2(\mathcal{B}(\mathcal{K}))$.

Conversely, suppose for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$. Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$. Fix an orthonormal basis $\{|e_i\rangle\}$ of \mathcal{K} and let the elements in $\mathcal{B}(\mathcal{K})$ be represented by $A = (a_{ij})$, with $a_{ij} = \langle e_i | Ae_j \rangle$. Then we can define the transpose in $\mathcal{B}(\mathcal{K})$, $A^T = (a_{ji})$. Let $S = \{ \begin{bmatrix} A & 0 \\ 0 & A^T \end{bmatrix} \in M_2(\mathcal{B}(\mathcal{K})) : A \in \mathcal{A} \}$. Then S is an operator system in $M_2(\mathcal{B}(\mathcal{K}))$. Define $\Psi : S \to \mathcal{B}(\mathcal{H}) \}$ by

$$\Psi\left(\left[\begin{array}{cc}A&0\\\\0&A^{T}\end{array}\right]\right)=\Phi(A).$$

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Proof of Theorem 4.1

Yiu-Tung Poon Quantum operations

イロト イヨト イヨト イヨト

æ

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive.

< □ > < 三 >

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0.$

● ▶ ▲ ● ▶

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then (A_{ij}) , $(A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

臣

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij}\oplus A_{ij}^T\right)\right) = \left(\Phi(A_{ij})\right) \ge 0.$

(日) (日)

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then (A_{ij}) , $(A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij}\oplus A_{ij}^T\right)\right) = (\Phi(A_{ij})) \ge 0$. So, Ψ is k-positive.

伺▶ ∢ ∃▶
For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij} \oplus A_{ij}^T\right)\right) = (\Phi(A_{ij})) \ge 0$. So, Ψ is k-positive. Hence, Ψ is completely positive on the operator system S.

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij} \oplus A_{ij}^{T}\right)\right) = (\Phi(A_{ij})) \geq 0$. So, Ψ is k-positive. Hence, Ψ is completely positive on the operator system S. By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{B}(\mathcal{H}))$.

< 🗇 🕨 < 🖃 🕨

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij} \oplus A_{ij}^{T}\right)\right) = (\Phi(A_{ij})) \geq 0$. So, Ψ is *k*-positive. Hence, Ψ is completely positive on the operator system *S*. By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{B}(\mathcal{H}))$. Let $\Theta_1, \ \Theta_2 : \mathcal{A} \to M_2(\mathcal{B}(\mathcal{K}))$ be given by

$$\Theta_1(A) = \left[\begin{array}{cc} A & 0 \\ & \\ 0 & 0 \end{array} \right],$$

< A > < A > >

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij} \oplus A_{ij}^{T}\right)\right) = (\Phi(A_{ij})) \geq 0$. So, Ψ is *k*-positive. Hence, Ψ is completely positive on the operator system *S*. By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{B}(\mathcal{H}))$. Let $\Theta_1, \ \Theta_2 : \mathcal{A} \to M_2(\mathcal{B}(\mathcal{K}))$ be given by

$$\Theta_1(A) = \begin{bmatrix} A & 0 \\ & \\ 0 & 0 \end{bmatrix}, \text{ and } \Theta_2(A) = \begin{bmatrix} 0 & 0 \\ & \\ 0 & A^T \end{bmatrix}$$

< (1) > < (1) > <

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij} \oplus A_{ij}^{T}\right)\right) = (\Phi(A_{ij})) \geq 0$. So, Ψ is *k*-positive. Hence, Ψ is completely positive on the operator system *S*. By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{B}(\mathcal{H}))$. Let $\Theta_1, \ \Theta_2 : \mathcal{A} \to M_2(\mathcal{B}(\mathcal{K}))$ be given by

$$\Theta_1(A) = \begin{bmatrix} A & 0 \\ & & \\ 0 & 0 \end{bmatrix}, \text{ and } \Theta_2(A) = \begin{bmatrix} 0 & 0 \\ & & \\ 0 & A^T \end{bmatrix}$$

Then Θ_1 is completely positive

▲ 同 ▶ ▲ 臣 ▶

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij} \oplus A_{ij}^{T}\right)\right) = (\Phi(A_{ij})) \geq 0$. So, Ψ is *k*-positive. Hence, Ψ is completely positive on the operator system *S*. By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{B}(\mathcal{H}))$. Let $\Theta_1, \ \Theta_2 : \mathcal{A} \to M_2(\mathcal{B}(\mathcal{K}))$ be given by

$$\Theta_1(A) = \begin{bmatrix} A & 0 \\ & & \\ 0 & 0 \end{bmatrix}, \text{ and } \Theta_2(A) = \begin{bmatrix} 0 & 0 \\ & & \\ 0 & A^T \end{bmatrix}$$

Then Θ_1 is completely positive and Θ_2 is completely copositive.

- 4 同 ト 4 三 ト 4 三 ト

For each $k \ge 1$, suppose $(A_{ij} \oplus A_{ij}^T) \in M_k(S)$ is positive. Then $(A_{ij}), (A_{ij}^T) \ge 0$. Since

$$(A_{ij}^T) \ge 0 \Rightarrow (A_{ji}) = (A_{ij}^T)^T \ge 0,$$

we have $\left(\Psi\left(A_{ij}\oplus A_{ij}^{T}\right)\right) = (\Phi(A_{ij})) \geq 0$. So, Ψ is *k*-positive. Hence, Ψ is completely positive on the operator system *S*. By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{B}(\mathcal{H}))$. Let $\Theta_1, \ \Theta_2 : \mathcal{A} \to M_2(\mathcal{B}(\mathcal{K}))$ be given by

$$\Theta_1(A) = \begin{bmatrix} A & 0 \\ & \\ 0 & 0 \end{bmatrix}, \text{ and } \Theta_2(A) = \begin{bmatrix} 0 & 0 \\ & \\ 0 & A^T \end{bmatrix}$$

Then Θ_1 is completely positive and Θ_2 is completely copositive. Therefore, $\Phi = \Psi \circ (\Theta_1 + \Theta_2)$ is decomposable.

イロト イヨト イヨト イヨト

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Example 4.2 Choi [5]

Yiu-Tung Poon Quantum operations

イロト イヨト イヨト イヨト

Example 4.2 Choi [5]

Let $\Phi: M_3 \to M_3$ be given by

イロト 不同 とうほう 不同 とう

Example 4.2 Choi [5]

Let $\Phi: M_3 \to M_3$ be given by

$$\Phi\left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\right)$$
$$\begin{bmatrix} a_{11} + 2a_{33} & -a_{12} & -a_{13} \\ -a_{21} & a_{22} + 2a_{11} & -a_{23} \\ -a_{31} & -a_{32} & a_{33} + 2a_{22} \end{bmatrix}.$$

イロト イヨト イヨト イヨト

Example 4.2 Choi [5]

Let $\Phi: M_3 \to M_3$ be given by

$$\Phi\left(\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{array}\right]\right) \\ = \left[\begin{array}{ccccc}a_{11} + 2a_{33} & -a_{12} & -a_{13}\\-a_{21} & a_{22} + 2a_{11} & -a_{23}\\-a_{31} & -a_{32} & a_{33} + 2a_{22}\end{array}\right]$$

Then Φ is positive but not indecomposable.

イロト イヨト イヨト イヨト

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Proof of Example 4.2

・ロト ・日ト ・ヨト ・ヨト

To prove that Φ is positive, we use Theorem 2.5 (a) \Leftrightarrow (c) for k = 1.

