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Dilation and extension of completely positive map

H : Hilbert space

B(H) : bounded linear operators on H.

C∗-algebra A is a complex Banach algebra
with a conjugate linear map A→ A∗ (A†) satisfying

‖AA∗‖ = ‖A‖2 for all A ∈ A. ( ⇒ ‖A‖ = ‖A∗‖)

A ↪→ B(H) norm closed ∗-subalgebra

A commutative ⇒ A ∼= C0(X), X locally compact Haudorff space.

C0(X) is the set of complex continuous function on X such that for all ε > 0,
there exists a compact subset K ⊆ X such that |f(x)| < ε for all x ∈ X \K.
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Dilation and extension of completely positive map

A ∈ B(H) is said to be positive (A ≥ 0) if 〈x|Ax〉 ≥ 0 for all |x〉 ∈ H.

B(H)+ = {A ∈ B(H) : A ≥ 0}, Mk(B(H)) ∼= B(Hk), Mk(B(H))+ ∼= B(Hk)+.

A ⊆ B(H) ⇒ Mk(A) ⊆Mk(B(H)), Mk(A)+ = Mk(A) ∩Mk(B(H))+

Operator space : norm-closed subspace S of a C∗-algebra A,
Mk(S)+ = Mk(S) ∩Mk(A)+.

Operator system : self-adjoint (S = S∗) operator space containing 1A.

Φ : S → B is positive if Φ(S+) ⊆ B+

Φk : Mk(S)→Mk(B), Φk((Aij)) = (Φ(Aij))

Φ is k-positive if Φk(Mk(S)+) ⊆Mk(B)+

Φ is completely positive if Φ is k-positive for all k.
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Dilation and extension of completely positive map

Theorem 1.1
(Stinespring’s dilation theorem) Let A be a unital C∗-algebra, and let
Φ : A → B(H) be a linear map. Then Φ is completely positive if and only if
there exist a Hilbert space K, a unital C∗-homomorphism π : A → B(K), and
a bounded operator V : H → K such that

Φ(A) = V †π(A)V for all A ∈ A.

Theorem 1.2
Suppose A is a commutative C∗-algebra and Φ : A → B(H) is positive. Then
Φ is completely positive.

Theorem 1.3
Let S be a self-adjoint subspace of a unital C∗-algebra A and B a commutative
C∗-algebra. Every positive linear map from S to B is completely positive.
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Dilation and extension of completely positive map

Theorem 1.4
Let A be a unital C∗-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 1A) in A. Then every
completely positive map from S to a C∗-algebra B can be extended to a
completely positive map from A to B.

Theorem 1.5
Let A be a unital C∗-algebra and S an operator system in A. Then every
positive map from S to a commutative C∗-algebra B can be extended to a
positive map from A to B.

Example 1.6 (Arveson [1])
Let C(T ) be the commutative C∗-algebra of continuous function on the unit
circle of the complex plane and S the subspace of C(T ) spanned by {1, z, z}.
(Note: S is an operator system of A.) Define Φ : S →M2 by

Φ(a+ bz + cz) =
[

a 2b
2c a

]
.

Then Φ is positive but Φ cannot be extended to a positive map on C(T ).
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Dilation and extension of completely positive map

Example 1.6
Suppose the contrary that Φ can be extended to a positive map on C(T ).
Then by Theorem 1.2, Φ : C(T )→M2 is completely positive. By Theorem
1.1, there exist a Hilbert space K, a unital C∗-homomorphism
π : C(T )→ B(K), and a bounded operator V : C2 → K such that

Φ(A) = V †π(A)V for all A ∈ C(T ).

