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Outline

@ Dilation and extension of completely positive map
@ Completely positive maps on matrix spaces

© Cones of positive maps and duality

© Decomposable positive maps

@ Completely positive map and entanglement

@ Interpolating problems of completely positive map
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Dilation and extension of completely positive map

H : Hilbert space
B(H) : bounded linear operators on H.

C™-algebra A is a complex Banach algebra
with a conjugate linear map A — A* (A') satisfying

|AA*|| = ||A||? for all A € A.
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Dilation and extension of completely positive map

H : Hilbert space
B(H) : bounded linear operators on H.

C™-algebra A is a complex Banach algebra
with a conjugate linear map A — A* (A') satisfying

[AA™|| = |JA|]* for all A€ A. (= [|A]l = [|A*]])
A < B(H) norm closed *-subalgebra

A commutative = A = Cy(X), X locally compact Haudorff space.

Co(X) is the set of complex continuous function on X such that for all € > 0,
there exists a compact subset K C X such that |f(z)| < e
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Dilation and extension of completely positive map

H : Hilbert space
B(H) : bounded linear operators on H.

C™-algebra A is a complex Banach algebra
with a conjugate linear map A — A* (A') satisfying

[AA™|| = |JA|]* for all A€ A. (= [|A]l = [|A*]])
A < B(H) norm closed *-subalgebra

A commutative = A = Cy(X), X locally compact Haudorff space.

Co(X) is the set of complex continuous function on X such that for all € > 0,
there exists a compact subset K C X such that |f(z)| < eforallz € X \ K.
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Dilation and extension of completely positive map

A € B(H) is said to be positive (A > 0) if (x|Az) > 0 for all |z) € H.

BH)t = {A€B(H): A> 0}, My(B(H)) = B(H"),
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Dilation and extension of completely positive map
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Operator system : self-adjoint (S = S™) operator space containing 1.4.
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Dilation and extension of completely positive map

A € B(H) is said to be positive (A > 0) if (x|Az) > 0 for all |z) € H.
B(H)T = {A € B(H): A>0}, Mp(B(H)) =2 B(H*), Mp(B(H))" = B(H*)*.
ACB(H) = Mp(A) C Mi(B(H)), Mp(A)T = Mp(A) N My(B(H)t

Operator space : norm-closed subspace S of a C*-algebra A,

M (S)t = My (S) N My(A)T.

Operator system : self-adjoint (S = S™) operator space containing 1.4.
®: S — Bis positive if ®(ST) C Bt

Dy 0 Mi(S) — Mp(B),

Yiu-Tung Poon Quantum operations



Dilation and extension of completely positive map

A € B(H) is said to be positive (A > 0) if (x|Az) > 0 for all |z) € H.
B(H)T = {A € B(H): A>0}, Mp(B(H)) =2 B(H*), Mp(B(H))" = B(H*)*.
ACB(H) = Mp(A) C Mi(B(H)), Mp(A)T = Mp(A) N My(B(H)t

Operator space : norm-closed subspace S of a C*-algebra A,

M (S)t = My (S) N My(A)T.

Operator system : self-adjoint (S = S™) operator space containing 1.4.
®: S — Bis positive if ®(ST) C Bt

Pr 2 Mi(S) — Mi(B), ®((Aij)) = (P(Asy))

® is k-positive if ®5(My(S)T) C My(B)*

® is completely positive if ® is k-positive for all k.
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Dilation and extension of completely positive map

Theorem 1.1

(Stinespring's dilation theorem) Let A be a unital C*-algebra, and let

®: A — B(H) be a linear map. Then @ is completely positive if and only if
there exist a Hilbert space K, a unital C*-homomorphism 7 : A — B(K), and
a bounded operator V' : H — K such that

®(A) = VIr(A)V for all A€ A.

Theorem 1.2

Suppose A is a commutative C*-algebra and ® : A — B(H) is positive. Then
® is completely positive.

Let S be a self-adjoint subspace of a unital C*-algebra A and B a commutative
C™-algebra.
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Dilation and extension of completely positive map

Theorem 1.1

(Stinespring's dilation theorem) Let A be a unital C*-algebra, and let

®: A — B(H) be a linear map. Then @ is completely positive if and only if
there exist a Hilbert space K, a unital C*-homomorphism 7 : A — B(K), and
a bounded operator V' : H — K such that

®(A) = VIr(A)V for all A€ A.

Theorem 1.2

Suppose A is a commutative C*-algebra and ® : A — B(H) is positive. Then
® is completely positive.

Let S be a self-adjoint subspace of a unital C*-algebra A and B a commutative
C™-algebra. Every positive linear map from S to B is completely positive.
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Dilation and extension of completely positive map
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A.
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A. Then every
completely positive map from S to a C*-algebra B can be extended to a
completely positive map from A to B.
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A. Then every
completely positive map from S to a C*-algebra B can be extended to a
completely positive map from A to B.

Theorem 1.5

Let A be a unital C*-algebra and S an operator system in A.
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A. Then every
completely positive map from S to a C*-algebra B can be extended to a
completely positive map from A to B.

Theorem 1.5

Let A be a unital C*-algebra and S an operator system in \A. Then every
positive map from S to a commutative C*-algebra B3 can be extended to a
positive map from A to B.
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A. Then every
completely positive map from S to a C*-algebra B can be extended to a
completely positive map from A to B.

Theorem 1.5

Let A be a unital C*-algebra and S an operator system in \A. Then every
positive map from S to a commutative C*-algebra B3 can be extended to a
positive map from A to B.

Example 1.6 (Arveson [1])

Let C(T) be the commutative C*-algebra of continuous function on the unit
circle of the complex plane and S the subspace of C(T') spanned by {1, z,Z}.
(Note: S is an operator system of A.)
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A. Then every
completely positive map from S to a C*-algebra B can be extended to a
completely positive map from A to B.

Theorem 1.5

Let A be a unital C*-algebra and S an operator system in \A. Then every
positive map from S to a commutative C*-algebra B3 can be extended to a
positive map from A to B.

Example 1.6 (Arveson [1])

Let C(T) be the commutative C*-algebra of continuous function on the unit
circle of the complex plane and S the subspace of C(T') spanned by {1, z,Z}.
(Note: S is an operator system of A.) Define ® : S — M by

2
®(a+bz+cz) = |: ;C ab] .
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A. Then every
completely positive map from S to a C*-algebra B can be extended to a
completely positive map from A to B.

Theorem 1.5

Let A be a unital C*-algebra and S an operator system in \A. Then every
positive map from S to a commutative C*-algebra B3 can be extended to a
positive map from A to B.

Example 1.6 (Arveson [1])

Let C(T) be the commutative C*-algebra of continuous function on the unit
circle of the complex plane and S the subspace of C(T') spanned by {1, z,Z}.
(Note: S is an operator system of A.) Define ® : S — M by

2
®(a+bz+cz) = |: ;C ab] .

Then & is positive
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Dilation and extension of completely positive map

Theorem 1.4

Let A be a unital C*-algebra and S be an operator system (norm-closed
self-adjoint subspace of A, which contains the identity 14) in A. Then every
completely positive map from S to a C*-algebra B can be extended to a
completely positive map from A to B.

Theorem 1.5

Let A be a unital C*-algebra and S an operator system in \A. Then every
positive map from S to a commutative C*-algebra B3 can be extended to a
positive map from A to B.

Example 1.6 (Arveson [1])

Let C(T) be the commutative C*-algebra of continuous function on the unit
circle of the complex plane and S the subspace of C(T') spanned by {1, z,Z}.
(Note: S is an operator system of A.) Define ® : S — M by

2
®(a+bz+cz) = |: ;C ab] .

Then ® is positive but ® cannot be extended to a positive map on C(T).
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Dilation and extension of completely positive map
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M is completely positive.
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space K,

}ﬂ|
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

w: C(T) — B(K),
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C? — K
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C* — K such that

®(A) = VIir(A)V for all A e C(T).
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C* — K such that

®(A) = VIir(A)V for all A e C(T).

Since @ is unital, VIV = I,.
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C* — K such that

®(A) = VIir(A)V for all A e C(T).

Since ® is unital, VIV = I,. Therefore, V'V is a projection in B(K).
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C* — K such that

®(A) = VIir(A)V for all A e C(T).

Since ® is unital, VIV = I,. Therefore, VV is a projection in B(K). So, we
have

} =®(1) = ®(22) = Vin(22)V = Vir(2)r(Z)V
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C* — K such that

®(A) = VIir(A)V for all A e C(T).

Since ® is unital, VIV = I,. Therefore, VV is a projection in B(K). So, we
have
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C* — K such that

®(A) = VIir(A)V for all A e C(T).

Since ® is unital, VIV = I,. Therefore, VV is a projection in B(K). So, we
have
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Dilation and extension of completely positive map

Example 1.6

Suppose the contrary that ® can be extended to a positive map on C(T).
Then by Theorem 1.2, ® : C(T') — M> is completely positive. By Theorem
1.1, there exist a Hilbert space I, a unital C""-homomorphism

7 : C(T) — B(K), and a bounded operator V : C* — K such that

®(A) = VIir(A)V for all A e C(T).

Since ® is unital, VIV = I,. Therefore, VV is a projection in B(K). So, we

have
[1 0] _ i + _
0 117 O(1) = ®(2z) = Vin(22)V = Vin(z)n(z2)V
> Viz()VVia@)V = &(2)®(2)
o 2][o o] _[4 o0
|0 o0]]l20] |0 0}
a contradiction. O
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Dilation and extension of completely positive map
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Dilation and extension of completely positive map

Suppose S is an operator space of a C*-algebra A.
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Dilation and extension of completely positive map

Suppose S is an operator space of a C™*-algebra A. A linear map @ : S — B(H)
is called a complete contraction if @, is a contraction (||®x|| < 1) for every k.
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Dilation and extension of completely positive map

Suppose S is an operator space of a C™*-algebra A. A linear map @ : S — B(H)
is called a complete contraction if @, is a contraction (||®x|| < 1) for every k.
There is a close connection between the study of complete contraction on
operator system and completely positive map on operator system.
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Dilation and extension of completely positive map

Suppose S is an operator space of a C™*-algebra A. A linear map @ : S — B(H)
is called a complete contraction if @, is a contraction (||®x|| < 1) for every k.
There is a close connection between the study of complete contraction on
operator system and completely positive map on operator system. This stems
from the connection between the norm and positivity in B(H).
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Dilation and extension of completely positive map

Suppose S is an operator space of a C™*-algebra A. A linear map @ : S — B(H)
is called a complete contraction if @, is a contraction (||®x|| < 1) for every k.
There is a close connection between the study of complete contraction on
operator system and completely positive map on operator system. This stems
from the connection between the norm and positivity in B(H).

Lemma 1.7 (Choi and Effros, [6])

Let A € B(H). Then we have

~ =

1
Jal <1 [AT
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Dilation and extension of completely positive map

Suppose S is an operator space of a C™*-algebra A. A linear map @ : S — B(H)
is called a complete contraction if @, is a contraction (||®x|| < 1) for every k.
There is a close connection between the study of complete contraction on
operator system and completely positive map on operator system. This stems
from the connection between the norm and positivity in B(H).