臣

To prove that Φ is positive, we use Theorem 2.5 (a) $\,\Leftrightarrow\,$ (c) for k=1. By direct calculation,

	- 1	0	0	0	$^{-1}$	0	0	0	-1 J
	0	2	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
$C(\Phi) =$	-1	0	0	0	1	0	0	0	-1
	0	0	0	0	0	2	0	0	0
	0	0	0	0	0	0	2	0	0
	0	0	0	0	0	0	0	0	0
	1	0	0	0	$^{-1}$	0	0	0	1

臣

Image: A math a math

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Proof of Example 4.2

Yiu-Tung Poon Quantum operations

イロト イヨト イヨト イヨト

Suppose
$$P = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} \overline{x_1} & \overline{x_2} & \overline{x_3} \end{bmatrix}$$
 is a rank one orthogonal projection.

・ロト ・日ト ・ヨト

< ∃⇒

Suppose
$$P = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} \overline{x_1} & \overline{x_2} & \overline{x_3} \end{bmatrix}$$
 is a rank one orthogonal projection.
Then
 $(I_3 \otimes P)C(\Phi)(I_3 \otimes P) = X \otimes P,$

イロト イヨト イヨト イヨト

Suppose
$$P = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} \overline{x_1} & \overline{x_2} & \overline{x_3} \end{bmatrix}$$
 is a rank one orthogonal projection.
Then

$$(I_3 \otimes P)C(\Phi)(I_3 \otimes P) = X \otimes P, \text{ where}$$

$$X = \begin{bmatrix} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 & -\overline{x_1}x_3 \\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 & -\overline{x_2}x_3 \\ -x_1\overline{x_3} & -x_2\overline{x_3} & |x_3|^2 + 2|x_1|^2 \end{bmatrix}.$$

・ロト ・日ト ・ヨト

< ∃⇒

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Proof of Example 4.2

- 4 回 ト - 4 三 ト

문 문 문

Proof of Example 4.2

Since

$$|x_1|^2 + 2|x_2|^2 \ge 0,$$

イロト イヨト イヨト イヨト

Since

$$\begin{aligned} |x_1|^2 + 2|x_2|^2 &\ge 0, \\ \det \left(\begin{bmatrix} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 \\ \\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 \end{bmatrix} \right) \\ &= 2(|x_2|^4 + |x_3|^3(|x_1|^2 + 2|x_2|^2)) \ge 0 \end{aligned}$$

・ロト ・日ト ・ヨト

< ∃⇒

Since

$$\begin{aligned} |x_1|^2 + 2|x_2|^2 &\ge 0, \\ \det\left(\left[\begin{array}{cc} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 \\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 \end{array}\right]\right) \\ &= 2(|x_2|^4 + |x_3|^3(|x_1|^2 + 2|x_2|^2)) \ge 0 \\ \det(X) &= 4\left(|x_1|^2|x_2|^4 + |x_1|^4|x_3|^2 + |x_1|^2|x_2|^2|x_3|^2 + |x_2|^2|x_3|^4\right) \ge 0, \end{aligned}$$

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Since

W

$$\begin{split} |x_1|^2 + 2|x_2|^2 &\geq 0, \\ &\det\left(\left[\begin{array}{cc} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 \\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 \end{array}\right]\right) \\ &= 2(|x_2|^4 + |x_3|^3(|x_1|^2 + 2|x_2|^2)) \geq 0 \\ &\det(X) = 4\left(|x_1|^2|x_2|^4 + |x_1|^4|x_3|^2 + |x_1|^2|x_2|^2|x_3|^2 + |x_2|^2|x_3|^4\right) \geq 0, \\ &\text{e have } X \geq 0. \end{split}$$

イロト イヨト イヨト イヨト

Since

w

$$\begin{split} |x_1|^2 + 2|x_2|^2 &\ge 0, \\ &\det\left(\left[\begin{array}{cc} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 \\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 \end{array}\right]\right) \\ &= 2(|x_2|^4 + |x_3|^3(|x_1|^2 + 2|x_2|^2)) \ge 0 \\ &\det(X) = 4\left(|x_1|^2|x_2|^4 + |x_1|^4|x_3|^2 + |x_1|^2|x_2|^2|x_3|^2 + |x_2|^2|x_3|^4\right) \ge 0, \\ &\text{e have } X \ge 0. \text{ Hence, } (I_3 \otimes P)C(\Phi)(I_3 \otimes P) = X \otimes P \ge 0. \end{split}$$

- 4 回 ト 4 三 ト 4 三 ト

Since

w 2

$$\begin{split} |x_1|^2 + 2|x_2|^2 &\ge 0, \\ \det\left(\left[\begin{array}{c} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 \\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 \end{array}\right]\right) \\ &= 2(|x_2|^4 + |x_3|^3(|x_1|^2 + 2|x_2|^2)) \ge 0 \\ \det(X) &= 4\left(|x_1|^2|x_2|^4 + |x_1|^4|x_3|^2 + |x_1|^2|x_2|^2|x_3|^2 + |x_2|^2|x_3|^4\right) \ge 0, \\ \text{re have } X \ge 0. \text{ Hence, } (I_3 \otimes P)C(\Phi)(I_3 \otimes P) = X \otimes P \ge 0. \text{ By Theorem} \\ 5. \Phi \text{ is positive.} \end{split}$$

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

Proof of Example 4.2

イロト イヨト イヨト イヨト

Proof of Example 4.2

Next, we will use Theorem 4.1 to show that Φ is not decomposable.

臣

∢ ≣⇒

Next, we will use Theorem 4.1 to show that Φ is not decomposable. Let $(x_{ij})\in M_3(M_3)$ be given by

	Γ4	0	0	0	4	0	0	0	4	l
	0	16	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	
$(x_{ij}) =$	4	0	0	0	4	0	0	0	4	
	0	0	0	0	0	16	0	0	0	
	0	0	0	0	0	0	16	0	0	
	0	0	0	0	0	0	0	1	0	
	4	0	0	0	4	0	0	0	4	

▲冊▶ ▲ 臣▶ ▲ 臣▶

Next, we will use Theorem 4.1 to show that Φ is not decomposable. Let $(x_{ij})\in M_3(M_3)$ be given by

	4	0	0	0	4	0	0	0	4
	0	16	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0
$(x_{ij}) =$	4	0	0	0	4	0	0	0	4
	0	0	0	0	0	16	0	0	0
	0	0	0	0	0	0	16	0	0
	0	0	0	0	0	0	0	1	0
	4	0	0	0	4	0	0	0	4

It is easy to check that (x_{ij}) and (x_{ji}) are positive but

(4回) (4回) (4回)

Yiu-Tung Poon Quantum operations

▲御 ▶ ▲ 臣 ▶

< ∃⇒

イロト イヨト イヨト イヨト
Proof of Example 4.2

$$\Phi((x_{ij})) = \begin{bmatrix} \mathbf{6} & 0 & 0 & 0 & -\mathbf{4} & 0 & 0 & 0 & -\mathbf{4} \\ 0 & 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 33 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 33 & 0 & 0 & 0 & 0 & 0 \\ -\mathbf{4} & 0 & 0 & 0 & \mathbf{6} & 0 & 0 & 0 & -\mathbf{4} \\ 0 & 0 & 0 & 0 & 0 & 24 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 24 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 33 & 0 \\ -\mathbf{4} & 0 & 0 & 0 & -\mathbf{4} & 0 & 0 & 0 & \mathbf{6} \end{bmatrix}$$