Since Φ is unital, V †V = I2. Therefore, V V † is a projection in B(K). So, we
have [

1 0
0 1

]
= Φ(1) = Φ(zz) = V †π(zz)V = V †π(z)π(z)V

≥ V †π(z)V V †π(z)V = Φ(z)Φ(z)

=
[

0 2
0 0

][
0 0
2 0

]
=
[

4 0
0 0

]
,

a contradiction. �
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Dilation and extension of completely positive map

Suppose S is an operator space of a C∗-algebra A. A linear map Φ : S → B(H)
is called a complete contraction if Φk is a contraction (‖Φk‖ ≤ 1) for every k.
There is a close connection between the study of complete contraction on
operator system and completely positive map on operator system. This stems
from the connection between the norm and positivity in B(H).

Lemma 1.7 (Choi and Effros, [6])
Let A ∈ B(H). Then we have

‖A‖ ≤ 1 ⇔
[

I A

A† I

]
≥ 0 .

The following theorem [2, 14] is an analog to Theorem 1.4.

Theorem 1.8
Let S be an operator space in a C∗-algebra A and Φ : S → B(H) a complete
contraction. Then Φ can be extended to a complete contraction on A
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Dilation and extension of completely positive map

Proof. Assume 1A ∈ A. Let

S2 = {
[
λIA A

A† λIA

]
: A ∈ S, λ ∈ C} .

Then S2 is an operator system in M2(A). Define Ψ : S2 → B = M2(B(H))
by

Ψ
([

λIA A

A† λIA

])
=
[
λIB(H) Φ(A)
Φ(A)† λIB(H)

]
.

Then Ψ is completely positive on S2. (exercise)
By Theorem 1.4, Ψ can be extended to a completely positive map on
M2(A). There exist Φij : A → B(H), 1 ≤ i, j ≤ 2, such that for
[Aij ] ∈M2(A), we have

Ψ
([

A11 A12
A21 A22

])
=
[

Φ11(A11) Φ12(A12)
Φ21(A21) Φ22(A22)

]
.
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Dilation and extension of completely positive map

Therefore, Φ12 is an extension of Φ. Since Ψ is completely positive, Ψ(B) is
self-adjoint for all self-adjoint B ∈M2(A). In particular, for all A ∈ A, we have[

0 Φ12(A)
Φ21(A†) 0

]
= Ψ

([
0 A

A† 0

])

= Ψ
([

0 A

A† 0

])†
=
[

0 Φ21(A†)†
Φ12(A)† 0

]
.

Therefore, Φ21(A†) = Φ12(A)† for all A ∈ A. Suppose A ∈ A, with ‖A‖ ≤ 1.
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Completely positive maps on matrix spaces

Lemma 2.1
Let A ∈Mn. Then the following conditions are equivalent:

1 〈x|Ax〉 ≥ 0 for all |x〉 ∈ Cn.
2 A = A† and all eigenvalues of A are non-negative.

Definition 2.2
Let Pk(n,m) denote the set of k-positive map from Mn to Mm. Φ is
completely positive if Φ ∈ Pk(n,m) for all positive integer k.

Example 2.3

The map Φ : Mn →Mn defined by Φ(A) = At is positive, but not 2-positive.

To see this, consider A =
[
E11 E12
E21 E22

]
∈M+

2n. Then

(I2 ⊗ Φ)(A) =
[
E11 E21
E12 E22

]
has a principal matrix of the form

[
0 1
1 0

]
,

which is indefinite.
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])
For every n > 1, the map Φ : Mn →Mn with

Φ(A) = (n− 1)(TrA)In −A

is n− 1-positive but not n-positive.

Given a linear map Φ : Mn →Mm, define the Choi matrix of Φ by

C(Φ) = (Φ(Eij))n
i j=1 =

∑
i,j

Eij ⊗ Φ(Eij).

Theoretically, Φ is completely determined by its Choi matrix. In this section, we
will explore the relationship between Φ and C(Φ).

Let Sk(n,m) = {
∑k

i=1 |xi〉|yi〉 : |xi〉 ∈ Cn, |yi〉 ∈ Cm} be the set of vectors
in Cn ⊗Cm with Schmidt rank ≤ k.
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Completely positive maps on matrix spaces

Theorem 2.5
Given a linear map Φ : Mn →Mm and k ≥ 1, the following conditions are
equivalent:
(a) Φ is k-positive.
(b) 〈z|C(Φ)z〉 ≥ 0 for all |z〉 ∈ Sk(n,m).
(c) (In ⊗ P )C(Φ)(In ⊗ P ) is positive for all orthogonal projection P with

rank ≤ k.