Lemma 1.7 (Choi and Effros, [6])

Let A € B(H). Then we have

Al <1 [

I
AT T

The following theorem [2, 14] is an analog to Theorem 1.4.
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Dilation and extension of completely positive map

Suppose S is an operator space of a C™*-algebra A. A linear map @ : S — B(H)
is called a complete contraction if @, is a contraction (||®x|| < 1) for every k.
There is a close connection between the study of complete contraction on
operator system and completely positive map on operator system. This stems
from the connection between the norm and positivity in B(H).

Lemma 1.7 (Choi and Effros, [6])

Let A € B(H). Then we have

Al <1 [

I
AT T

The following theorem [2, 14] is an analog to Theorem 1.4.

Theorem 1.8

Let S be an operator space in a C*-algebra A and ® : S — B(#H) a complete
contraction.
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Dilation and extension of completely positive map

Suppose S is an operator space of a C™*-algebra A. A linear map @ : S — B(H)
is called a complete contraction if @, is a contraction (||®x|| < 1) for every k.
There is a close connection between the study of complete contraction on
operator system and completely positive map on operator system. This stems
from the connection between the norm and positivity in B(H).

Lemma 1.7 (Choi and Effros, [6])

Let A € B(H). Then we have

Al <1 [

I
AT T

The following theorem [2, 14] is an analog to Theorem 1.4.

Theorem 1.8

Let S be an operator space in a C*-algebra A and ® : S — B(#H) a complete
contraction. Then ® can be extended to a complete contraction on A
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Dilation and extension of completely positive map
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Dilation and extension of completely positive map

Proof. Assume 14 € A.

Yiu-Tung Poon Quantum operations



Dilation and extension of completely positive map

Proof. Assume 14 € A. Let

Ma A
52—{[ A;‘ MA}:AES, AeC}.
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Dilation and extension of completely positive map

Proof. Assume 14 € A. Let
_ M 4 A )
SQ{[ AT )\IA}'AES’/\GC}'

Then S is an operator system in Mz (A).
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Dilation and extension of completely positive map

Proof. Assume 14 € A. Let
_ M 4 A )
SQ{[ AT )\IA}'AES’/\GC}'

Then S is an operator system in M3(A). Define ¥ : Sy — B = M>(B(H))

by
o] Ma A | Ay @(A)
AT Xa )T | AT Mpe
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Dilation and extension of completely positive map

Proof. Assume 14 € A. Let
_ M 4 A )
SQ{[ At )\IA}.AES,/\EC}.
Then S is an operator system in M3(A). Define ¥ : Sy — B = M>(B(H))
by
o ([ A A Y[ Msagy ®(4)
AT Xa )T | AT Mpe

Then ¥ is completely positive on Sa. (exercise)

Yiu-Tung Poon Quantum operations



Dilation and extension of completely positive map

Proof. Assume 14 € A. Let

Ma A
52—{[ A;‘ MA}:AES, AeC}.

Then S is an operator system in M3(A). Define ¥ : Sy — B = M>(B(H))
by
o[ Ma A T\ [ Msay  @(4)
AT Xy T ®A)T Mg
Then ¥ is completely positive on Sa. (exercise)

By Theorem 1.4, ¥ can be extended to a completely positive map on

Ma(A).
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Dilation and extension of completely positive map

Proof. Assume 14 € A. Let

Ma A
52—{[ A;‘ MA}:AES, AeC}.

Then S is an operator system in M3(A). Define ¥ : Sy — B = M>(B(H))
by
o[ Ma A T\ [ Msay  @(4)
AT Xy T ®A)T Mg
Then ¥ is completely positive on Sa. (exercise)

By Theorem 1.4, ¥ can be extended to a completely positive map on
M>(A). There exist ®;; : A — B(H), 1 <4,j <2,
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Dilation and extension of completely positive map

Proof. Assume 14 € A. Let

Ma A
52—{[ A;‘ MA}:AES, AeC}.

Then S is an operator system in M3(A). Define ¥ : Sy — B = M>(B(H))
by
v ({ My A D B [ Mpay — ®(A)
AT Xa )T | AT Mpe
Then ¥ is completely positive on Sa. (exercise)
By Theorem 1.4, ¥ can be extended to a completely positive map on

M>(A). There exist ;5 : A — B(H), 1 <4,j <2, such that for
[Aij] € Ma(A),
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Dilation and extension of completely positive map

Proof. Assume 14 € A. Let

Ma A
52—{[ A;‘ MA}:AES, AeC}.

Then S is an operator system in M3(A). Define ¥ : Sy — B = M>(B(H))
by
v ({ My A D B [ Mpay — ®(A) }
AT Xa | ) T | AT Mpey |
Then ¥ is completely positive on Sa. (exercise)
By Theorem 1.4, ¥ can be extended to a completely positive map on

M>(A). There exist ;5 : A — B(H), 1 <4,j <2, such that for
[Aqi;] € M2(A), we have

” ([ A Ar }) _ { D11(A11)  Pi2(Ar2) ]
Ao Az | ®21(A21)  Paa(A2) |
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Dilation and extension of completely positive map
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Dilation and extension of completely positive map

Therefore, ®15 is an extension of ®.
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M>(A).
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

0 ®12(A)
Doy (A1) 0
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

[0 4 I 0 By (AT
- At 0 T @A) 0 :
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

[0 4 I 0 By (AT
- At 0 T @A) 0 :

Therefore, le(AT) = <I>12(A)Jr for all A € A.
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

ool Ay L 0 Bu(Ahf
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

ool Ay L 0 Bu(Ahf
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
Then we have

{JA A

At I >0

Yiu-Tung Poon Quantum operations



Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

ool Ay L 0 Bu(Ahf
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
Then we have

Ia A
AT 14

- (i L))

>0
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

ool Ay L 0 Bu(Ahf
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
Then we have

Ia A
AT 14

T4 A [B(’H) <I)12(A)
= \\/J = >0
({ AT Iy }) [ 12(A)" Isy | T

>0
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

ool Ay L 0 Bu(Ahf
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
Then we have

{JA A

At I >0

Ia A Ispy  P12(A)
= U = >0=||[P2(A)]| < 1.
({ AT 14 D [ P12(A) Ipay | T I1212(A)] <
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

[0 4 I 0 By (AT
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
Then we have

{JA A

U

I_A A [B(’H) <I)12(A)
= /] = >0=||® A <1.
<|: AT I_A :|) |: ‘1)12(14)T ]B(’H) - ” 12( )” -

This shows that ®15 is a contraction.
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Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

ool Ay L 0 Bu(Ahf
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
Then we have

{JA A >0

AT 14

Ia A Ispy  P12(A)
= U = >0=||[P2(A)]| < 1.
({ AT 14 D [ P12(A) Ipay | T I1212(A)] <

This shows that ®;2 is a contraction. Similar argument applied to I, ® ¥
shows that I, ® ®12 is a contraction for all k£ > 1.

Yiu-Tung Poon Quantum operations



Dilation and extension of completely positive map

Therefore, @12 is an extension of ®. Since V¥ is completely positive, \I/(B) is
self-adjoint for all self-adjoint B € M2 (A). In particular, for all A € A, we have

[ 0 <I>12(A)} \qu AD
Doy (A1) 0 - AT 0

[0 4 I 0 By (AT
- At 0 T @A) 0 :

Therefore, ®21(AT) = ®12(A)" for all A € A. Suppose A € A, with ||A]| < 1.
Then we have

{JA A >0

AT 14

I_A A [B(’H) <I)12(A)
= /] = >0=||® A <1.
<|: AT I_A :|) |: ‘1)12(14)T ]B(’H) - ” 12( )” -

This shows that ®;2 is a contraction. Similar argument applied to I, ® ¥
shows that I, ® ®15 is a contraction for all k > 1. Therefore, ®15 is a
complete contractive extension of ® to A. O
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Completely positive maps on matrix spaces
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
Q (z|Az) >0 for all |z) € C".
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
Q (z|Az) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
Q (z|Az) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
Q (z|Az) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2

Let Px(n,m) denote the set of k-positive map from M, to M,,. D is
completely positive if ® € Py(n,m) for all positive integer k.
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
©Q (z|Azx) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2

Let Px(n,m) denote the set of k-positive map from M, to M,,. D is
completely positive if ® € Py(n,m) for all positive integer k.

Example 2.3
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
©Q (z|Azx) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2

Let Px(n,m) denote the set of k-positive map from M, to M,,. D is
completely positive if ® € Py(n,m) for all positive integer k.

Example 2.3

The map ® : M,, — M,, defined by ®(A) = A’ is positive,
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
©Q (z|Azx) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2

Let Px(n,m) denote the set of k-positive map from M, to M,,. D is
completely positive if ® € Py(n,m) for all positive integer k.

Example 2.3

The map ® : M,, — M,, defined by ®(A) = A’ is positive, but not 2-positive.
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
©Q (z|Azx) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2

Let Px(n,m) denote the set of k-positive map from M, to M,,. D is
completely positive if ® € Py(n,m) for all positive integer k.

Example 2.3

The map ® : M,, — M,, defined by ®(A) = A’ is positive, but not 2-positive.
Ea ] € M, Then

E21  Ea

monw =] 2]

To see this, consider A = {
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Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
©Q (z|Azx) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2

Let Px(n,m) denote the set of k-positive map from M, to M,,. D is
completely positive if ® € Py(n,m) for all positive integer k.

Example 2.3

The map ® : M,, — M,, defined by ®(A) = A’ is positive, but not 2-positive.
T ] € M. Then

Ez  E22
Yiu-Tung Poon Quantum operations

To see this, consider A = {

Ei1 Eo

i . 0
(L2 ®@P)(A) = { Eis  Ea ] has a principal matrix of the form { 1

@ =




Completely positive maps on matrix spaces

Let A € M,,. Then the following conditions are equivalent:
©Q (z|Azx) >0 for all |z) € C".

@ A= A" and all eigenvalues of A are non-negative.

Definition 2.2

Let Px(n,m) denote the set of k-positive map from M, to M,,. D is
completely positive if ® € Py(n,m) for all positive integer k.

Example 2.3

The map ® : M,, — M,, defined by ®(A) = A’ is positive, but not 2-positive.
I P)(A) =
LoD = B, B

Bu B ] € M, Then
which is indefinite.

Ez  E22
Yiu-Tung Poon Quantum operations

To see this, consider A = {

Ei1 Eo 0
1

@ =

] has a principal matrix of the form {




Completely positive maps on matrix spaces
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with

B(A) = (n— 1)(TrA)L, — A
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with
D(A)=(n—1)(TrA)L, — A

is n — 1-positive
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with
D(A)=(n—1)(TrA)L, — A

is n — 1-positive but not n-positive.
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with
D(A)=(n—1)(TrA)L, — A

is n — 1-positive but not n-positive.