イロト イヨト イヨト イヨト

æ

Proof of Example 4.2

	Γ 6	0	0	0	-4	0	0	0	[4-4
	0	24	0	0	0	0	0	0	0
	0	0	33	0	0	0	0	0	0
	0	0	0	33	0	0	0	0	0
$\Phi((x_{ij})) =$	-4	0	0	0	6	0	0	0	-4
	0	0	0	0	0	24	0	0	0
	0	0	0	0	0	0	24	0	0
	0	0	0	0	0	0	0	33	0
	-4	0	0	0	-4	0	0	0	6]

is not positive

イロト イヨト イヨト イヨト

æ

Proof of Example 4.2

	- 6	0	0	0	-4	0	0	0	-4]
$\Phi((x_{ij})) =$	0	24	0	0	0	0	0	0	0
	0	0	33	0	0	0	0	0	0
	0	0	0	33	0	0	0	0	0
	-4	0	0	0	6	0	0	0	-4
	0	0	0	0	0	24	0	0	0
	0	0	0	0	0	0	24	0	0
	0	0	0	0	0	0	0	33	0
	-4	0	0	0	-4	0	0	0	6]

is not positive because -2 is an eigenvalue of $\Phi((x_{ij}))$.

・ロト ・日ト ・ヨト ・ヨト

臣

< ∃⇒

白ト・モート

臣

A positive semi-definite matrix $A \in M_n$ with TrA = 1 is called a state (density matrix).

・日・ ・ヨ・ ・ヨ・

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable

<回と < 目と < 目と

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$

<回> < 三> < 三>

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$ such that $\rho = \sum_{i=1}^k p_i \rho_i^1 \otimes \rho_i^2$

<回と < 回と < 回と

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$ such that $\rho = \sum_{i=1}^k p_i \rho_i^1 \otimes \rho_i^2$ for some $p_i \ge 0$, $\sum_{i=1}^k p_i = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$ such that $\rho = \sum_{i=1}^k p_i \rho_i^1 \otimes \rho_i^2$ for some $p_i \ge 0$, $\sum_{i=1}^k p_i = 1$.

Theorem 5.1 (Horodecki [7])

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$ such that $\rho = \sum_{i=1}^k p_i \rho_i^1 \otimes \rho_i^2$ for some $p_i \ge 0$, $\sum_{i=1}^k p_i = 1$.

Theorem 5.1 (Horodecki [7])

A state $\rho \in M_{nm}$ is separable if and only if $(I_{M_n} \otimes \Phi)(\rho) \ge 0$ for all positive map $\Phi : M_m \to M_n$.

イロト イヨト イヨト イヨト

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$ such that $\rho = \sum_{i=1}^k p_i \rho_i^1 \otimes \rho_i^2$ for some $p_i \ge 0$, $\sum_{i=1}^k p_i = 1$.

Theorem 5.1 (Horodecki [7])

A state $\rho \in M_{nm}$ is separable if and only if $(I_{M_n} \otimes \Phi)(\rho) \ge 0$ for all positive map $\Phi : M_m \to M_n$.

Lemma 5.2

 $\Phi: M_m \to M_m$ is positive if and only if $\operatorname{Tr}(C(\Phi)(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_n$ and $Q \in M_m$.

イロト イヨト イヨト イヨト 二日

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a state (density matrix). A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be separable if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$ such that $\rho = \sum_{i=1}^k p_i \rho_i^1 \otimes \rho_i^2$ for some $p_i \ge 0$, $\sum_{i=1}^k p_i = 1$.

Theorem 5.1 (Horodecki [7])

A state $\rho \in M_{nm}$ is separable if and only if $(I_{M_n} \otimes \Phi)(\rho) \ge 0$ for all positive map $\Phi : M_m \to M_n$.

Lemma 5.2

 $\Phi: M_m \to M_m$ is positive if and only if $\operatorname{Tr}(C(\Phi)(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_n$ and $Q \in M_m$.

Lemma 5.3

A state $\rho \in M_n \otimes M_m$ is separable if and only if $\operatorname{Tr}(\rho A) \ge 0$ for all $A \in M_{mn}$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_n$ and $Q \in M_m$.

イロト イヨト イヨト イヨト

3

< ∃⇒

白ト・モート

臣

Proof of Theorem 5.1

臣

∢ ≣⇒

Proof of Theorem 5.1

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$.

< A > < A > >

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$.

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi: M_n \to M_m$ such that $C(\Psi) = A$.

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi: M_n \to M_m$ such that $C(\Psi) = A$. Then by Lemma 5.2, Ψ is positive.

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi: M_n \to M_m$ such that $C(\Psi) = A$. Then by Lemma 5.2, Ψ is positive. Hence, $\Phi = \Psi^{\dagger}: M_m \to M_n$ is also positive.

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi: M_n \to M_m$ such that $C(\Psi) = A$. Then by Lemma 5.2, Ψ is positive. Hence, $\Phi = \Psi^{\dagger}: M_m \to M_n$ is also positive. Let $\{|e_i\rangle: 1 \le i \le n\}$ be the canonical basis for \mathbb{C}^n and $E_{ij} = |e_i\rangle\langle e_j|$.

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi: M_n \to M_m$ such that $C(\Psi) = A$. Then by Lemma 5.2, Ψ is positive. Hence, $\Phi = \Psi^{\dagger}: M_m \to M_n$ is also positive. Let $\{|e_i\rangle: 1 \le i \le n\}$ be the canonical basis for \mathbb{C}^n and $E_{ij} = |e_i\rangle\langle e_j|$. Then $\{E_{ij}: 1 \le i, j \le n\}$ is the set of canonical matrix units for M_n .

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi: M_n \to M_m$ such that $C(\Psi) = A$. Then by Lemma 5.2, Ψ is positive. Hence, $\Phi = \Psi^{\dagger}: M_m \to M_n$ is also positive. Let $\{|e_i\rangle: 1 \le i \le n\}$ be the canonical basis for \mathbb{C}^n and $E_{ij} = |e_i\rangle\langle e_j|$. Then $\{E_{ij}: 1 \le i, j \le n\}$ is the set of canonical matrix units for M_n . We have

$$E = \sum_{i,j=1}^{n} E_{ij} \otimes E_{ij} = \left(\sum_{i=1} |e_i\rangle |e_i\rangle\right) \left(\sum_{j=1} |e_j\rangle |e_j\rangle\right)^{\frac{1}{2}}$$

is positive

Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi: M_n \to M_m$ such that $C(\Psi) = A$. Then by Lemma 5.2, Ψ is positive. Hence, $\Phi = \Psi^{\dagger}: M_m \to M_n$ is also positive. Let $\{|e_i\rangle: 1 \le i \le n\}$ be the canonical basis for \mathbb{C}^n and $E_{ij} = |e_i\rangle\langle e_j|$. Then $\{E_{ij}: 1 \le i, j \le n\}$ is the set of canonical matrix units for M_n . We have

$$E = \sum_{i,j=1}^{n} E_{ij} \otimes E_{ij} = \left(\sum_{i=1} |e_i\rangle |e_i\rangle\right) \left(\sum_{j=1} |e_j\rangle |e_j\rangle\right)^{-1}$$

is positive and

$$C(\Phi) = (I_n \otimes \Phi)(E) \,.$$

< ∃⇒

白ト・モート

臣

Proof of Theorem 5.1

Hence,

 $(I_n \otimes \Phi)(\rho) \ge 0$

イロン 不同 とうほどう ほどう

æ

Hence,

 $(I_n \otimes \Phi)(\rho) \ge 0$

$$\Rightarrow \quad \langle E|(I_n \otimes \Phi)(\rho)\rangle \ge 0$$

イロト 不同 とうほう 不同 とう

æ

Proof of Theorem 5.1

Hence,

 $(I_n \otimes \Phi)(\rho) \ge 0$

- $\Rightarrow \quad \langle E|(I_n\otimes\Phi)(\rho)\rangle \ge 0$
- $\Rightarrow \quad \langle (I_n \otimes \Phi)^*(E) | \rho \rangle \ge 0$