For k = 1, in (b), we have z ∈ Sk(n,m) is of the form z = |x〉|y〉. 〈z|C(Φ)z〉
is a biquadratic form in xi and yj , homogeneous polynomial, with every term
of the form xixjyky`.

On the other hand, in (c), to study (In ⊗ P )C(Φ)(In ⊗ P ) ≥ 0, we only need
to consider quadratics in yj . (see Example 4.2)
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Completely positive maps on matrix spaces

Theorem 2.6 (Choi [4])

(a) Φ is completely positive.
(b) Φ is n-positive.
(c) The Choi matrix C(Φ) = (Φ(Eij)) is positive.
(d) Φ admits an operator-sum representation:

Φ(A) 7→
r∑

j=1

FjAF
†
j . (1)

Furthermore, suppose (d) holds. Then we have
(1) The map Φ is unital (Φ(In) = Im) if and only if

∑r

j=1 FjF
†
j = Im.

(2) The map Φ is trace preserving (Tr(Φ(A)) = Tr(A)) if and only if∑r

j=1 F
†
j Fj = In.
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Completely positive maps on matrix spaces

Define an inner product on Mp,q by 〈X|Y 〉 = Tr(X†Y ). Suppose
Φ : Mn →Mm is a linear map. Then the dual map Φ† : Mm →Mn is the
linear map defined by

〈B|Φ†(A)〉 = 〈Φ(B)|A〉
for all A ∈Mm and B ∈Mn.

Theorem 2.9

Let Φ : Mn →Mm. Then for every k ≥ 1, Φ is k-positive if and only if Φ† is
k-positive.

Theorem 2.10
Suppose Φ : Mn →Mm is a completely positive linear map with operator sum
representation in (1). Then the dual linear map Φ† : Mm →Mn is given by

Φ†(B) =
r∑

j=1

F †j BFj .

Consequently, Φ† is also completely positive. Furthermore, Φ is unital (trace
preserving, respectively) if and only if Φ† is trace preserving (unital,
respectively).
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Let Φ : Mn →Mm. Then for every k ≥ 1, Φ is k-positive if and only if Φ† is
k-positive.

Theorem 2.10
Suppose Φ : Mn →Mm is a completely positive linear map with operator sum
representation in (1). Then the dual linear map Φ† : Mm →Mn is given by

Φ†(B) =
r∑

j=1

F †j BFj .

Consequently, Φ† is also completely positive. Furthermore, Φ is unital (trace
preserving, respectively) if and only if Φ† is trace preserving (unital,
respectively).
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Completely positive maps on matrix spaces

Theorem 2.11
Let Φ : Mn →Mm be a linear map. Then Φ is a completely positive if and
only if Φ is k-positive for k = min{m,n}. In particular, if n or m equals to 1,
then Φ is positive if and only if Φ is completely positive.
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

1 C + C ⊆ C,
2 rC ⊆ C for all r ≥ 0,

C is said to be pointed if C ∩ (−C) = {0} and full if C − C = V.
Given a subset S ⊂ V, define the dual cone of S in V is given by

S∗ = {|v〉 ∈ V : 〈x|v〉 ≥ 0 for all |x〉 ∈ S} .

Theorem 3.1
Suppose C, C1, C2 are cones of V. We have

1 C∗ is a closed cone of V.
2 C∗ is pointed (full) if and only if C is full (pointed, respectively).
3 C ⊆ (C∗)∗. C = (C∗)∗ if and only if C is closed.
4 If C1 ⊆ C2, then C∗1 ⊇ C∗2 .
5 (C1 ∩ C2)∗ ⊇ C∗1 + C∗2 , and (C1 ∩ C2)∗ = C∗1 + C∗2 , if C1 and C2 are closed.
6 (C1 + C2)∗ = C∗1 ∩ C∗2 .
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Cones of completely positive maps and duality

Take V = Hnm = {A ∈Mnm : A = A†}.