Given a linear map @ : M,, — M,,,
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with
D(A)=(n—1)(TrA)L, — A

is n — 1-positive but not n-positive.

Given a linear map ® : M,, — M,,, define the Choi matrix of ® by

C(®) = (B(Eiy))oy = > Bi @ D(Eiy).
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with
D(A)=(n—1)(TrA)L, — A

is n — 1-positive but not n-positive.

Given a linear map ® : M,, — M,,, define the Choi matrix of ® by

C(®) = (B(Eiy))oy = > Bi @ D(Eiy).

Theoretically, ® is completely determined by its Choi matrix.
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with
D(A)=(n—1)(TrA)L, — A

is n — 1-positive but not n-positive.

Given a linear map ® : M,, — M,,, define the Choi matrix of ® by

C(®) = (B(Eiy))oy = > Bi @ D(Eiy).

Theoretically, ® is completely determined by its Choi matrix. In this section, we
will explore the relationship between ® and C(®).
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])
For every n > 1, the map ® : M,, — M,, with

B(A) = (n— 1)(TrA)L, — A

is n — 1-positive but not n-positive.

Given a linear map ® : M,, — M,,, define the Choi matrix of ® by

C(®) = (B(Eiy))oy = > Bi @ D(Eiy).

Theoretically, ® is completely determined by its Choi matrix. In this section, we
will explore the relationship between ® and C(®).

Let Sk(n,m) = {35, Jzi)ly:) : |z:) € C", |yi) € C™}
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Completely positive maps on matrix spaces

Example 2.4 (Choi [3])

For every n > 1, the map ® : M,, — M,, with
D(A)=(n—1)(TrA)L, — A

is n — 1-positive but not n-positive.

Given a linear map ® : M,, — M,,, define the Choi matrix of ® by

C(®) = (B(Eiy))oy = > Bi @ D(Eiy).

Theoretically, ® is completely determined by its Choi matrix. In this section, we
will explore the relationship between ® and C(®).

Let Sk(n,m) = {Zle |zi)|yi) : |xs) € C™, |ys) € C™} be the set of vectors
in C" ® C™ with Schmidt rank < k.
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
(b) {z|C(®)z) > 0 for all |z) € Sk(n, m).
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
(b) {z|C(®)z) > 0 for all |z) € Sk(n, m).

(¢) (In® P)C(®)(I, ® P) is positive for all orthogonal projection P with
rank < k.
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
(b) {z|C(®)z) > 0 for all |z) € Sk(n, m).

(¢) (In® P)C(®)(I, ® P) is positive for all orthogonal projection P with
rank < k.

For k =1, in (b), we have z € Si(n,m) is of the form z = |z)|y).
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
(b) {z|C(®)z) > 0 for all |z) € Sk(n, m).

(¢) (In® P)C(®)(I, ® P) is positive for all orthogonal projection P with
rank < k.

For k =1, in (b), we have z € Si(n,m) is of the form z = |z)|y). (z|C(®P)z)
is a biquadratic form in z; and y;,
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
(b) {z|C(®)z) > 0 for all |z) € Sk(n, m).

(¢) (In® P)C(®)(I, ® P) is positive for all orthogonal projection P with
rank < k.

For k =1, in (b), we have z € Si(n,m) is of the form z = |z)|y). (z|C(®P)z)
is a biquadratic form in z; and y;, homogeneous polynomial, with every term
of the form z;Z;yi7e.
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
(b) {z|C(®)z) > 0 for all |z) € Sk(n, m).

(¢) (In® P)C(®)(I, ® P) is positive for all orthogonal projection P with
rank < k.

For k =1, in (b), we have z € Si(n,m) is of the form z = |z)|y). (z|C(®P)z)
is a biquadratic form in z; and y;, homogeneous polynomial, with every term
of the form z;Z;yi7e.

On the other hand, in (c), to study (I, ® P)C(®)(l, ® P) >0,
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Completely positive maps on matrix spaces

Theorem 2.5

Given a linear map ® : M,, — M,,, and k > 1, the following conditions are
equivalent:

(a) @ is k-positive.
(b) {z|C(®)z) > 0 for all |z) € Sk(n, m).

(¢) (In® P)C(®)(I, ® P) is positive for all orthogonal projection P with
rank < k.

For k =1, in (b), we have z € Si(n,m) is of the form z = |z)|y). (z|C(®P)z)
is a biquadratic form in z; and y;, homogeneous polynomial, with every term
of the form z;Z;yi7e.

On the other hand, in (c), to study (I, ® P)C(®)(l, ® P) > 0, we only need
to consider quadratics in y;. (see Example 4.2)
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Completely positive maps on matrix spaces

Theorem 2.6 (Choi [4])
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Completely positive maps on matrix spaces

Theorem 2.6 (Choi [4])

(a) @ is completely positive.

(b) @ is n-positive.

(c) The Choi matrix C(®) = (®(E;;)) is positive.
(d) ® admits an operator-sum representation:

D(A) iFjAFJT. (1)
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Completely positive maps on matrix spaces

Theorem 2.6 (Choi [4])

(a) @ is completely positive.

(b) @ is n-positive.

(c) The Choi matrix C(®) = (®(E;;)) is positive.
(d) ® admits an operator-sum representation:

D(A) iFjAFJT. (1)

Furthermore, suppose (d) holds. Then we have
(1) The map ® is unital (®(L,) = In)
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Completely positive maps on matrix spaces

Theorem 2.6 (Choi [4])

(a) @ is completely positive.

(b) @ is n-positive.

(c) The Choi matrix C(®) = (®(E;;)) is positive.
(d) ® admits an operator-sum representation:

D(A) iFjAFJT. (1)

Furthermore, suppose (d) holds. Then we have
(1) The map @ is unital (®(I,) = I,,) if and only if Y7 | FyFf = L.
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Completely positive maps on matrix spaces

Theorem 2.6 (Choi [4])

(a) @ is completely positive.

(b) @ is n-positive.

(c) The Choi matrix C(®) = (®(E;;)) is positive.
(d) ® admits an operator-sum representation:

D(A) iFjAFJT. (1)

Furthermore, suppose (d) holds. Then we have
(1) The map @ is unital (®(I,) = I,,) if and only if Y7 | FyFf = L.
(2) The map @ is trace preserving (Tr(®(A)) = Tr(A))
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Completely positive maps on matrix spaces

Theorem 2.6 (Choi [4])

(a) @ is completely positive.

(b) @ is n-positive.

(c) The Choi matrix C(®) = (®(E;;)) is positive.
(d) ® admits an operator-sum representation:

D(A) iFjAFJT. (1)

Furthermore, suppose (d) holds. Then we have
(1) The map @ is unital (®(I,) = I,,) if and only if Y7 | FyFf = L.
(2) The map @ is trace preserving (Tr(®(A)) = Tr(A)) if and only if
Y FIF =1,

Jj=1
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(X'Y).
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
d: M,, - M,, is a linear map.
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map &t M, — M,
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by

(Bl2'(4)) = (8(B)|4)

Yiu-Tung Poon Quantum operations



Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by

(B|®'(A)) = (®(B)|A)
for all A € M,, and B € M,,.
Theorem 2.9

Let ®: M,, — M,,.
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by

(B|®'(A)) = (®(B)|A)
for all A € M,, and B € M,,.
Theorem 2.9

Let & : M,, = M,,. Then for every k > 1,
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10

Suppose ¢ : M,, — M,, is a completely positive linear map with operator sum
representation in (1). Then the dual linear map ® : M,, — M, is given by

®'(B)=>_ F/BF;.
j=1

Yiu-Tung Poon Quantum operations



Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10

Suppose ¢ : M,, — M,, is a completely positive linear map with operator sum
representation in (1). Then the dual linear map ® : M,, — M, is given by

®'(B)=>_ F/BF;.
j=1

Consequently, ®' is also completely positive.
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10

Suppose ¢ : M,, — M,, is a completely positive linear map with operator sum
representation in (1). Then the dual linear map ® : M,, — M, is given by

®'(B)=>_ F/BF;.
j=1

Consequently, ®' is also completely positive. Furthermore, ® is
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10

Suppose ¢ : M,, — M,, is a completely positive linear map with operator sum
representation in (1). Then the dual linear map ® : M,, — M, is given by

®'(B)=>_ F/BF;.
j=1

Consequently, ®' is also completely positive. Furthermore, ® is unital
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10

Suppose ¢ : M,, — M,, is a completely positive linear map with operator sum
representation in (1). Then the dual linear map ® : M,, — M, is given by

®'(B)=>_ F/BF;.
j=1

Consequently, ®' is also completely positive. Furthermore, ® is unital (trace
preserving, respectively)
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10

Suppose ¢ : M,, — M,, is a completely positive linear map with operator sum
representation in (1). Then the dual linear map ® : M,, — M, is given by

®'(B)=>_ F/BF;.
j=1

Consequently, ®' is also completely positive. Furthermore, ® is unital (trace
preserving, respectively) if and only if ®' is trace preserving
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Completely positive maps on matrix spaces

Define an inner product on M, , by (X|Y) = Tr(XTY). Suppose
® : M,, - M,, is a linear map. Then the dual map & . M,, - M, is the
linear map defined by
(B|®'(A)) = (2(B)|A)
for all A € M,, and B € M,,.

Theorem 2.9

Let ® : M,, — M,,. Then for every k > 1, ® is k-positive if and only if ®1 is
k-positive.

Theorem 2.10

Suppose ¢ : M,, — M,, is a completely positive linear map with operator sum
representation in (1). Then the dual linear map ® : M,, — M, is given by

®'(B)=>_ F/BF;.
j=1

Consequently, ®' is also completely positive. Furthermore, ® is unital (trace
preserving, respectively) if and only if ®' is trace preserving (unital,
respectively).
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Completely positive maps on matrix spaces
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Completely positive maps on matrix spaces

Let & : M,, — M,, be a linear map.
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Completely positive maps on matrix spaces

Let & : M,, — M,, be a linear map. Then ® is a completely positive if and
only if @ is k-positive for k = min{m,n}.
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Completely positive maps on matrix spaces

Let & : M,, — M,, be a linear map. Then ® is a completely positive if and
only if ® is k-positive for k = min{m,n}. In particular, if n or m equals to 1,
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Completely positive maps on matrix spaces

Let & : M,, — M,, be a linear map. Then ® is a completely positive if and
only if ® is k-positive for k = min{m,n}. In particular, if n or m equals to 1,
then @ is positive if and only if ® is completely positive.
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Cones of completely positive maps and duality

Given an inner product space V,
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

@c+cCccCe,
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

QCc+cCcCc,
@ rC CC forall r >0,
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,
Q rC CCforallr >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

QCc+cCcCc,
@ rC CC forall r >0,

C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V,
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1
Suppose C,C1,C2 are cones of V.
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1
Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1
Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
@ C” is pointed (full) if and only if C is full (pointed, respectively).
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1

Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
@ C” is pointed (full) if and only if C is full (pointed, respectively).
© cc(c).
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1

Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
@ C” is pointed (full) if and only if C is full (pointed, respectively).
© CC(CY*. C=(C")" if and only if C is closed.
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1
Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
@ C” is pointed (full) if and only if C is full (pointed, respectively).
© CC(CY*. C=(C")" if and only if C is closed.
Q IfC1 C (s, then CF D C5.
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1
Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
@ C” is pointed (full) if and only if C is full (pointed, respectively).
© CC(CY*. C=(C")" if and only if C is closed.
Q IfC1 C (s, then CF D C5.
Q (CinCs)" 2CT +Cs,
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Cones of completely positive maps and duality

Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by

S* ={lv) €V :(zlv) >0 forall |z) € S}.