イロト 人間 トイヨト イヨト

臣

Proof of Theorem 5.1

Hence,

- $(I_n \otimes \Phi)(\rho) \ge 0$
- $\Rightarrow \quad \langle E|(I_n \otimes \Phi)(\rho)\rangle \ge 0$
- $\Rightarrow \quad \langle (I_n \otimes \Phi)^*(E) | \rho \rangle \ge 0$
- $\Rightarrow \quad \langle (I_n \otimes \Psi)(E) | \rho \rangle \ge 0$

イロト イヨト イヨト イヨト

3

Hence,	$(I_n\otimes \Phi)(ho)\geq 0$
\Rightarrow	$\langle E (I_n\otimes\Phi)(\rho) angle\geq 0$
\Rightarrow	$\langle (I_n \otimes \Phi)^*(E) \rho \rangle \ge 0$
\Rightarrow	$\langle (I_n \otimes \Psi)(E) \rho \rangle \ge 0$
\Rightarrow	$\langle C(\Psi) \rho\rangle\geq 0$

문 > 문

Hence,	
	$(I_n \otimes \Phi)(\rho) \ge 0$
\Rightarrow	$\langle E (I_n\otimes \Phi)(ho) angle\geq 0$
\Rightarrow	$\langle (I_n \otimes \Phi)^*(E) \rho \rangle \ge 0$
\Rightarrow	$\langle (I_n \otimes \Psi)(E) \rho \rangle \ge 0$
\Rightarrow	$\langle C(\Psi) \rho\rangle\geq 0$
\Rightarrow	$\operatorname{Tr}\left(\rho A\right)\geq0.$

æ

≣⇒

Proof of Theorem 5.1		
Hence,		$(I_n \otimes \Phi)(\rho) \ge 0$
	\Rightarrow	$\langle E (I_n\otimes\Phi)(\rho)\rangle\geq 0$
	\Rightarrow	$\langle (I_n \otimes \Phi)^*(E) \rho \rangle \ge 0$

\Rightarrow	$\langle (I_n$	\otimes	$\Psi)(E) \rho\rangle$	\geq	0
---------------	----------------	-----------	------------------------	--------	---

 $\Rightarrow \quad \langle C(\Psi) | \rho \rangle \geq 0$

 $\Rightarrow \quad \mathrm{Tr}\left(\rho A\right) \geq 0.$

So, by lemma 5.3, ρ is separable.

イロト イヨト イヨト イヨト

臣

< ∃⇒

白ト・モート

臣

Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

and extend by linearity.

<回と < 目と < 目と

Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

and extend by linearity. Note that for $(a_{ij}) \in M_n \otimes M_m$,

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶
Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

and extend by linearity. Note that for $(a_{ij}) \in M_n \otimes M_m$, we have

 $T_1((a_{ij})) = (a_{ji}), \text{ and } T_2((a_{ij})) = (a_{ij}^T)$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

and extend by linearity. Note that for $(a_{ij}) \in M_n \otimes M_m$, we have

$$T_1((a_{ij})) = (a_{ji}), \text{ and } T_2((a_{ij})) = (a_{ij}^T)$$

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7])

< 🗇 🕨 < 🖃 🕨

Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

and extend by linearity. Note that for $(a_{ij}) \in M_n \otimes M_m$, we have

$$T_1((a_{ij})) = (a_{ji}), \text{ and } T_2((a_{ij})) = (a_{ij}^T)$$

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7])

Let ρ be a state in $M_n \otimes M_m$. Then we have

(1) If ρ is separable, then $T_2(\rho) \ge 0$.

Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

and extend by linearity. Note that for $(a_{ij}) \in M_n \otimes M_m$, we have

$$T_1((a_{ij})) = (a_{ji}), \text{ and } T_2((a_{ij})) = (a_{ij}^T)$$

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7])

Let ρ be a state in $M_n \otimes M_m$. Then we have

(1) If ρ is separable, then $T_2(\rho) \ge 0$.

(2) If $n + m \le 5$ and $T_2(\rho) \ge 0$, then ρ is separable.

< ∃⇒

白ト・モート

臣

Proof of Theorem 5.4

・日・ ・ヨ・ ・ヨ・

Proof of Theorem 5.4

Note that $T_1(\rho) = (T_2(\rho))^T$.

・日・ ・ヨ・ ・ヨ・

Proof of Theorem 5.4

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

<回ト < 三ト < 三ト

臣

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be PPT if $T_2(\rho) \ge 0$.

臣

< (17) > < (17) > (17)

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be PPT if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be **PPT** if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$.

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be **PPT** if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$. Let $\Phi: M_m \to M_n$ be a positive map.

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be **PPT** if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$. Let $\Phi: M_m \to M_n$ be a positive map. Then $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1: M_m \to M_n$ is completely positive and $\Phi_2: M_m \to M_n$ is completely copositive.

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be PPT if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$. Let $\Phi: M_m \to M_n$ be a positive map. Then $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1: M_m \to M_n$ is completely positive and $\Phi_2: M_m \to M_n$ is completely copositive.

Then $(I \otimes \Phi_1)(\rho) \ge 0$

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be **PPT** if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$. Let $\Phi: M_m \to M_n$ be a positive map. Then $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1: M_m \to M_n$ is completely positive and $\Phi_2: M_m \to M_n$ is completely copositive.

Then $(I \otimes \Phi_1)(\rho) \ge 0$ and $(I \otimes \Phi_2)(\rho) = (I \otimes \Phi_2^T)(T_2(\rho)) \ge 0$.

(4月) トイヨト イヨト

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be PPT if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$. Let $\Phi: M_m \to M_n$ be a positive map. Then $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1: M_m \to M_n$ is completely positive and $\Phi_2: M_m \to M_n$ is completely copositive.

Then $(I \otimes \Phi_1)(\rho) \ge 0$ and $(I \otimes \Phi_2)(\rho) = (I \otimes \Phi_2^T)(T_2(\rho)) \ge 0$.

Hence, $(I \otimes \Phi)(\rho) \ge 0$.

(4回) (1日) (日)

Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$.

A state ρ is said to be **PPT** if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$. Let $\Phi: M_m \to M_n$ be a positive map. Then $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1: M_m \to M_n$ is completely positive and $\Phi_2: M_m \to M_n$ is completely copositive.

Then $(I \otimes \Phi_1)(\rho) \ge 0$ and $(I \otimes \Phi_2)(\rho) = (I \otimes \Phi_2^T)(T_2(\rho)) \ge 0$.

Hence, $(I \otimes \Phi)(\rho) \ge 0$. So, by Theorem 5.1, Φ is completely positive.

イロト イヨト イヨト イヨト

< ∃⇒

白ト・モート

臣

To show that the conclusion in Theorem 5,4 (b) may not hold for n = m = 3,

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

$$\rho = \frac{1}{63} \begin{bmatrix} 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \end{bmatrix}$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

臣

$$\rho = \frac{1}{63} \begin{bmatrix} 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \end{bmatrix}$$

Then by the discussion in Example 4.2, ρ , $T_2(\rho) \ge 0$.