Sk(n,m) = {
∑k

i=1 |xi〉|yi〉 : |xi〉 ∈ Cn, |yi〉 ∈ Cm} Schmidt rank ≤ k

BPk(n,m) = {|u〉〈u| : u ∈ Sk(n,m)}∗ k-block positive

= {C(Φ) : Φ is k-positive}

Entk(n,m) = BPk(n,m)∗ k-entangled

SPk(n,m) = {Φ : Mn →Mm : C(Φ) ∈ Ent(n,m)} k-super positive

Φ ∈ SPk(n,m) if and only if there exist Fi ∈Mm,n with rank Fi ≤ k,
1 ≤ i ≤ r such that

Φ(X) =
r∑

i=1

FiXF
†
i for all X ∈Mn .
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Cones of completely positive maps and duality

Let d = min(n,m). For convenience of notation, we have omitted (n,m) in
the following

Φ SP1 ⊆ SP2 ⊆ · · · SPd = CP = Pd ⊆ Pd−1 ⊆ · · ·P1
l

C(Φ) Ent1 ⊆ Ent2 ⊆ · · · Entd = P = BPd ⊆ BPd−1 ⊆ · · ·BP1

C SP1 ⊆ SP2 ⊆ · · · SPd = CP Ent1 ⊆ Ent2 ⊆ · · ·Entd = P
l
C∗ P1 ⊇ P2 ⊇ · · · Pd = CP BP1 ⊇ BP2 ⊇ · · ·BPd = P
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Decomposable positive linear maps

Suppose Φ : A → B. For each k, define ΦT
k : Mk ⊗A →Mk ⊗ B by

ΦT
k (C ⊗A) = CT ⊗ Φ(A), and extend by linearity. Note that for

(Aij) ∈Mk(A), ΦT
k ((Aij)) = (Φ(Aji)) ∈Mk(B)). Φ is said to be k-copositive

if the map ΦT
k is positive. Φ is completely copositive if ΦT

k is positive for all k.
Φ is decomposable if Φ = Θ + Ψ, where Θ is completely positive and Ψ is
completely copositive. For n+m ≤ 5, every positive Φ : Mn →Mm is
decomposable.

Theorem 4.1
Let A be a C∗-algebra and Φ a linear map of A into B(H). Then Φ is
decomposable if and only if for all k ≥ 1, whenever (Aij) and (Aji) belong to
Mk(A)+ then (Φ(Aij)) ∈Mk(B(H))+.

Proof of Theorem 4.1
Suppose Φ is decomposable. Then Φ = Θ + Ψ where where Θ is completely
positive and Ψ is completely copositive. For k ≥ 1, (Aij) and (Aji) belong to
Mk(A)+, Θk((Aij)) ≥ 0 and Ψk((Aij)) = (Ψ(Aij)) = ΨT

k ((Aji)) ≥ 0.
Therefore, Φk((Aij)) ≥ 0.
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Decomposable positive linear maps

Proof of Theorem 4.1
Conversely, suppose for all k ≥ 1, whenever (Aij) and (Aji) belong to
Mk(A)+ then (Φ(Aij)) ∈Mk(B(H))+.
Without loss of generality, we may assume that A ⊆ B(K) for some Hilbert
space K. We can also assume that IB(K) ∈ A. Fix an orthonormal basis {|ei〉}
of K and let the elements in B(K) be represented by A = (aij), with
aij = 〈ei|Aej〉. Then we can define the transpose in B(K), AT = (aji). Let

S = {

[
A 0

0 AT

]
∈M2(B(K)) : A ∈ A}. Then S is an operator system in

M2(B(K)). Define Ψ : S → B(H)} by

Ψ

([
A 0

0 AT

])
= Φ(A).
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Decomposable positive linear maps