Theorem 3.1
Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
@ C” is pointed (full) if and only if C is full (pointed, respectively).
© CC(CY*. C=(C")" if and only if C is closed.
Q IfC1 C (s, then CF D C5.
Q (CinNC)" DCT+C5, and (C1NC2)" =CT +C5,
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Given an inner product space V, a non-empty subset C of V is said to be a
cone if it satisfies:

Q@ cCc+CccCc,

@ rC CC forall r >0,
C is said to be pointed if C N (=C) = {0} and full if C —C = V.
Given a subset S C V, define the dual cone of S in V is given by
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Suppose C,C1,C2 are cones of V. We have
© C* is a closed cone of V.
@ C” is pointed (full) if and only if C is full (pointed, respectively).
© CC(CY*. C=(C")" if and only if C is closed.
Q IfC1 C (s, then CF D C5.
Q (CinNC2)" DCT+C5, and (C1 NC2)* =Ci +Cs5, if C1 and C2 are closed.
Q (G +C)" =CiNnCs.
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Enti(n,m) = BPy(n,m)" k-entangled
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Sk(n,m) = {Ele |zi)|yi) : |zs) € C™, |ys) € C™}  Schmidt rank < k
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SPy(n,m) = {®: M, - My, : C(®) € Ent(n,m)}  k-super positive
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Cones of completely positive maps and duality

Take V = Hym = {A € My : A= AT}

Sk(n,m) = {Ele |zi)|yi) : |zs) € C™, |ys) € C™}  Schmidt rank < k
BPy(n,m) = {|lu)(u|:u € Sk(n,m)}* k-block positive
= {C(®): P is k-positive}
Enti(n,m) = BPy(n,m)" k-entangled
SPy(n,m) = {®: M, - My, : C(®) € Ent(n,m)}  k-super positive

® € SPy(n,m) if and only if there exist F; € My, » with rank F; < k,
1 <4 < r such that

®(X) =Y FXF] forall X € M,.

=1
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Let d = min(n, m). For convenience of notation, we have omitted (n,m) in
the following
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Cones of completely positive maps and duality

Let d = min(n, m). For convenience of notation, we have omitted (n,m) in
the following

LiiJ SP1§SP2§ SPd:CP:Pd Q Pd—l QPl
I
C(@) Enti CEnta C .-+ Entg=P=BP; C BP;_1 C---BP;

Yiu-Tung Poon Quantum operations



Cones of completely positive maps and duality

Let d = min(n, m). For convenience of notation, we have omitted (n,m) in

the following
LiiJ SP1§SP2§ SPd:CP:Pd Q Pd—l QPl
I
C(@) Enty CEnts C -+ Entyg=P=BP; C BP; 1 C-.---BP
C S.Pl g SPQ Q s SPd =CP Ent1 g Entz g s Entd =H
I
¢c*| po>P, D .- Py=CP |BPL D BP, D---BPj=P
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Decomposable positive linear maps

Suppose ¢ : A — B.
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by
T (C® A) =0T @ d(A),
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — My ® B by
7 (C® A) = CT ® ®(A), and extend by linearity.
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by
T (C® A) = CT ® ®(A), and extend by linearity. Note that for
(Asj) € Mi(A), @i ((Aiy)) = (B(Aji)) € Mi(B)).

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive.

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
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if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if =0 + U,
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive.
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1
Let A be a C*-algebra and @ a linear map of A into B(H).
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Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for
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if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
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decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1,
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Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for
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if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
My (A)T
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Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by
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Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
My (A)T then (®(Ai5)) € My (B(H))*.

v

Proof of Theorem 4.1
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Proof of Theorem 4.1

Suppose ® is decomposable. Then ® = © + ¥ where where © is completely
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Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by
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Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
My (A)T then (®(Ai5)) € My (B(H))*.

v

Proof of Theorem 4.1

Suppose ® is decomposable. Then ® = © + ¥ where where © is completely
positive and U is completely copositive. For k > 1, (A;;) and (A;;) belong to
M (A)T,
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
My (A)T then (®(Ai5)) € My (B(H))*.

v

Proof of Theorem 4.1

Suppose ® is decomposable. Then ® = © + ¥ where where © is completely
positive and U is completely copositive. For k > 1, (A;;) and (A;;) belong to
Mi(A)T, Ox((Ai)) > 0

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
My (A)T then (®(Ai5)) € My (B(H))*.

v

Proof of Theorem 4.1

Suppose ® is decomposable. Then ® = © + ¥ where where © is completely
positive and U is completely copositive. For k > 1, (A;;) and (A;;) belong to
Mi(A)T, Ox((Ai5)) > 0 and Tx((Ai)) = (¥(Ay))

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
My (A)T then (®(Ai5)) € My (B(H))*.

v

Proof of Theorem 4.1

Suppose ® is decomposable. Then ® = © + ¥ where where © is completely
positive and U is completely copositive. For k > 1, (A;;) and (A;;) belong to
Mi(A)*, Ok((Ai5)) > 0 and Wi((Ay)) = (T(Ai;)) = Vi ((4;:)) > 0.
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Decomposable positive linear maps

Suppose ® : A — B. For each k, define ®F : M), ® A — M, ® B by

T (C® A) = CT ® ®(A), and extend by linearity. Note that for

(Aij) € Mi(A), L ((Aij)) = (®(Aj5)) € Mi(B)). ® is said to be k-copositive
if the map ®7 is positive. ® is completely copositive if ®7 is positive for all k.
® is decomposable if = O + ¥, where O is completely positive and ¥ is
completely copositive. For n +m < 5, every positive ® : M,, — M,, is
decomposable.

Theorem 4.1

Let A be a C*-algebra and ® a linear map of A into B(H). Then ® is
decomposable if and only if for all k& > 1, whenever (A4;;) and (A;;) belong to
My (A)T then (®(Ai5)) € My (B(H))*.

v

Proof of Theorem 4.1

Suppose ® is decomposable. Then ® = © + ¥ where where © is completely
positive and U is completely copositive. For k > 1, (A;;) and (A;;) belong to
Mi(A)T, Ok((Ai5)) > 0 and Wi ((Aiy)) = (¥(Aiy)) = ¥ ((44)) > 0.
Therefore, @ ((As;)) > 0.
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Proof of Theorem 4.1

Conversely, suppose for all £ > 1,

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to
My (AT
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Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to
My (A)T then (®(Aij)) € Mx(B(H))™.
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Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to
]\4k(./4)Jr then (‘I)(Aij)) € Mk(B(H))+

Without loss of generality, we may assume that A C B(K) for some Hilbert
space K.
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Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to

My (A)T then (®(Aij)) € Mx(B(H))™.

Without loss of generality, we may assume that A C B(K) for some Hilbert
space /C. We can also assume that Iz(x) € A.

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to

My (A)T then (®(Aij)) € Mx(B(H))™.

Without loss of generality, we may assume that A C B(K) for some Hilbert
space K. We can also assume that Iz(xy € A. Fix an orthonormal basis {|e;)}
of K
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Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to

My (A)T then (®(Aij)) € Mx(B(H))™.

Without loss of generality, we may assume that A C B(K) for some Hilbert
space K. We can also assume that Iz(xy € A. Fix an orthonormal basis {|e;)}
of KC and let the elements in B(KC) be represented by A = (as;), with

ai; = (eil Aej).

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to

My (A)T then (®(A;5)) € My (B(H))*.

Without loss of generality, we may assume that A C B(K) for some Hilbert
space K. We can also assume that Iz(xy € A. Fix an orthonormal basis {|e;)}
of KC and let the elements in B(KC) be represented by A = (as;), with

ai; = (ei|Ae;). Then we can define the transpose in B(K), AT = (aj:).
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Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to

My (A)T then (®(A;5)) € My (B(H))*.

Without loss of generality, we may assume that A C B(K) for some Hilbert
space K. We can also assume that Iz(xy € A. Fix an orthonormal basis {|e;)}
of KC and let the elements in B(KC) be represented by A = (as;), with

ai; = (ei|Ae;). Then we can define the transpose in B(K), AT = (aj;). Let

A 0
S={
0 AT

€ My(B(K)) : A € A}
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Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to

My (A)T then (®(A;5)) € My (B(H))*.

Without loss of generality, we may assume that A C B(K) for some Hilbert
space K. We can also assume that Iz(xy € A. Fix an orthonormal basis {|e;)}
of KC and let the elements in B(KC) be represented by A = (as;), with

ai; = (ei|Ae;). Then we can define the transpose in B(K), AT = (aj;). Let

A 0

S={ € M>(B(K)): A€ A}. Then S is an operator system in
0 AT

M, (B(K))
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Decomposable positive linear maps

Proof of Theorem 4.1

Conversely, suppose for all k£ > 1, whenever (A;;) and (A,;) belong to

My (A)T then (®(Aij)) € Mx(B(H))™.

Without loss of generality, we may assume that A C B(K) for some Hilbert
space K. We can also assume that Iz(xy € A. Fix an orthonormal basis {|e;)}
of KC and let the elements in B(KC) be represented by A = (as;), with

ai; = (ei|Ae;). Then we can define the transpose in B(K), AT = (aj;). Let
A 0
S={ € M>(B(K)): A€ A}. Then S is an operator system in
0o A"
M>(B(K)). Define ¥ : S — B(H)} by

'

Yiu-Tung Poon Quantum operations

A 0

0 AT




Decomposable positive linear maps
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Decomposable positive linear maps

Proof of Theorem 4.1
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Decomposable positive linear maps

Proof of Theorem 4.1

For each k£ > 1, suppose (Aij &) Ag) € My (S) is positive.
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Decomposable positive linear maps

Proof of Theorem 4.1

For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(4i5), (AL) >0
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Decomposable positive linear maps

Proof of Theorem 4.1

For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,
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Decomposable positive linear maps

Proof of Theorem 4.1

For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij &) Az;)) = (®(As5)) > 0.
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Decomposable positive linear maps

Proof of Theorem 4.1

For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Az;)) = (®(Ai;)) > 0. So, VU is k-positive.
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Decomposable positive linear maps

Proof of Theorem 4.1

For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Az;)) = (®(Ai;)) > 0. So, W is k-positive. Hence, U is
completely positive on the operator system S.
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Decomposable positive linear maps

Proof of Theorem 4.1
For each k > 1, suppose (Aij ® Ag) € My (S) is positive. Then
(Asj), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Az;)) = (®(Ai;)) > 0. So, W is k-positive. Hence, U is
completely positive on the operator system S. By Theorem 1.4, ¥ can be
extended to a completely positive map on Mz (B(H)).
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Decomposable positive linear maps