▲圖▶ ▲屋▶ ▲屋▶

$$\rho = \frac{1}{63} \begin{bmatrix} 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \end{bmatrix}$$

Then by the discussion in Example 4.2, ρ , $T_2(\rho) \ge 0$. So, ρ is a PPT state but $(I \otimes \Phi)(\rho) \ge 0$.

イロト イヨト イヨト イヨト

$$\rho = \frac{1}{63} \begin{bmatrix} 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \end{bmatrix}$$

Then by the discussion in Example 4.2, ρ , $T_2(\rho) \ge 0$. So, ρ is a PPT state but $(I \otimes \Phi)(\rho) \ge 0$. Therefore, by Theorem 5.1, ρ is not separable.

(4月) トイヨト イヨト

Problem 6.1

Yiu-Tung Poon Quantum operations

・ロト ・四ト ・ヨト ・ヨト

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$,

・ロト ・日ト ・ヨト ・ヨト

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi: M_n \to M_m$,

▲ 同 ▶ ▲ 臣

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$,

determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi: M_n \to M_m$, possibly with some special properties (e.g., $\Phi(I_n) = I_m$ or/and Φ is trace preserving)

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$,

determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi: M_n \to M_m$, possibly with some special properties (e.g., $\Phi(I_n) = I_m$ or/and Φ is trace preserving) such that

$$\Phi(A_j) = B_j \qquad \text{for } j = 1, \dots, k.$$
(2)

▲ 同 ▶ | ▲ 三 ▶

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$,

determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi: M_n \to M_m$, possibly with some special properties (e.g., $\Phi(I_n) = I_m$ or/and Φ is trace preserving) such that

$$\Phi(A_j) = B_j \qquad \text{for } j = 1, \dots, k.$$
(2)

・ 同 ト ・ ヨ ト ・ ヨ ト

Given $A = (a_{ij}) \in M_n$, let $vec(A) = (a_{11}, ..., a_{1n}, ..., a_{21}, ..., a_{nn}) \in \mathbf{C}^{n^2}$.

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi: M_n \to M_m$, possibly with some special

properties (e.g., $\Phi(I_n) = I_m$ or/and Φ is trace preserving) such that

$$\Phi(A_j) = B_j \qquad \text{for } j = 1, \dots, k.$$
(2)

・ 同下 ・ ヨト ・ ヨト

Given $A = (a_{ij}) \in M_n$, let $\operatorname{vec}(A) = (a_{11}, \ldots, a_{1n}, \ldots, a_{21}, \ldots, a_{nn}) \in \mathbb{C}^{n^2}$. $A \to \operatorname{vec}(A)$ gives a linear isomorphism between M_n and \mathbb{C}^{n^2} .

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$,

determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi: M_n \to M_m$, possibly with some special properties (e.g., $\Phi(I_n) = I_m$ or/and Φ is trace preserving) such that

$$\Phi(A_j) = B_j \qquad \text{for } j = 1, \dots, k.$$
(2)

・ 同 ト ・ ヨ ト ・ ヨ ト

Given $A = (a_{ij}) \in M_n$, let $vec(A) = (a_{11}, \dots, a_{1n}, \dots, a_{21}, \dots, a_{nn}) \in \mathbb{C}^{n^2}$. $A \to vec(A)$ gives a linear isomorphism between M_n and \mathbb{C}^{n^2} . Let $C = (C_{ij}) \in M_n(M_m)$, the realignment matrix of C

Problem 6.1

Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$,

determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi: M_n \to M_m$, possibly with some special properties (e.g., $\Phi(I_n) = I_m$ or/and Φ is trace preserving) such that

$$\Phi(A_j) = B_j \qquad \text{for } j = 1, \dots, k.$$
(2)

Given $A = (a_{ij}) \in M_n$, let $\operatorname{vec} (A) = (a_{11}, \ldots, a_{1n}, \ldots, a_{21}, \ldots, a_{nn}) \in \mathbb{C}^{n^2}$. $A \to \operatorname{vec} (A)$ gives a linear isomorphism between M_n and \mathbb{C}^{n^2} . Let $C = (C_{ij}) \in M_n(M_m)$, the realignment matrix of C is given by

$$C^{R} = \begin{bmatrix} \operatorname{vec}(C_{11}) \\ \operatorname{vec}(C_{12}) \\ \vdots \\ \operatorname{vec}(C_{1n}) \\ \operatorname{vec}(C_{21}) \\ \vdots \\ \operatorname{vec}(C_{nn}). \end{bmatrix}$$

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij}E_{ij}) = \sum_{i,j} a_{ij}\Phi(E_{ij}).$$

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A) C(\Phi)^R$ (3)
We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$ (3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$,

イロト イヨト イヨト イヨト

臣

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij}E_{ij}) = \sum_{i,j} a_{ij}\Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$ (3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ

- 4 同 ト 4 三 ト 4 三 ト

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$ (3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$ (3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$ (3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult.

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$
(3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

イロト イポト イヨト イヨト

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult. We will consider the case where $\{A_i : 1 \le 1 \le k\}$ and $\{B_i : 1 \le 1 \le k\}$ are commuting families of Hermitian matrices.

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$
(3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult. We will consider the case where $\{A_i : 1 \le 1 \le k\}$ and $\{B_i : 1 \le 1 \le k\}$ are commuting families of Hermitian matrices. In this case, there exist unitary matrices $U \in M_n$ and $V \in M_m$ such that $U^{\dagger}A_iU$ and $V^{\dagger}B_iV$ are diagonal matrices.

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$
(3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult. We will consider the case where $\{A_i : 1 \leq 1 \leq k\}$ and $\{B_i : 1 \leq 1 \leq k\}$ are commuting families of Hermitian matrices. In this case, there exist unitary matrices $U \in M_n$ and $V \in M_m$ such that $U^{\dagger}A_iU$ and $V^{\dagger}B_iV$ are diagonal matrices. Clearly, there is a completely positive map taking A_i to B_i

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$
(3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

イロト イポト イヨト イヨト

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult. We will consider the case where $\{A_i : 1 \leq 1 \leq k\}$ and $\{B_i : 1 \leq 1 \leq k\}$ are commuting families of Hermitian matrices. In this case, there exist unitary matrices $U \in M_n$ and $V \in M_m$ such that $U^{\dagger}A_iU$ and $V^{\dagger}B_iV$ are diagonal matrices. Clearly, there is a completely positive map taking A_i to B_i if and only if there is a completely positive map taking $U^{\dagger}A_iU$ to $V^{\dagger}B_iV$.

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$ (3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

イロト 不同 とうほう 不同 とう

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult. We will consider the case where $\{A_i : 1 \leq 1 \leq k\}$ and $\{B_i : 1 \leq 1 \leq k\}$ are commuting families of Hermitian matrices. In this case, there exist unitary matrices $U \in M_n$ and $V \in M_m$ such that $U^{\dagger}A_iU$ and $V^{\dagger}B_iV$ are diagonal matrices. Clearly, there is a completely positive map taking A_i to B_i if and only if there is a completely positive map taking $U^{\dagger}A_iU$ to $V^{\dagger}B_iV$. Therefore, we only need to consider the case where A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i .