Proof of Theorem 4.1

For each k ≥ 1, suppose
(
Aij ⊕AT

ij

)
∈Mk(S) is positive. Then

(Aij) ,
(
AT

ij

)
≥ 0. Since(

AT
ij

)
≥ 0 ⇒ (Aji) =

(
AT

ij

)T ≥ 0,

we have
(
Ψ
(
Aij ⊕AT

ij

))
= (Φ(Aij)) ≥ 0. So, Ψ is k-positive. Hence, Ψ is

completely positive on the operator system S. By Theorem 1.4, Ψ can be
extended to a completely positive map on M2(B(H)). Let
Θ1, Θ2 : A →M2(B(K)) be given by

Θ1(A) =

[
A 0

0 0

]
, and Θ2(A) =

[ 0 0

0 AT

]
.

Then Θ1 is completely positive and Θ2 is completely copositive. Therefore,
Φ = Ψ ◦ (Θ1 + Θ2) is decomposable.
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Decomposable positive linear maps

Example 4.2 Choi [5]
Let Φ : M3 →M3 be given by

Φ



a11 a12 a13

a21 a22 a23

a31 a32 a33




=


a11 + 2a33 −a12 −a13

−a21 a22 + 2a11 −a23

−a31 −a32 a33 + 2a22

 .

Then Φ is positive but not indecomposable.
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Decomposable positive linear maps

Proof of Example 4.2
To prove that Φ is positive, we use Theorem 2.5 (a) ⇔ (c) for k = 1. By
direct calculation,

C(Φ) =



1 0 0 0 −1 0 0 0 −1
0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 −1

0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 −1 0 0 0 1
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Decomposable positive linear maps

Proof of Example 4.2

Suppose P =

[
x1
x2
x3

] [
x1 x2 x3

]
is a rank one orthogonal projection.

Then

(I3 ⊗ P )C(Φ)(I3 ⊗ P ) = X ⊗ P, where

X =

[ |x1|2 + 2|x2|2 −x1x2 −x1x3
−x1x2 |x2|2 + 2|x3|2 −x2x3
−x1x3 −x2x3 |x3|2 + 2|x1|2

]
.
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Decomposable positive linear maps

Proof of Example 4.2
Since

|x1|2 + 2|x2|2 ≥ 0,

det

([ |x1|2 + 2|x2|2 −x1x2

−x1x2 |x2|2 + 2|x3|2

])

= 2(|x2|4 + |x3|3(|x1|2 + 2|x2|2)) ≥ 0

det(X) = 4
(
|x1|2|x2|4 + |x1|4|x3|2 + |x1|2|x2|2|x3|2 + |x2|2|x3|4

)
≥ 0 ,

we have X ≥ 0. Hence, (I3 ⊗ P )C(Φ)(I3 ⊗ P ) = X ⊗ P ≥ 0. By Theorem
2.5, Φ is positive.
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Decomposable positive linear maps

Proof of Example 4.2
Next, we will use Theorem 4.1 to show that Φ is not decomposable.
Let (xij) ∈M3(M3) be given by

(xij) =



4 0 0 0 4 0 0 0 4
0 16 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
4 0 0 0 4 0 0 0 4
0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 1 0
4 0 0 0 4 0 0 0 4


It is easy to check that (xij) and (xji) are positive but
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Decomposable positive linear maps

Proof of Example 4.2

Φ((xij)) =



6 0 0 0 −4 0 0 0 −4
0 24 0 0 0 0 0 0 0
0 0 33 0 0 0 0 0 0
0 0 0 33 0 0 0 0 0
−4 0 0 0 6 0 0 0 −4

0 0 0 0 0 24 0 0 0
0 0 0 0 0 0 24 0 0
0 0 0 0 0 0 0 33 0
−4 0 0 0 −4 0 0 0 6


is not positive because −2 is an eigenvalue of Φ((xij)). �
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Completely positive maps and entanglement

A positive semi-definite matrix A ∈Mn with TrA = 1 is called a state (density
matrix). A state ρ ∈Mn ⊗Mm

∼= Mnm is said to be separable if there exist
states ρ1

i ∈Mn and ρ2
i ∈Mm, i = 1, . . . , k such that ρ =

∑k

i=1 piρ
1
i ⊗ ρ2

i for
some pi ≥ 0,

∑k

i=1 pi = 1.