Proof of Theorem 4.1
For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Az;)) = (®(Ai;)) > 0. So, W is k-positive. Hence, U is
completely positive on the operator system S. By Theorem 1.4, ¥ can be
extended to a completely positive map on Ma(B(H)). Let

01, O2: A — M3(B(K)) be given by

A0
©1(4) =
0 0
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Decomposable positive linear maps

Proof of Theorem 4.1
For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Az;)) = (®(Ai;)) > 0. So, W is k-positive. Hence, U is
completely positive on the operator system S. By Theorem 1.4, ¥ can be
extended to a completely positive map on Ma(B(H)). Let
01, O2: A — M3(B(K)) be given by

0 O

0 A"

A 0

@1(14) = 5 and @Q(A) =

0 O
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Decomposable positive linear maps

Proof of Theorem 4.1
For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Az;)) = (®(Ai;)) > 0. So, W is k-positive. Hence, U is
completely positive on the operator system S. By Theorem 1.4, ¥ can be
extended to a completely positive map on Ma(B(H)). Let
01, O2: A — M3(B(K)) be given by

0 O

0 A"

A 0

@1(14) = 5 and @Q(A) =

0 O

Then ©; is completely positive
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Decomposable positive linear maps

Proof of Theorem 4.1
For each k > 1, suppose (Aij ® Ag) € My (S) is positive. Then
(Asj), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Ag)) = (®(Ai;)) > 0. So, W is k-positive. Hence, U is
completely positive on the operator system S. By Theorem 1.4, ¥ can be
extended to a completely positive map on Ma(B(H)). Let
01, O2: A — M3(B(K)) be given by

0 O

0 A"

Then ©1 is completely positive and O5 is completely copositive.

A 0

@1(14) = 5 and @Q(A) =

0 O
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Decomposable positive linear maps

Proof of Theorem 4.1
For each k > 1, suppose (Aij P Ag) € My (S) is positive. Then
(Ai5), (Ag) > 0. Since

(AZ;) >0= (A;) = (AZ;-)T >0,

we have (‘IJ (Aij @ Ag)) = (®(Ai;)) > 0. So, W is k-positive. Hence, U is
completely positive on the operator system S. By Theorem 1.4, ¥ can be
extended to a completely positive map on Ma(B(H)). Let
01, O2: A — M3(B(K)) be given by

0 O

0 A"

A 0
Then ©; is completely positive and O3 is completely copositive. Therefore,
® = Vo (01 + O2) is decomposable.

@1(14) = 5 and @Q(A) =

0 O
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Decomposable positive linear maps
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Decomposable positive linear maps

Example 4.2 Choi [5]
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Decomposable positive linear maps

Example 4.2 Choi [5]

Let ® : M3 — Ms be given by

ail a2 ais
P a1 Q22 a23

asi as2 ass3
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Decomposable positive linear maps

Example 4.2 Choi [5]

Let ® : M3 — Ms be given by

ail a2 ais
P a1 Q22 a23

asi as2 ass3

a1 + 2as3 —aiz —ai3
= —a21 az2 + 2a11 —ag3
—as1 —as2 ass + 2ag2
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Decomposable positive linear maps

Example 4.2 Choi [5]

Let ® : M3 — Ms be given by

ail a2 ais
P a1 Q22 a23

asi as2 ass3

a1 + 2as3 —aiz —ai3
= —as1 az2 + 2a11 —ag3
—as1 —as2 ass + 2ag2

Then @ is positive but not indecomposable.
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Decomposable positive linear maps
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Decomposable positive linear maps

Proof of Example 4.2
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Decomposable positive linear maps

Proof of Example 4.2

To prove that @ is positive, we use Theorem 2.5 (a) < (c) for k = 1.
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Decomposable positive linear maps

Proof of Example 4.2

To prove that @ is positive, we use Theorem 2.5 (a) < (c) for k = 1. By
direct calculation,

O OO0 O oOlo NN o
O O O O oo oo
2o ge e o e e e
= O oo~ O oo
O O Ol O OO0 OO
O O NO O Olo OO
O O O O oo oo
HOOOLOOO»—*

Q
—
i)
N
I
|
—~ o olor~ oloor
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Decomposable positive linear maps
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Decomposable positive linear maps

Proof of Example 4.2
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Decomposable positive linear maps

Proof of Example 4.2

x1
Suppose P = [ T2 ] [ Ti T2 T3 ] is a rank one orthogonal projection.
T3
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Decomposable positive linear maps

Proof of Example 4.2
T1
Suppose P = | x2
x3

[ T1 Tz T3 ] is a rank one orthogonal projection.

Then
(Is®@ P)C(®)(Is®P)=XQ® P,
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Decomposable positive linear maps

Proof of Example 4.2
T1
Suppose P = | x2
x3

[ T1 Tz T3 ] is a rank one orthogonal projection.

Then
(Is® P)C(®)(I3s ® P) = X ® P, where

|z1]? + 2|z2|? —Z1%2 —Z123
X = —X1T2 |z2|? + 2|23|? —Z223
—T173 —X2T3 |z3|* + 2|21|?
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Decomposable positive linear maps
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Decomposable positive linear maps

Proof of Example 4.2
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Decomposable positive linear maps

Proof of Example 4.2

Since

|z1]? + 2|z2|* > 0,
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Decomposable positive linear maps

Proof of Example 4.2

Since

|z1]? + 2|z2|* > 0,

|z1|? + 2|22|? —T1T2
det
—T122 |£E2\2 4 2\1’3|2

= 2(|wa|* + |zs]* (|21 |* + 2|z2[*)) > 0
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Decomposable positive linear maps

Proof of Example 4.2

Since

|z1]? + 2|z2|* > 0,

|z1|? + 2|22|? —T1T2
det
—T122 |£E2\2 4 2\1’3|2

= 2(|wa|* + |zs]* (|21 |* + 2|z2[*)) > 0

det(X) = 4 (|21 [*|w2|* + [z1]*|23]* + |21|*|w2|?|23|* + |22|*|2s]*) >0,
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Decomposable positive linear maps

Proof of Example 4.2

Since

|z1]? + 2|z2|* > 0,

|z1|? + 2|22|? —T1T2
det
—T122 |£E2\2 4 2\1’3|2

= 2(|wa|* + |zs]* (|21 |* + 2|z2[*)) > 0

det(X) = 4 (|21 [*|w2|* + [z1]*|23]* + |21|*|w2|?|23|* + |22|*|2s]*) >0,

we have X > 0.
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Decomposable positive linear maps

Proof of Example 4.2

Since

|z1]? + 2|z2|* > 0,

|z1|? + 2|22|? —T1T2
det
—T122 |£E2\2 4 2\1’3|2

= 2(|wa|* + |zs]* (|21 |* + 2|z2[*)) > 0

det(X) = 4 (|21 [*|w2|* + [z1]*|23]* + |21|*|w2|?|23|* + |22|*|2s]*) >0,

we have X > 0. Hence, (I3 ® P)C(®)(I3® P) =X ® P > 0.
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Decomposable positive linear maps

Proof of Example 4.2

Since

|z1]? + 2|z2|* > 0,

|z1|? + 2|22|? —T1T2
det
—T122 |£E2\2 4 2\1’3|2

= 2(|wa|* + |zs]* (|21 |* + 2|z2[*)) > 0

det(X) = 4 (|21 [*|w2|* + [z1]*|23]* + |21|*|w2|?|23|* + |22|*|2s]*) >0,

we have X > 0. Hence, (I3 ® P)C(®)(I3 ® P) = X ® P > 0. By Theorem
2.5, ® is positive.
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Decomposable positive linear maps
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Decomposable positive linear maps

Proof of Example 4.2

Yiu-Tung Poon Quantum operations



Decomposable positive linear maps

Proof of Example 4.2

Next, we will use Theorem 4.1 to show that ® is not decomposable.
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Decomposable positive linear maps

Proof of Example 4.2

Next, we will use Theorem 4.1 to show that ® is not decomposable.
Let (zi;) € M3(Ms) be given by
r4 0 0|0 4 0| 0 0 47
0 16 0|0 O O 0 0 O
0 0 1/0 O 0| 0 O O
0 0 0Of1 0O 0| 0 O O
(zij)=14 0 0|0 4 0| 0O 0 4
0 0 0|0 O 16| 0 0 O
0 0 0|0 O 0|16 0 O
0 0 0|0 O 0| 0 1 O
L4 0 0|0 4 0| 0 O 4 |
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Decomposable positive linear maps

Proof of Example 4.2

Next, we will use Theorem 4.1 to show that ® is not decomposable.
Let (zi;) € M3(Ms) be given by
r4 0 0|0 4 0| 0 0 47
0 16 0|0 O O 0 0 O
0O 0 1{0 0 O] 0 O O
0O O 0j1 0 O] O O O
(zj)=|4 0 0l0 4 0| 0 0 4
0O O 0j0 O 16| 0 0 O
0O O 0j0 O 0|16 0 O
0O O 0j0 O 0] 0 1 O
L4 0 0({0 4 O O 0 4 ]
It is easy to check that (z;;) and (z;;) are positive but
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Decomposable positive linear maps
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Decomposable positive linear maps

Proof of Example 4.2
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Decomposable positive linear maps

Proof of Example 4.2

r 6 0 0| 0 —4 0| 0O 0 —47
0 24 0] O 0 0| 0 O 0
0 0 33| O 0O 0| 0 O 0
0 0 0]33 0 0| 0 O 0
D((zy5))=| -4 0 0] O 6 0| 0 0 -4
0O 0 0] O 0 24| 0 O 0
0O 0 0] O 0 0|24 O 0
0 0 0] O 0 0| 0O 33 0
|l -4 0 0| 0 —4 0| O O 6 |
is not positive
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Decomposable positive linear maps

Proof of Example 4.2

r 6 0 0| 0 —4 0] 0 0 —47
0 24 0| O 0O o0 0 O 0
0 0 33| 0 0O 0o 0 O 0
0 0 0]33 0 o0 0 O 0
®((zij))=| -4 0 0|0 6 0|0 0 -4
0 0 0] O 0 24| 0 O 0
0 0 0] O 0 0|24 O 0
0 0 0] O 0 o0 0 33 0

L4 0 0| 0 -4 0| 0 O 6 |

is not positive because —2 is an eigenvalue of ®((z;)). a
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Completely positive maps and entanglement
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix).
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € M,, ® My, & My, is said to be separable
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € M,, ® M,,, & My, is said to be separable if there exist
states p} € M, and p? € My, i=1,...,k
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € M,, ® M,,, & My, is said to be separable if there exist
states p} € M, and p? € M,,,, i =1,...,k such that p = Zlepipll ® p?
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € M,, ® M,,, & My, is said to be separable if there exist
states p} € M, and p? € M,,,, i =1,...,k such that p = Zlepipll ® p? for
some p; > 0, Zlepi =1
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € My, ® My, = My, is said to be separable if there exist
states p} € M, and p? € M,,,, i =1,...,k such that p = Zlepipll ® p? for
some p; > 0, Zlepi =1

Theorem 5.1 (Horodecki [7])
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € My, ® My, = My, is said to be separable if there exist
states p} € M, and p? € M,,,, i =1,...,k such that p = Zlepipll ® p? for
some p; > 0, Zlepi =1

Theorem 5.1 (Horodecki [7])

A state p € Mpm is separable if and only if (Inz, ® ®) (p) > 0 for all positive
map ¢ : M,, —» M,.
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € M,, ® M,,, & My, is said to be separable if there exist
states p} € M, and p? € M,,,, i =1,...,k such that p = Zlepipll ® p? for
some p; > 0, Zlepi =1

Theorem 5.1 (Horodecki [7])

A state p € Mpm is separable if and only if (Inz, ® ®) (p) > 0 for all positive
map ¢ : M,, —» M,.