We have
$$\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$$
. Therefore,
 $\operatorname{vec}(\Phi(A)) = \operatorname{vec}(A)C(\Phi)^R$ (3)

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

イロト イヨト イヨト イヨト

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult. We will consider the case where $\{A_i : 1 \leq 1 \leq k\}$ and $\{B_i : 1 \leq 1 \leq k\}$ are commuting families of Hermitian matrices. In this case, there exist unitary matrices $U \in M_n$ and $V \in M_m$ such that $U^{\dagger}A_iU$ and $V^{\dagger}B_iV$ are diagonal matrices. Clearly, there is a completely positive map taking A_i to B_i if and only if there is a completely positive map taking $U^{\dagger}A_iU$ to $V^{\dagger}B_iV$. Therefore, we only need to consider the case where A_i , B_i are diagonal matrices with diagonals a_i , b_i . In this case, C can be chosen a diagonal matrix (exercise).

æ

Theorem 6.2

Yiu-Tung Poon Quantum operations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Theorem 6.2

Suppose A_i, B_i are diagonal matrices with diagonals $\mathbf{a}_i, \mathbf{b}_i$.

イロト イヨト イヨト イヨト

臣

Theorem 6.2

Suppose A_i , B_i are diagonal matrices with diagonals a_i , b_i . Then the following conditions are equivalent:

• There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.

< (1) > < (2) > <

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row)

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A *nonnegative* matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1.

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic,

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an n × m nonnegative matrix D such that b_i = a_iD for all 1 ≤ i ≤ k.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

 Φ in Theorem 6.2 can be choose to be unital

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an n × m nonnegative matrix D such that b_i = a_iD for all 1 ≤ i ≤ k.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

 Φ in Theorem 6.2 can be choose to be unital (trace preserving,

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

 Φ in Theorem 6.2 can be choose to be unital (trace preserving, unital and trace-preserving,

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

 Φ in Theorem 6.2 can be choose to be unital (trace preserving, unital and trace-preserving, respectively) if and only if D can be chosen to be column stochastic

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

 Φ in Theorem 6.2 can be choose to be unital (trace preserving, unital and trace-preserving, respectively) if and only if D can be chosen to be column stochastic (row stochastic,

Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2 There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \le i \le k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

 Φ in Theorem 6.2 can be choose to be unital (trace preserving, unital and trace-preserving, respectively) if and only if D can be chosen to be column stochastic (row stochastic, doubly stochastic, respectively).

æ

Denote by H_n the set of $n \times n$ Hermitian matrices.

< □ > < 三 > .

臣

< ∃ >

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

<回ト < 三ト < 三ト

臣

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of \boldsymbol{A} with entries arranged in descending order.

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of \boldsymbol{A} with entries arranged in descending order.

Corollary 6.4

< 17 > <

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$.

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.
Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

(a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

- (a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There is a nonnegative $n \times m$ matrix D such that $\lambda(B) = \lambda(A)D$.

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of \boldsymbol{A} with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

- (a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.
- (b) There is a nonnegative $n \times m$ matrix D such that $\lambda(B) = \lambda(A)D$.
- (c)~ There are real numbers $\gamma_1,\gamma_2\geq 0$ such that

 $\gamma_1\lambda_1(A) \geq \lambda_1(B) \quad \text{ and } \quad \lambda_m(B) \geq \gamma_2\lambda_n(A).$

▲圖▶ ▲ 国▶ ▲ 国▶ …

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

- (a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.
- (b) There is a nonnegative $n \times m$ matrix D such that $\lambda(B) = \lambda(A)D$.
- (c) There are real numbers $\gamma_1, \gamma_2 \ge 0$ such that

 $\gamma_1\lambda_1(A) \geq \lambda_1(B) \quad \text{ and } \quad \lambda_m(B) \geq \gamma_2\lambda_n(A).$

Example 6.5

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

- (a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.
- (b) There is a nonnegative $n \times m$ matrix D such that $\lambda(B) = \lambda(A)D$.
- (c) There are real numbers $\gamma_1, \gamma_2 \ge 0$ such that

 $\gamma_1\lambda_1(A) \geq \lambda_1(B) \quad \text{ and } \quad \lambda_m(B) \geq \gamma_2\lambda_n(A).$

Example 6.5

Let A = diag(2, 1, 0), $B_1 = \text{diag}(4, 3, 1)$ and $B_2 = \text{diag}(1, 1, -1)$.

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

- (a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.
- (b) There is a nonnegative $n \times m$ matrix D such that $\lambda(B) = \lambda(A)D$.
- (c) There are real numbers $\gamma_1, \gamma_2 \ge 0$ such that

 $\gamma_1\lambda_1(A) \geq \lambda_1(B) \quad \text{ and } \quad \lambda_m(B) \geq \gamma_2\lambda_n(A).$

Example 6.5

Let A = diag(2,1,0), $B_1 = \text{diag}(4,3,1)$ and $B_2 = \text{diag}(1,1,-1)$. There is a completely positive linear map Φ such that $\Phi(A) = B_1$,

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

- (a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.
- (b) There is a nonnegative $n \times m$ matrix D such that $\lambda(B) = \lambda(A)D$.
- (c)~ There are real numbers $\gamma_1,\gamma_2\geq 0$ such that

 $\gamma_1\lambda_1(A) \geq \lambda_1(B) \quad \text{ and } \quad \lambda_m(B) \geq \gamma_2\lambda_n(A).$

Example 6.5

Let A = diag(2, 1, 0), $B_1 = \text{diag}(4, 3, 1)$ and $B_2 = \text{diag}(1, 1, -1)$. There is a completely positive linear map Φ such that $\Phi(A) = B_1$, but there is no completely positive linear map Φ such that $\Phi(A) = B_2$.

Theorem 6.6

Yiu-Tung Poon Quantum operations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

イロト イヨト イヨト イヨト

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

(a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$

イロト イヨト イヨト イヨト

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n\times m$ column stochastic matrix D such that $\lambda(B)=\lambda(A)D.$

臣

イロト イヨト イヨト イヨト

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n\times m$ column stochastic matrix D such that $\lambda(B)=\lambda(A)D.$
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

イロト イヨト イヨト イヨト

E

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n\times m$ column stochastic matrix D such that $\lambda(B)=\lambda(A)D.$
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

Theorem 6.7

Suppose $A \in H_n$ and $B \in H_m$.

・ロト ・日ト ・ヨト

臣

_ ∢ ≣ →

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n\times m$ column stochastic matrix D such that $\lambda(B)=\lambda(A)D.$
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

Theorem 6.7

Suppose $A \in H_n$ and $B \in H_m$. Denote by $\lambda_+(X)$ the sum of positive eigenvalues of a Hermitian matrix X.

イロト イヨト イヨト イヨト

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n\times m$ column stochastic matrix D such that $\lambda(B)=\lambda(A)D.$
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

Theorem 6.7

Suppose $A \in H_n$ and $B \in H_m$. Denote by $\lambda_+(X)$ the sum of positive eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

イロト イヨト イヨト イヨト

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n \times m$ column stochastic matrix D such that $\lambda(B) = \lambda(A)D$.
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

Theorem 6.7

Suppose $A \in H_n$ and $B \in H_m$. Denote by $\lambda_+(X)$ the sum of positive eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

(a) There is a trace preserving completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B.$

イロト イヨト イヨト イヨト

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n\times m$ column stochastic matrix D such that $\lambda(B)=\lambda(A)D.$
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

Theorem 6.7

Suppose $A \in H_n$ and $B \in H_m$. Denote by $\lambda_+(X)$ the sum of positive eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

- (a) There is a trace preserving completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B.$
- (b) There exists an $n \times m$ row stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

・ロト ・日ト ・ヨト ・ヨト

Theorem 6.6

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B.$
- (b) There exists an $n\times m$ column stochastic matrix D such that $\lambda(B)=\lambda(A)D.$
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

Theorem 6.7

Suppose $A \in H_n$ and $B \in H_m$. Denote by $\lambda_+(X)$ the sum of positive eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

- (a) There is a trace preserving completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B.$
- (b) There exists an n×m row stochastic matrix D such that λ(B) = λ(A)D.
 (c) λ₊(B) ≤ λ₊(A), and TrA = TrB.