Theorem 5.1 (Horodecki [7])
A state ρ ∈Mnm is separable if and only if (IMn ⊗ Φ) (ρ) ≥ 0 for all positive
map Φ : Mm →Mn.

Lemma 5.2
Φ : Mm →Mm is positive if and only if Tr(C(Φ)(P ⊗Q)) ≥ 0 for all
orthogonal projections P ∈Mn and Q ∈Mm.

Lemma 5.3
A state ρ ∈Mn ⊗Mm is separable if and only if Tr(ρA) ≥ 0 for all A ∈Mmn
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Completely positive maps and entanglement

Proof of Theorem 5.1
Suppose a state ρ ∈Mn ⊗Mm such that IMn ⊗ Φ(ρ) ≥ 0 for all positive map
Φ : Mm →Mn. Let A = (Aij) ∈Mm ⊗Mn such that Tr(A(P ⊗Q)) ≥ 0 for
all orthogonal projections P ∈Mm and Q ∈Mn. Choose Ψ : Mn →Mm such
that C(Ψ) = A. Then by Lemma 5.2, Ψ is positive. Hence,
Φ = Ψ† : Mm →Mn is also positive. Let {|ei〉 : 1 ≤ i ≤ n} be the canonical
basis for Cn and Ei j = |ei〉〈ej |. Then {Ei j : 1 ≤ i, j ≤ n} is the set of
canonical matrix units for Mn. We have

E =
n∑

i,j=1

Ei j ⊗ Ei j =

(∑
i=1

|ei〉|ei〉

)(∑
j=1

|ej〉|ej〉

)†
is positive and

C(Φ) = (In ⊗ Φ)(E) .
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Completely positive maps and entanglement

Proof of Theorem 5.1
Hence,

(In ⊗ Φ)(ρ) ≥ 0

⇒ 〈E|(In ⊗ Φ)(ρ)〉 ≥ 0

⇒ 〈(In ⊗ Φ)∗(E)|ρ〉 ≥ 0

⇒ 〈(In ⊗Ψ)(E)|ρ〉 ≥ 0

⇒ 〈C(Ψ)|ρ〉 ≥ 0

⇒ Tr (ρA) ≥ 0.
So, by lemma 5.3, ρ is separable.
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Completely positive maps and entanglement

Define two partial transpose map on Mn ⊗Mm by

T1(A⊗B) = AT ⊗B, and T2(A⊗B) = A⊗BT

and extend by linearity. Note that for (aij) ∈Mn ⊗Mm, we have

T1((aij)) = (aji), and T2((aij)) = (aT
ij)

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7])
Let ρ be a state in Mn ⊗Mm. Then we have
(1) If ρ is separable, then T2(ρ) ≥ 0.
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that T1(ρ) = (T2(ρ))T . Therefore, the condition T2(ρ) ≥ 0 is equivalent
to T1(ρ) ≥ 0.

A state ρ is said to be PPT if T2(ρ) ≥ 0.

(1) follows from Theorem 5.1 because the map A→ AT is positive.

To proof (2), suppose n+m ≤ 5 and T2(ρ) ≥ 0. Let Φ : Mm →Mn be a
positive map. Then Φ = Φ1 + Φ2, where Φ1 : Mm →Mn is completely
positive and Φ2 : Mm →Mn is completely copositive.

Then (I ⊗ Φ1)(ρ) ≥ 0 and (I ⊗ Φ2)(ρ) = (I ⊗ ΦT
2 )(T2(ρ)) ≥ 0.