® : M,, — M, is positive if and only if Tr(C(®)(P ® Q)) > 0 for all
orthogonal projections P € M,, and Q € M,,.
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Completely positive maps and entanglement

A positive semi-definite matrix A € M,, with TrA = 1 is called a state (density
matrix). A state p € M,, ® M,,, & My, is said to be separable if there exist
states p} € M, and p? € M,,,, i =1,...,k such that p = Zlepipll ® p? for
some p; > 0, Zlepi =1

Theorem 5.1 (Horodecki [7])

A state p € Mpm is separable if and only if (Inz, ® ®) (p) > 0 for all positive
map ¢ : M,, —» M,.

® : M,, — M, is positive if and only if Tr(C(®)(P ® Q)) > 0 for all
orthogonal projections P € M,, and Q € M,,.

A state p € M, ® M,, is separable if and only if Tr(pA) > 0 for all A € M,n,
such that Tr(A(P ® @Q)) > 0 for all orthogonal projections P € M, and
Q € My,.
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Completely positive maps and entanglement
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Completely positive maps and entanglement

Proof of Theorem 5.1
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D M,, > M,.
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and Q € M,,.
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and @ € M,,. Choose V¥ : M,, — M,, such
that C(¥) = A.
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and @ € M,,. Choose V¥ : M,, — M,, such
that C(¥) = A. Then by Lemma 5.2, U is positive.
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and @ € M,,. Choose V¥ : M,, — M,, such
that C(¥) = A. Then by Lemma 5.2, U is positive. Hence,

® =t : M,, — M, is also positive.
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and @ € M,,. Choose V¥ : M,, — M,, such
that C(¥) = A. Then by Lemma 5.2, U is positive. Hence,

® =Vl : M,, - M, is also positive. Let {|e;) : 1 <i < n} be the canonical
basis for C™ and E;; = |e;){e;|.
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and @ € M,,. Choose V¥ : M,, — M,, such
that C(¥) = A. Then by Lemma 5.2, U is positive. Hence,

® =Vl : M,, - M, is also positive. Let {|e;) : 1 <i < n} be the canonical
basis for C™ and E;; = |e;){ej|. Then {E;; : 1 <4,j < n} is the set of
canonical matrix units for M,,.
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and @ € M,,. Choose V¥ : M,, — M,, such
that C(¥) = A. Then by Lemma 5.2, U is positive. Hence,

® =Vl : M,, - M, is also positive. Let {|e;) : 1 <i < n} be the canonical
basis for C™ and E;; = |e;){ej|. Then {E;; : 1 <4,j < n} is the set of
canonical matrix units for M,,. We have

" T
FE = Z Ei;FE; = (Z |€z>|€z>> <Z |ej>|ej>>

2,j=1

is positive
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Completely positive maps and entanglement

Proof of Theorem 5.1

Suppose a state p € M, ® M,, such that Iy, ® ®(p) > 0 for all positive map
D: My, = M,. Let A= (A;;) € M, ® M, such that Tr(A(P ® Q)) > 0 for
all orthogonal projections P € M,, and @ € M,,. Choose V¥ : M,, — M,, such
that C(¥) = A. Then by Lemma 5.2, U is positive. Hence,

® =Vl : M,, - M, is also positive. Let {|e;) : 1 <i < n} be the canonical
basis for C™ and E;; = |e;){ej|. Then {E;; : 1 <4,j < n} is the set of
canonical matrix units for M,,. We have

" T
FE = Z Ei;FE; = (Z |€z>|€z>> <Z |ej>|ej>>

2,j=1

is positive and
C(®) = (In ® ®)(E).
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Proof of Theorem 5.1

Hence,
(In ® @)(p) > 0
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Proof of Theorem 5.1

Hence,
(In ® @)(p) > 0

= (Bl(I®®)(p)) >0
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Completely positive maps and entanglement

Proof of Theorem 5.1

Hence,
(In ® @)(p) > 0

= (Bl(I®®)(p)) >0

= ((In®®)"(E)lp) 20
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Completely positive maps and entanglement

Proof of Theorem 5.1

Hence,
(In ® @)(p) > 0

= (Elln®®)(p)) 20
= ((In®®)"(E)lp) 20

= (I.®¥)(E)lp) =0
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Completely positive maps and entanglement

Proof of Theorem 5.1

Hence,
(In ® @)(p) > 0

= (Elln®®)(p)) 20
= ((In®®)"(E)lp) 20
= (I.®¥)(E)lp) =0

= (C(W)|p) 20
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Completely positive maps and entanglement

Proof of Theorem 5.1

Hence,
(In ® @)(p) > 0

= (Elln®®)(p)) 20
= ((In®®)"(E)lp) 20

= (I.®¥)(E)lp) =0
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Completely positive maps and entanglement

Proof of Theorem 5.1

Hence,
(In ® @)(p) > 0

= (B|I.®®)(p) 20
= (L9 (B)) 20
= (L @V)(E)|p) 20
= (C(0)]p) 20

= Tr(pA) >0.
So, by lemma 5.3, p is separable.
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Completely positive maps and entanglement

Define two partial transpose map on M,, ® M, by

Ti(A®B)=A"®B, and T»(A® B) = A® B
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Completely positive maps and entanglement

Define two partial transpose map on M,, ® M, by
Ti(A®B)=A"®B, and T»(A® B) = A® B

and extend by linearity.
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Completely positive maps and entanglement

Define two partial transpose map on M,, ® M, by
Ti(A®B)=A"®B, and T»(A® B) = A® B

and extend by linearity. Note that for (a;;) € M,, ® M,
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Completely positive maps and entanglement

Define two partial transpose map on M,, ® M, by
Ti(A®B)=A"®B, and T»(A® B) = A® B
and extend by linearity. Note that for (a;;) € M, ® M,,, we have

Ti((ai)) = (aji), and Ta((ai;)) = (ai;)
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Completely positive maps and entanglement

Define two partial transpose map on M,, ® M, by
Ti(A®B)=A"®B, and T»(A® B) = A® B
and extend by linearity. Note that for (a;;) € M, ® M,,, we have
T1((ais)) = (azi), and Ta((aiy)) = (ai))

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7])
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Completely positive maps and entanglement

Define two partial transpose map on M,, ® M, by
Ti(A®B)=A"®B, and T»(A® B) = A® B
and extend by linearity. Note that for (a;;) € M, ® M,,, we have
T1((ais)) = (azi), and Ta((aiy)) = (ai))

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7])
Let p be a state in M,, ® M,,. Then we have
(1) If p is separable, then T3(p) > 0.
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Completely positive maps and entanglement

Define two partial transpose map on M,, ® M, by
Ti(A®B)=A"®B, and T»(A® B) = A® B
and extend by linearity. Note that for (a;;) € M, ® M,,, we have
T1((ais)) = (azi), and Ta((aiy)) = (ai))

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7])

Let p be a state in M,, ® M,,. Then we have
(1) If p is separable, then T3(p) > 0.
(2) If n+m <5 and T2(p) > 0, then p is separable.
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Completely positive maps and entanglement

Proof of Theorem 5.4
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (Tx(p))".
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

Yiu-Tung Poon Quantum operations



Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.

(1) follows from Theorem 5.1 because the map A — A7 is positive.
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.
(1) follows from Theorem 5.1 because the map A — A7 is positive.

To proof (2), suppose n+m < 5 and Tz(p) > 0.
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.
(1) follows from Theorem 5.1 because the map A — A7 is positive.

To proof (2), suppose n+m < 5 and Tz>(p) > 0. Let ® : M,, — M, be a
positive map.

Yiu-Tung Poon Quantum operations



Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.
(1) follows from Theorem 5.1 because the map A — A7 is positive.
To proof (2), suppose n+m < 5 and Tz>(p) > 0. Let ® : M,, — M, be a

positive map. Then ® = ®&; + ®5, where ®; : M,,, — M,, is completely
positive and ®5 : M,,, — M,, is completely copositive.
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.

(1) follows from Theorem 5.1 because the map A — A7 is positive.

To proof (2), suppose n+m < 5 and Tz>(p) > 0. Let ® : M,, — M, be a
positive map. Then ® = ®&; + ®5, where ®; : M,,, — M,, is completely

positive and ®5 : M,,, — M,, is completely copositive.

Then (I ®@ ®1)(p) >0
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.

(1) follows from Theorem 5.1 because the map A — A7 is positive.

To proof (2), suppose n+m < 5 and Tz>(p) > 0. Let ® : M,, — M, be a
positive map. Then ® = ®&; + ®5, where ®; : M,,, — M,, is completely

positive and ®5 : M,,, — M,, is completely copositive.

Then (I® 1)(p) > 0 and (I ® 2)(p) = (I ® ®7)(Ta(p)) > 0.
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.

(1) follows from Theorem 5.1 because the map A — A7 is positive.

To proof (2), suppose n+m < 5 and Tz>(p) > 0. Let ® : M,, — M, be a
positive map. Then ® = ®&; + ®5, where ®; : M,,, — M,, is completely
positive and ®5 : M,,, — M,, is completely copositive.

Then (I® 1)(p) > 0 and (I ® 2)(p) = (I ® ®7)(Ta(p)) > 0.

Hence, (I ® ®)(p) > 0.
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Completely positive maps and entanglement

Proof of Theorem 5.4

Note that 71 (p) = (T2(p))”. Therefore, the condition T5(p) > 0 is equivalent
to T1(p) > 0.

A state p is said to be PPT if T2(p) > 0.

(1) follows from Theorem 5.1 because the map A — A7 is positive.

To proof (2), suppose n+m < 5 and Tz>(p) > 0. Let ® : M,, — M, be a
positive map. Then ® = ®&; + ®5, where ®; : M,,, — M,, is completely
positive and ®5 : M,,, — M,, is completely copositive.

Then (I® 1)(p) > 0 and (I ® 2)(p) = (I ® ®7)(Ta(p)) > 0.