イロト イヨト イヨト イヨト

Yiu-Tung Poon Quantum operations

イロト イヨト イヨト イヨト

Let A = diag(2, 1, -1), B = diag(2, 0, 0), and C = diag(1, 1, 0).

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Let A = diag(2, 1, -1), B = diag(2, 0, 0), and C = diag(1, 1, 0). Then there are trace preserving completely positive linear maps Φ_1, Φ_2 such that $\Phi_1(A) = B$, $\Phi_2(B) = C$,

イロト イヨト イヨト イヨト

3

Let $A = \operatorname{diag}(2, 1, -1)$, $B = \operatorname{diag}(2, 0, 0)$, and $C = \operatorname{diag}(1, 1, 0)$. Then there are trace preserving completely positive linear maps Φ_1, Φ_2 such that $\Phi_1(A) = B$, $\Phi_2(B) = C$, and $\Phi_2 \circ \Phi_1(A) = C$. There is no completely positive linear map Φ satisfying $\Phi(C) = A$.

臣

イロト イポト イヨト イヨト

Let $A = \operatorname{diag}(2, 1, -1)$, $B = \operatorname{diag}(2, 0, 0)$, and $C = \operatorname{diag}(1, 1, 0)$. Then there are trace preserving completely positive linear maps Φ_1, Φ_2 such that $\Phi_1(A) = B$, $\Phi_2(B) = C$, and $\Phi_2 \circ \Phi_1(A) = C$. There is no completely positive linear map Φ satisfying $\Phi(C) = A$.

Remark 6.9

Image: A math a math

E

Let $A = \operatorname{diag}(2, 1, -1)$, $B = \operatorname{diag}(2, 0, 0)$, and $C = \operatorname{diag}(1, 1, 0)$. Then there are trace preserving completely positive linear maps Φ_1, Φ_2 such that $\Phi_1(A) = B$, $\Phi_2(B) = C$, and $\Phi_2 \circ \Phi_1(A) = C$. There is no completely positive linear map Φ satisfying $\Phi(C) = A$.

Remark 6.9

For two density matrices A and B,

Image: A math a math

Let $A = \operatorname{diag}(2, 1, -1)$, $B = \operatorname{diag}(2, 0, 0)$, and $C = \operatorname{diag}(1, 1, 0)$. Then there are trace preserving completely positive linear maps Φ_1, Φ_2 such that $\Phi_1(A) = B$, $\Phi_2(B) = C$, and $\Phi_2 \circ \Phi_1(A) = C$. There is no completely positive linear map Φ satisfying $\Phi(C) = A$.

Remark 6.9

For two density matrices A and B, there is always a trace preserving completely positive map such that $\Phi(A)=B.$

イロト イポト イヨト イヨト

Let $A = \operatorname{diag}(2, 1, -1)$, $B = \operatorname{diag}(2, 0, 0)$, and $C = \operatorname{diag}(1, 1, 0)$. Then there are trace preserving completely positive linear maps Φ_1, Φ_2 such that $\Phi_1(A) = B$, $\Phi_2(B) = C$, and $\Phi_2 \circ \Phi_1(A) = C$. There is no completely positive linear map Φ satisfying $\Phi(C) = A$.

Remark 6.9

For two density matrices A and B, there is always a trace preserving completely positive map such that $\Phi(A) = B$. But there may not be a unital completely positive map Ψ such that $\Psi(A) = B$.

イロト イヨト イヨト イヨト

Suppose there is a unital completely positive map taking A to B,

イロト イヨト イヨト イヨト

Suppose there is a unital completely positive map taking A to B, and also a trace preserving completely positive map taking A to B.

イロト イヨト イヨト イヨト

Suppose there is a unital completely positive map taking A to B, and also a trace preserving completely positive map taking A to B. Is there a unital trace preserving completely positive map sending A to B?

Suppose there is a unital completely positive map taking A to B, and also a trace preserving completely positive map taking A to B. Is there a unital trace preserving completely positive map sending A to B? The following example shows that the answer is negative.

Suppose there is a unital completely positive map taking A to B, and also a trace preserving completely positive map taking A to B. Is there a unital trace preserving completely positive map sending A to B? The following example shows that the answer is negative.

Example 6.10

Suppose there is a unital completely positive map taking A to B, and also a trace preserving completely positive map taking A to B. Is there a unital trace preserving completely positive map sending A to B? The following example shows that the answer is negative.

Example 6.10

Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0).
Example 6.10

Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0). By Theorems 6.6 and 6.7 there is a trace preserving completely positive map sending A to B,

Example 6.10

Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0). By Theorems 6.6 and 6.7 there is a trace preserving completely positive map sending A to B, and also a unital completely positive map sending A to B.

Example 6.10

Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0). By Theorems 6.6 and 6.7 there is a trace preserving completely positive map sending A to B, and also a unital completely positive map sending A to B. Let $A_1 = A - I_4 = \text{diag}(3, 0, 0, -1)$ and $B_1 = B - I_4 = \text{diag}(2, 2, -1, -1)$.

Example 6.10

Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0). By Theorems 6.6 and 6.7 there is a trace preserving completely positive map sending A to B, and also a unital completely positive map sending A to B. Let $A_1 = A - I_4 = \text{diag}(3, 0, 0, -1)$ and $B_1 = B - I_4 = \text{diag}(2, 2, -1, -1)$. By Theorem 6.7, there is no trace preserving completely positive linear map sending A_1 to B_1 .

Example 6.10

Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0). By Theorems 6.6 and 6.7 there is a trace preserving completely positive map sending A to B, and also a unital completely positive map sending A to B. Let $A_1 = A - I_4 = \text{diag}(3, 0, 0, -1)$ and $B_1 = B - I_4 = \text{diag}(2, 2, -1, -1)$. By Theorem 6.7, there is no trace preserving completely positive linear map sending A_1 to B_1 . Hence, there is no unital trace preserving completely positive map sending A to B.

An Interpolating Problem

æ

A quantum channel/completely positive map $\Phi: M_n \to M_n$ is called mixed unitary (mixing process)

A quantum channel/completely positive map $\Phi: M_n \to M_n$ is called mixed unitary (mixing process) if there exist unitary matrices $U_1, \ldots, U_r \in M_n$

・ 同 ト ・ ヨ ト ・ ヨ ト

A quantum channel/completely positive map $\Phi: M_n \to M_n$ is called mixed unitary (mixing process) if there exist unitary matrices $U_1, \ldots, U_r \in M_n$ and positive numbers p_1, \ldots, p_r summing up to 1

- 4 回 ト 4 ヨ ト 4 ヨ ト

A quantum channel/completely positive map $\Phi: M_n \to M_n$ is called mixed unitary (mixing process) if there exist unitary matrices $U_1, \ldots, U_r \in M_n$ and positive numbers p_1, \ldots, p_r summing up to 1 such that $\Phi(X) = \sum_{j=1}^k p_j U_j^{\dagger} X U_j$.