Hence, (I ⊗ Φ)(ρ) ≥ 0. So, by Theorem 5.1, Φ is completely positive. �
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Completely positive maps and entanglement

To show that the conclusion in Theorem 5,4 (b) may not hold for n = m = 3,
let Φ be as given in Example 4.2 and

ρ = 1
63



4 0 0 0 4 0 0 0 4
0 16 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
4 0 0 0 4 0 0 0 4
0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 1 0
4 0 0 0 4 0 0 0 4


Then by the discussion in Example 4.2, ρ, T2(ρ) ≥ 0. So, ρ is a PPT state but
(I ⊗ Φ)(ρ) 6≥ 0. Therefore, by Theorem 5.1, ρ is not separable.
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An Interpolating Problem

Problem 6.1
Given A1, . . . , Ak ∈Mn and B1, . . . , Bk ∈Mm,
determine the necessary and sufficient condition for the existence of a
completely positive linear map Φ : Mn →Mm, possibly with some special
properties (e.g., Φ(In) = Im or/and Φ is trace preserving) such that

Φ(Aj) = Bj for j = 1, . . . , k. (2)

Given A = (aij) ∈Mn, let vec (A) = (a11, . . . , a1n, . . . , a21, . . . , ann) ∈ Cn2
.

A→ vec (A) gives a linear isomorphism between Mn and Cn2
. Let

C = (Cij) ∈Mn(Mm), the realignment matrix of C is given by

CR =



vec (C11)
vec (C12)

...
vec (C1n)
vec (C21)

...
vec (Cnn).
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An Interpolating Problem

We have Φ(A) = Φ(
∑

i,j
aijEij) =

∑
i,j
aijΦ(Eij). Therefore,

vec (Φ(A)) = vec (A)C(Φ)R (3)

It follows from (3) that given A1, . . . , Ak ∈Mn and B1, . . . , Bk ∈Mm, (2)
holds for some completely positive Φ if and only if there exists a positive
semidefinite matrix C ∈Mmn such that

vec (Bi) = vec (Ai)CR, for all 1 ≤ i ≤ k (4)

For general Ai and Bi, checking if (4) holds for a positive semidefinite matrix
C ∈Mmn can be very difficult. We will consider the case where
{Ai : 1 ≤ 1 ≤ k} and {Bi : 1 ≤ 1 ≤ k} are commuting families of Hermitian
matrices. In this case, there exist unitary matrices U ∈Mn and V ∈Mm such
that U†AiU and V †BiV are diagonal matrices. Clearly, there is a completely
positive map taking Ai to Bi if and only if there is a completely positive map
taking U†AiU to V †BiV . Therefore, we only need to consider the case where
Ai, Bi are diagonal matrices with diagonals ai, bi. In this case, C can be
chosen a diagonal matrix (exercise).
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An Interpolating Problem

Theorem 6.2
Suppose Ai, Bi are diagonal matrices with diagonals ai, bi. Then the
following conditions are equivalent:

1 There exists a completely positive map Φ : Mn →Mm such that
Φ(Ai) = Bi for all 1 ≤ i ≤ k.

2 There exists an n×m nonnegative matrix D such that bi = aiD for all
1 ≤ i ≤ k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3
Φ in Theorem 6.2 can be choose to be unital (trace preserving, unital and
trace-preserving, respectively) if and only if D can be chosen to be column
stochastic (row stochastic, doubly stochastic, respectively).
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An Interpolating Problem

Denote by Hn the set of n× n Hermitian matrices. For A ∈ Hn, let
λ(A) = (λ1(A), . . . , λn(A))

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4
Let A ∈ Hn and B ∈ Hm. Then the following conditions are equivalent.
(a) There is a completely positive linear map Φ : Mn →Mm such that

Φ(A) = B.
(b) There is a nonnegative n×m matrix D such that λ(B) = λ(A)D.
(c) There are real numbers γ1, γ2 ≥ 0 such that

γ1λ1(A) ≥ λ1(B) and λm(B) ≥ γ2λn(A).