Hence, (I ® ®)(p) > 0. So, by Theorem 5.1, ® is completely positive. O
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Completely positive maps and entanglement

To show that the conclusion in Theorem 5,4 (b) may not hold for n = m = 3,
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Completely positive maps and entanglement

To show that the conclusion in Theorem 5,4 (b) may not hold for n = m = 3,
let ® be as given in Example 4.2 and

F4 0 0[]0 4 0] 0 0 47
0 16 0/0 0 0] 0 0 0

0 0 1/0 0 0] 0 0 0
|0 0ot 0 o[0 00
p=— 14 o0 o0lo 4 0|0 o0 4
63109 0 0lo o0 16| 00 0
0 0 0l0 0 0]16 0 0

0 0 0/00 0|0 1 0

4 0 0l0 4 0|0 0 4|
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Completely positive maps and entanglement

To show that the conclusion in Theorem 5,4 (b) may not hold for n = m = 3,
let ® be as given in Example 4.2 and

F4 0 0[]0 4 0] 0 0 47
0 16 0/0 0 0] 0 0 0

0 0 1/0 0 0] 0 0 0
|0 0ot 0 o[0 00
p=— 14 o0 o0lo 4 0|0 o0 4
63109 0 0lo o0 16| 00 0
0 0 0l0 0 0]16 0 0

0 0 0/00 0|0 1 0

4 0 0l0 4 0|0 0 4|

Then by the discussion in Example 4.2, p, T2(p) > 0.
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Completely positive maps and entanglement

To show that the conclusion in Theorem 5,4 (b) may not hold for n = m = 3,
let ® be as given in Example 4.2 and

F4 0 0[]0 4 0] 0 0 47
0 16 0/0 0 0] 0 0 0

0 0 1/0 0 0] 0 0 0
|0 0ot 0 o[0 00
p=— 14 o0 o0lo 4 0|0 o0 4
63109 0 0lo o0 16| 00 0
0 0 0l0 0 0]16 0 0

0 0 0/00 0|0 1 0

4 0 0l0 4 0|0 0 4|

Then by the discussion in Example 4.2, p, T>(p) > 0. So, p is a PPT state but
(1% ®)(p) £ 0.
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Completely positive maps and entanglement

To show that the conclusion in Theorem 5,4 (b) may not hold for n = m = 3,
let ® be as given in Example 4.2 and

F4 0 0[]0 4 0] 0 0 47
0 16 0/0 0 0] 0 0 0

0 0 1/0 0 0] 0 0 0
|0 0ot 0 o[0 00
p=— 14 o0 o0lo 4 0|0 o0 4
63109 0 0lo o0 16| 00 0
0 0 0l0 0 0]16 0 0

0 0 0/00 0|0 1 0

4 0 0l0 4 0|0 0 4|

Then by the discussion in Example 4.2, p, T>(p) > 0. So, p is a PPT state but
(I ® ®)(p) # 0. Therefore, by Theorem 5.1, p is not separable.
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Problem 6.1
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,
determine the necessary and sufficient condition for the existence of a
completely positive linear map ® : M,, — M,,,
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,

determine the necessary and sufficient condition for the existence of a
completely positive linear map ® : M,, — M,,, possibly with some special
properties (e.g., ®(I,) = I, or/and ® is trace preserving)
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,

determine the necessary and sufficient condition for the existence of a
completely positive linear map ® : M,, — M,,, possibly with some special
properties (e.g., ®(I,) = I, or/and ® is trace preserving) such that

®(A;) = B; forj=1,...,k. (2)
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,

determine the necessary and sufficient condition for the existence of a
completely positive linear map ® : M,, — M,,, possibly with some special
properties (e.g., ®(I,) = I, or/and ® is trace preserving) such that

®(A;) = B; forj=1,...,k. (2)

2
Given A = (aij) € M,, let vec (A) = (all,. oy Qlny e, G217, .. .,a,m) e C™.
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,

determine the necessary and sufficient condition for the existence of a
completely positive linear map ® : M,, — M,,, possibly with some special
properties (e.g., ®(I,) = I, or/and ® is trace preserving) such that

®(A;) = B; forj=1,...,k. (2)

. 2
Given A = (aij) € M,, let vec (A) = (all, ey Qlny ey G215y, a,m) e C™.
2
A — vec (A) gives a linear isomorphism between M,, and C™ .
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,

determine the necessary and sufficient condition for the existence of a
completely positive linear map ® : M,, — M,,, possibly with some special
properties (e.g., ®(I,) = I, or/and ® is trace preserving) such that

®(A;) = B; forj=1,...,k. (2)

Given A = (aij) € My, let vec (A) = (a11,...,01n,--.,021,-..,0nn) € o’
A — vec (A) gives a linear isomorphism between M,, and C". Let
C = (Cs5) € M, (My,), the realignment matrix of C
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An Interpolating Problem

Problem 6.1

Given Aq,..., Ay € M,, and B1,..., By € M,

determine the necessary and sufficient condition for the existence of a
completely positive linear map ® : M,, — M,,, possibly with some special
properties (e.g., ®(I,) = I, or/and ® is trace preserving) such that

®(A;) = B; forj=1,...,k. (2)

Given A = (aij) € M,, let vec (A) = (au, ey Qlngy e, Q21 -, an") S C"Q.
A — vec (A) gives a linear isomorphism between M,, and C". Let
C = (Cs5) € Mn(My,), the realignment matrix of C' is given by

vec (011)
vec (C12)

CcF = vec (Cln)
vec (Ca1)

| vec (Cnn).
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An Interpolating Problem

We have @(A) = @(ZZ j aUE,L-j) = Zz j al]q)(EU)
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

i,

vec (B(A)) = vec (A)C(®)" (3)
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

i,

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ai,...,Ax € M, and B1,...,Bi € Mmn,
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

%]

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ®
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

%]

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C € M,.n
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

i,J
vec (B(A)) = vec (A)C(®)" (3)
It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)

holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)
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An Interpolating Problem

. aUE,L-j) = Zi,j al]q)(EU) Therefore,

%]

We have ®(4) = o(>_

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)

For general A; and B, checking if (4) holds for a positive semidefinite matrix
C € My can be very difficult.
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)

For general A; and B, checking if (4) holds for a positive semidefinite matrix
C' € M, can be very difficult. We will consider the case where

{A; :1<1<k}and {B;:1<1<k} are commuting families of Hermitian
matrices.
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)

For general A; and B, checking if (4) holds for a positive semidefinite matrix
C' € M, can be very difficult. We will consider the case where

{A; :1<1<k}and {B;:1<1<k} are commuting families of Hermitian
matrices. In this case, there exist unitary matrices U € M,, and V € M, such
that UYA,U and VB,V are diagonal matrices.
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)

For general A; and B, checking if (4) holds for a positive semidefinite matrix
C' € M, can be very difficult. We will consider the case where

{A; :1<1<k}and {B;:1<1<k} are commuting families of Hermitian
matrices. In this case, there exist unitary matrices U € M,, and V € M, such
that UTA;U and VB,V are diagonal matrices. Clearly, there is a completely
positive map taking A; to B;
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)

For general A; and B, checking if (4) holds for a positive semidefinite matrix
C' € M, can be very difficult. We will consider the case where

{A; :1<1<k}and {B;:1<1<k} are commuting families of Hermitian
matrices. In this case, there exist unitary matrices U € M,, and V € M, such
that UTA;U and VB,V are diagonal matrices. Clearly, there is a completely
positive map taking A; to B; if and only if there is a completely positive map
taking UTA;U to VIB;V.
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An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)

For general A; and B, checking if (4) holds for a positive semidefinite matrix
C' € M, can be very difficult. We will consider the case where

{A; :1<1<k}and {B;:1<1<k} are commuting families of Hermitian
matrices. In this case, there exist unitary matrices U € M,, and V € M, such
that UTA;U and VB,V are diagonal matrices. Clearly, there is a completely
positive map taking A; to B; if and only if there is a completely positive map
taking UTA;U to VI B;V. Therefore, we only need to consider the case where
A;, B, are diagonal matrices with diagonals a;, b;.

Yiu-Tung Poon Quantum operations



An Interpolating Problem

We have ®(A) = (3, . ai;Eij) = ), aij®(Ei;). Therefore,

vec (B(A)) = vec (A)C(®)" (3)

It follows from (3) that given Ay,..., Ay € M, and Bi,...,Bi € Mn, (2)
holds for some completely positive ® if and only if there exists a positive
semidefinite matrix C' € M,,, such that

vec (B;) = vec (A;)CF, forall1<i<k 4)

For general A; and B, checking if (4) holds for a positive semidefinite matrix
C' € M, can be very difficult. We will consider the case where

{A; :1<1<k}and {B;:1<1<k} are commuting families of Hermitian
matrices. In this case, there exist unitary matrices U € M,, and V € M, such
that UTA;U and VB,V are diagonal matrices. Clearly, there is a completely
positive map taking A; to B; if and only if there is a completely positive map
taking UTA;U to VI B;V. Therefore, we only need to consider the case where
A;, B, are diagonal matrices with diagonals a;, b;. In this case, C can be
chosen a diagonal matrix (exercise).
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Suppose A;, B; are diagonal matrices with diagonals a;, b;.
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.
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Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column
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Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row)
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Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1.
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Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic,
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

Yiu-Tung Poon Quantum operations



An Interpolating Problem

Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

® in Theorem 6.2 can be choose to be unital
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Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

® in Theorem 6.2 can be choose to be unital (trace preserving,
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

® in Theorem 6.2 can be choose to be unital (trace preserving, unital and
trace-preserving,
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Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.
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® in Theorem 6.2 can be choose to be unital (trace preserving, unital and
trace-preserving, respectively) if and only if D can be chosen to be column
stochastic
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

® in Theorem 6.2 can be choose to be unital (trace preserving, unital and
trace-preserving, respectively) if and only if D can be chosen to be column
stochastic (row stochastic,
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Theorem 6.2

Suppose A;, B; are diagonal matrices with diagonals a;, b;. Then the
following conditions are equivalent:

@ There exists a completely positive map ® : M,, — M,, such that
D(A;) =B; forall 1 <i<k.

@ There exists an n X m nonnegative matrix D such that b; = a; D for all
1<i<k.

A nonnegative matrix is column (respectively, row) stochastic if in each column
(respectively, row) the entries sum up to 1. If A is both column and row
stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3

® in Theorem 6.2 can be choose to be unital (trace preserving, unital and
trace-preserving, respectively) if and only if D can be chosen to be column
stochastic (row stochastic, doubly stochastic, respectively).
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Denote by H,, the set of n x n Hermitian matrices. For A € H,, let
AA) = (M(4),..., (4)

be the vector of eigenvalues of A with entries arranged in descending order.
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Denote by H,, the set of n x n Hermitian matrices. For A € H,, let
AA) = (M(4),..., (4)

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4
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An Interpolating Problem

Denote by H,, the set of n x n Hermitian matrices. For A € H,,, let
AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let A€ H, and B € H,,.
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An Interpolating Problem

Denote by H,, the set of n x n Hermitian matrices. For A € H,,, let
AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4

Let A € H, and B € H,,. Then the following conditions are equivalent.
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Denote by H,, the set of n x n Hermitian matrices. For A € H,, let

AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.
Let A € H, and B € H,,. Then the following conditions are equivalent.