- 4 同 ト 4 臣 ト 4 臣 ト

A quantum channel/completely positive map $\Phi: M_n \to M_n$ is called mixed unitary (mixing process) if there exist unitary matrices $U_1, \ldots, U_r \in M_n$ and positive numbers p_1, \ldots, p_r summing up to 1 such that $\Phi(X) = \sum_{j=1}^k p_j U_j^{\dagger} X U_j$. Clearly, every mixed unitary completely positive map is unital and trace preserving.

For $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$, we say that \mathbf{x} is majorized by \mathbf{y} , denoted by $\mathbf{x} \prec \mathbf{y}$,

(4月) トイヨト イヨト

For $x,y\in \mathbf{R}^n,$ we say that x is majorized by y, denoted by $x\prec y,$ if the sum of all entries of x

For $x, y \in \mathbb{R}^n$, we say that x is majorized by y, denoted by $x \prec y$, if the sum of all entries of x is the same as that of y,

(4月) トイヨト イヨト

For $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$, we say that \mathbf{x} is majorized by \mathbf{y} , denoted by $\mathbf{x} \prec \mathbf{y}$, if the sum of all entries of \mathbf{x} is the same as that of \mathbf{y} , and the sum of the k largest entries of \mathbf{x}

・ 同 ト ・ ヨ ト ・ ヨ ト

For $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$, we say that \mathbf{x} is majorized by \mathbf{y} , denoted by $\mathbf{x} \prec \mathbf{y}$, if the sum of all entries of \mathbf{x} is the same as that of \mathbf{y} , and the sum of the k largest entries of \mathbf{x} is not larger than that of \mathbf{y} for $k = 1, \ldots, n - 1$;

- 4 回 ト 4 ヨ ト 4 ヨ ト

For $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$, we say that \mathbf{x} is majorized by \mathbf{y} , denoted by $\mathbf{x} \prec \mathbf{y}$, if the sum of all entries of \mathbf{x} is the same as that of \mathbf{y} , and the sum of the k largest entries of \mathbf{x} is not larger than that of \mathbf{y} for $k = 1, \ldots, n - 1$;

Example 6.11

 $(3,2,1,0) \prec (6,1,0,-1), (3,3,0,0) \not\prec (4,1,1,0).$

イロト 人間 トイヨト イヨト

An Interpolating Problem

æ

An Interpolating Problem

Theorem 6.12

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

- Let $A, B \in H_n$. The following are equivalent.
 - (a) There exists a unital trace preserving completely positive map Φ such that $\Phi(A)=B.$

イロト イヨト イヨト イヨト

臣

Let $A, B \in H_n$. The following are equivalent.

- (a) There exists a unital trace preserving completely positive map Φ such that $\Phi(A)=B.$
- (b) There is a mixed unitary channel Φ such that $\Phi(A) = B$.

Let $A, B \in H_n$. The following are equivalent.

- (a) There exists a unital trace preserving completely positive map Φ such that $\Phi(A)=B.$
- (b) There is a mixed unitary channel Φ such that $\Phi(A) = B$.
- (c) There exist unitary matrices U_j , $1 \le j \le n$ such that $B = \frac{1}{n} \sum_{j=1}^n U_j A U_j^{\dagger}$.

臣

Let $A, B \in H_n$. The following are equivalent.

- (a) There exists a unital trace preserving completely positive map Φ such that $\Phi(A)=B.$
- (b) There is a mixed unitary channel Φ such that $\Phi(A) = B$.
- (c) There exist unitary matrices U_j , $1 \le j \le n$ such that $B = \frac{1}{n} \sum_{j=1}^n U_j A U_j^{\dagger}$.
- (d) There is a unitary U such that UAU^{\dagger} has diagonal entries $\lambda_1(B), \ldots, \lambda_n(B)$.

- 4 同 ト 4 三 ト 4 三 ト

Let $A, B \in H_n$. The following are equivalent.

- (a) There exists a unital trace preserving completely positive map Φ such that $\Phi(A) = B$.
- (b) There is a mixed unitary channel Φ such that $\Phi(A) = B$.
- (c) There exist unitary matrices U_j , $1 \le j \le n$ such that $B = \frac{1}{n} \sum_{j=1}^n U_j A U_j^{\dagger}$.
- (d) There is a unitary U such that UAU^{\dagger} has diagonal entries $\lambda_1(B), \ldots, \lambda_n(B)$.

(e) $\lambda(B) \prec \lambda(A)$.

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

臣

Let $A, B \in H_n$. The following are equivalent.

- (a) There exists a unital trace preserving completely positive map Φ such that $\Phi(A)=B.$
- (b) There is a mixed unitary channel Φ such that $\Phi(A) = B$.
- (c) There exist unitary matrices U_j , $1 \le j \le n$ such that $B = \frac{1}{n} \sum_{j=1}^n U_j A U_j^{\dagger}$.
- (d) There is a unitary U such that UAU^{\dagger} has diagonal entries $\lambda_1(B), \ldots, \lambda_n(B)$.
- (e) $\lambda(B) \prec \lambda(A)$.
- (f) There is a doubly stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Thank you

<ロ> <四> <四> <日> <日</p>

æ

[1] W.B. Arveson, Subalgebras of C^* -algebras, Acta Math., 123 (1969).

[2] W.B. Arveson, Dilation theory yesterday and today. A glimpse at Hilbert space operators, 99 123, Oper. Theory Adv. Appl., 207, Birkh user Verlag, Basel, 2010.

[3] M.D. Choi, Positive linear maps on C^* -algebras, Canad. J. Math. 24 (1972), 520–529.

[4] M.D. Choi, Completely positive linear maps on complex matrices. Linear Algebra and Appl. 10 (1975), 285–290.

[5] M.D. Choi, Some assorted inequalities for positive linear maps on C^* -algebras, J. Operator Theory, 4 (1980), 271–285.

[6] M.D. Choi and E.G. Effros, Separable nuclear C^* -algebras and injectivity, Duke Math. J. 43 (1976), 309–322.

[7] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Let. A, 223 (1996), 1–8.

[8] R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras I, Academic Press, 1983, New York.

[9] K. Kraus, States, effects, and operations: fundamental notions of quantum theory, Lectures in mathematics physics at the University of Texas at Austin, Lecture Notes in Physics 190, Springer-Verlag, Berlin-Heidelberg, 1983.

[10] L. Landau and R. Streater, On Birkhoffs theorem for doubly stochastic completely positive maps of matrix algebras, Linear Algebra and Appl., 193 (1993), 107–127.

[11] C.K. Li and Y.T. Poon, Interpolation by Completely Positive Maps, Linear and Multilinear Algebra, to appear.

[12] A.W. Marshall and I. Olkin, Inequaltiles: Theo Theory of Majorizations and its Applications, Academic Press, 1979.

・ロト ・日ト ・ヨト ・ヨト

[13] M. Nakahara and T. Ohmi, Quantum Computing: From Linear Algebra to Physical Realizations, CRS Press, New York, 2008.

[14] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, U.K., 2000.

[15] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advance Mathematics 18, Cambridge University Press, 2002.

[16] W.F. Stinespring, Positive functions on C^* -algebras, Pro. Amer. Math. Soc. 6 (1955), 211–216.

[17] E. Størmer, Positive linear map of operator algebras, Acta Math., 110 (1963), 233–278.

[18] E. Størmer, Decomposable positive linear maps on C^* -algebras, Proc. Amer. Math. Soc., 86 (1982), 402–404.

[19] Ł. Skowronek, E. Størmer and K. Życzkowski, Cones of positive maps and their duality relations, J. Math. Phy., 50 (2009), 062106.

イロト 人間 トイヨト イヨト

臣