Example 6.5
Let A = diag (2, 1, 0), B1 = diag (4, 3, 1) and B2 = diag (1, 1,−1). There is a
completely positive linear map Φ such that Φ(A) = B1, but there is no
completely positive linear map Φ such that Φ(A) = B2.
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An Interpolating Problem

Theorem 6.6
Let A ∈ Hn and B ∈ Hm. The following conditions are equivalent.
(a) There exists a unital completely positive map Φ : Mn →Mm such that

Φ(A) = B.
(b) There exists an n×m column stochastic matrix D such that

λ(B) = λ(A)D.
(c) λn(A) ≤ λi(B) ≤ λ1(A) for all 1 ≤ i ≤ m.

Theorem 6.7
Suppose A ∈ Hn and B ∈ Hm. Denote by λ+(X) the sum of positive
eigenvalues of a Hermitian matrix X. The following conditions are equivalent.
(a) There is a trace preserving completely positive map Φ : Mn →Mm such

that Φ(A) = B.
(b) There exists an n×m row stochastic matrix D such that λ(B) = λ(A)D.
(c) λ+(B) ≤ λ+(A), and TrA = TrB.
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An Interpolating Problem

Example 6.8
Let A = diag (2, 1,−1), B = diag (2, 0, 0), and C = diag (1, 1, 0). Then there
are trace preserving completely positive linear maps Φ1,Φ2 such that
Φ1(A) = B, Φ2(B) = C, and Φ2 ◦ Φ1(A) = C. There is no completely
positive linear map Φ satisfying Φ(C) = A.

Remark 6.9
For two density matrices A and B, there is always a trace preserving
completely positive map such that Φ(A) = B. But there may not be a unital
completely positive map Ψ such that Ψ(A) = B.
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10
Suppose A = diag (4, 1, 1, 0) and B = diag (3, 3, 0, 0). By Theorems 6.6 and
6.7 there is a trace preserving completely positive map sending A to B, and
also a unital completely positive map sending A to B. Let
A1 = A− I4 = diag (3, 0, 0,−1) and B1 = B − I4 = diag (2, 2,−1,−1). By
Theorem 6.7, there is no trace preserving completely positive linear map
sending A1 to B1. Hence, there is no unital trace preserving completely
positive map sending A to B.
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An Interpolating Problem

A quantum channel/completely positive map Φ : Mn →Mn is called mixed
unitary (mixing process) if there exist unitary matrices U1, . . . , Ur ∈Mn and
positive numbers p1, . . . , pr summing up to 1 such that
Φ(X) =

∑k

j=1 pjU
†
jXUj . Clearly, every mixed unitary completely positive map

is unital and trace preserving. For n ≥ 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y ∈ Rn, we say that x is majorized by y, denoted by x ≺ y, if the sum
of all entries of x is the same as that of y, and the sum of the k largest entries
of x is not larger than that of y for k = 1, . . . , n− 1;

Example 6.11
(3, 2, 1, 0) ≺ (6, 1, 0,−1), (3, 3, 0, 0) 6≺ (4, 1, 1, 0).
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is unital and trace preserving. For n ≥ 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y ∈ Rn, we say that x is majorized by y, denoted by x ≺ y, if the sum
of all entries of x is the same as that of y, and the sum of the k largest entries
of x is not larger than that of y for k = 1, . . . , n− 1;

Example 6.11
(3, 2, 1, 0) ≺ (6, 1, 0,−1), (3, 3, 0, 0) 6≺ (4, 1, 1, 0).
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An Interpolating Problem

Theorem 6.12
Let A,B ∈ Hn. The following are equivalent.
(a) There exists a unital trace preserving completely positive map Φ such

that Φ(A) = B.
(b) There is a mixed unitary channel Φ such that Φ(A) = B.
(c) There exist unitary matrices Uj , 1 ≤ j ≤ n such that

B = 1
n

∑n

j=1 UjAU
†
j .

(d) There is a unitary U such that UAU† has diagonal entries
λ1(B), . . . , λn(B).

(e) λ(B) ≺ λ(A).
(f) There is a doubly stochastic matrix D such that λ(B) = λ(A)D.
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