(a) There is a completely positive linear map ® : M,, — M, such that
®(A) = B.

Yiu-Tung Poon Quantum operations



An Interpolating Problem

Denote by H,, the set of n x n Hermitian matrices. For A € H,, let

AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.
Let A € H, and B € H,,. Then the following conditions are equivalent.

(a) There is a completely positive linear map ® : M,, — M, such that
®(A) = B.

(b) There is a nonnegative n X m matrix D such that A(B) = A(4)D.
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Denote by H,, the set of n x n Hermitian matrices. For A € H,, let

AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.
Let A € H, and B € H,,. Then the following conditions are equivalent.

(a) There is a completely positive linear map ® : M,, — M, such that
®(A) = B.

(b) There is a nonnegative n X m matrix D such that A(B) = A(4)D.
(c) There are real numbers 1,2 > 0 such that

1A (A) > M (B)  and A (B) > 220 (A).
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Denote by H,, the set of n x n Hermitian matrices. For A € H,,, let

AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.
Let A € H, and B € H,,. Then the following conditions are equivalent.

(a) There is a completely positive linear map ® : M,, — M, such that
®(A) = B.

(b) There is a nonnegative n X m matrix D such that A(B) = A(4)D.
(c) There are real numbers 1,2 > 0 such that

1A (A) > M (B)  and A (B) > 220 (A).

Example 6.5
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Denote by H,, the set of n x n Hermitian matrices. For A € H,,, let

AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.
Let A € H, and B € H,,. Then the following conditions are equivalent.

(a) There is a completely positive linear map ® : M,, — M, such that
®(A) = B.

(b) There is a nonnegative n X m matrix D such that A(B) = A(4)D.
(c) There are real numbers 1,2 > 0 such that

1A (A) > M (B)  and A (B) > 220 (A).

Example 6.5
Let A = diag(2,1,0), B = diag(4,3,1) and By = diag (1,1, —1).
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Denote by H,, the set of n x n Hermitian matrices. For A € H,,, let

AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.
Let A € H, and B € H,,. Then the following conditions are equivalent.

(a) There is a completely positive linear map ® : M,, — M, such that
®(A) = B.

(b) There is a nonnegative n X m matrix D such that A(B) = A(4)D.
(c) There are real numbers 1,2 > 0 such that

1A (A) > M (B)  and A (B) > 220 (A).

Example 6.5

Let A = diag(2,1,0), B: = diag(4,3,1) and By = diag (1,1, —1). There is a
completely positive linear map ® such that ®(A) = Bi,
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Denote by H,, the set of n x n Hermitian matrices. For A € H,,, let

AA) = (M(4),..., (4)
be the vector of eigenvalues of A with entries arranged in descending order.
Let A € H, and B € H,,. Then the following conditions are equivalent.

(a) There is a completely positive linear map ® : M,, — M, such that
®(A) = B.
(b) There is a nonnegative n X m matrix D such that A(B) = A(4)D.

(c) There are real numbers 1,2 > 0 such that

1A (A) > M (B)  and A (B) > 220 (A).

Example 6.5

Let A = diag(2,1,0), B: = diag(4,3,1) and By = diag (1,1, —1). There is a
completely positive linear map ® such that ®(A) = B, but there is no
completely positive linear map ® such that ®(A) = Bs.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that
®(A) = B.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that
®(A) = B.

(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that

®(A) = B.
(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.

(¢) An(A) < Xi(B) <Ai(A) forall 1 <i<m.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that

®(A) = B.
(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.

(¢) An(A) < Xi(B) <Ai(A) forall 1 <i<m.

Theorem 6.7

Suppose A € H,, and B € H,,.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that

®(A) = B.
(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.

(¢) An(A) < Xi(B) <Ai(A) forall 1 <i<m.

Theorem 6.7

Suppose A € H,, and B € H,,. Denote by A (X) the sum of positive
eigenvalues of a Hermitian matrix X.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that

®(A) = B.
(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.

(¢) An(A) < Xi(B) <Ai(A) forall 1 <i<m.

Theorem 6.7

Suppose A € H,, and B € H,,. Denote by A (X) the sum of positive
eigenvalues of a Hermitian matrix X. The following conditions are equivalent.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that

®(A) = B.
(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.

(¢) An(A) < Xi(B) <Ai(A) forall 1 <i<m.

Theorem 6.7

Suppose A € H,, and B € H,,. Denote by A (X) the sum of positive
eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

(a) There is a trace preserving completely positive map ® : M,, — M,, such
that ®(A) = B.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that

®(A) = B.
(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.

(¢) An(A) < Xi(B) <Ai(A) forall 1 <i<m.

Theorem 6.7

Suppose A € H,, and B € H,,. Denote by A (X) the sum of positive
eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

(a) There is a trace preserving completely positive map ® : M,, — M,, such
that ®(A) = B.

(b) There exists an n X m row stochastic matrix D such that A(B) = A(A)D.
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Theorem 6.6

Let A € H, and B € H,,. The following conditions are equivalent.

(a) There exists a unital completely positive map ® : M,, — M, such that

®(A) = B.
(b) There exists an n X m column stochastic matrix D such that
A(B) = A(A)D.

(¢) An(A) < Xi(B) <Ai(A) forall 1 <i<m.

Theorem 6.7

Suppose A € H,, and B € H,,. Denote by A (X) the sum of positive
eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

(a) There is a trace preserving completely positive map ® : M,, — M,, such
that ®(A) = B.

(b) There exists an n X m row stochastic matrix D such that A(B) = A(A)D.
(¢) A(B) < A4(A), and TrA = TrB.
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Example 6.8
Let A = diag(2,1,—1), B = diag(2,0,0), and C = diag (1,1, 0).
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Example 6.8

Let A = diag(2,1,—1), B = diag(2,0,0), and C = diag (1,1,0). Then there
are trace preserving completely positive linear maps ®1, ®5 such that

®,(A) =B, 92(B) =C,

Yiu-Tung Poon Quantum operations



An Interpolating Problem

Example 6.8

Let A = diag(2,1,—1), B = diag(2,0,0), and C = diag (1,1,0). Then there
are trace preserving completely positive linear maps ®1, ®5 such that

D1 (A) = B, 92(B) =C, and &3 0 ®1(A) = C. There is no completely
positive linear map @ satisfying ®(C') = A.
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Example 6.8

Let A = diag(2,1,—1), B = diag(2,0,0), and C = diag (1,1,0). Then there
are trace preserving completely positive linear maps ®1, ®5 such that

D1 (A) = B, 92(B) =C, and &3 0 ®1(A) = C. There is no completely
positive linear map @ satisfying ®(C') = A.

Remark 6.9
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Example 6.8

Let A = diag(2,1,—1), B = diag(2,0,0), and C = diag (1,1,0). Then there
are trace preserving completely positive linear maps ®1, ®5 such that

D1 (A) = B, 92(B) =C, and &3 0 ®1(A) = C. There is no completely
positive linear map @ satisfying ®(C') = A.

Remark 6.9

For two density matrices A and B,
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Example 6.8

Let A = diag(2,1,—1), B = diag(2,0,0), and C = diag (1,1,0). Then there
are trace preserving completely positive linear maps ®1, ®5 such that

D1 (A) = B, 92(B) =C, and &3 0 ®1(A) = C. There is no completely
positive linear map @ satisfying ®(C') = A.

Remark 6.9

For two density matrices A and B, there is always a trace preserving
completely positive map such that ®(A) = B.
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Example 6.8

Let A = diag(2,1,—1), B = diag(2,0,0), and C = diag (1,1,0). Then there
are trace preserving completely positive linear maps ®1, ®5 such that

D1 (A) = B, 92(B) =C, and &3 0 ®1(A) = C. There is no completely
positive linear map @ satisfying ®(C') = A.

Remark 6.9

For two density matrices A and B, there is always a trace preserving
completely positive map such that ®(A) = B. But there may not be a unital
completely positive map ¥ such that ¥(A) = B.
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Suppose there is a unital completely positive map taking A to B,
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B.
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B?
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10
Suppose A = diag (4,1,1,0) and B = diag (3, 3,0,0).
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10

Suppose A = diag (4,1,1,0) and B = diag (3,3,0,0). By Theorems 6.6 and
6.7 there is a trace preserving completely positive map sending A to B,
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10

Suppose A = diag (4,1,1,0) and B = diag (3,3,0,0). By Theorems 6.6 and
6.7 there is a trace preserving completely positive map sending A to B, and
also a unital completely positive map sending A to B.
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10
Suppose A = diag (4,1,1,0) and B = diag (3,3,0,0). By Theorems 6.6 and
6.7 there is a trace preserving completely positive map sending A to B, and

also a unital completely positive map sending A to B. Let
A=A -1, = diag (3,0,0,—1) and By = B — I, = diag (2,2,—-1,—1).
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10

Suppose A = diag (4,1,1,0) and B = diag (3,3,0,0). By Theorems 6.6 and
6.7 there is a trace preserving completely positive map sending A to B, and
also a unital completely positive map sending A to B. Let

A=A -1, =diag (3,0,0,—1) and By = B — I, = diag (2,2,—1,—1). By
Theorem 6.7, there is no trace preserving completely positive linear map
sending Ay to Bj.
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An Interpolating Problem

Suppose there is a unital completely positive map taking A to B, and also a
trace preserving completely positive map taking A to B. Is there a unital trace
preserving completely positive map sending A to B? The following example
shows that the answer is negative.

Example 6.10

Suppose A = diag (4,1,1,0) and B = diag (3,3,0,0). By Theorems 6.6 and
6.7 there is a trace preserving completely positive map sending A to B, and
also a unital completely positive map sending A to B. Let

A=A -1, =diag (3,0,0,—1) and By = B — I, = diag (2,2,—1,—1). By
Theorem 6.7, there is no trace preserving completely positive linear map
sending Ay to Bi. Hence, there is no unital trace preserving completely
positive map sending A to B.
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An Interpolating Problem
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process)
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,Ur € M,
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and

positive numbers p1,...,p, summing up to 1 such that
k
(X)) =0 pUIXU;.
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

d(X) = Zf:l ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving.
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

(X)) = Z§:1 ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving. For n > 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

(X)) = Z§:1 ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving. For n > 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y € R™, we say that x is majorized by y, denoted by x <y,
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

(X)) = Z§:1 ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving. For n > 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y € R™, we say that x is majorized by y, denoted by x <y, if the sum
of all entries of x
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

(X)) = Z§:1 ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving. For n > 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y € R™, we say that x is majorized by y, denoted by x <y, if the sum
of all entries of x is the same as that of y,
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

(X)) = Z§:1 ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving. For n > 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y € R™, we say that x is majorized by y, denoted by x <y, if the sum
of all entries of x is the same as that of y, and the sum of the k largest entries
of x
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

(X)) = Z§:1 ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving. For n > 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y € R™, we say that x is majorized by y, denoted by x <y, if the sum
of all entries of x is the same as that of y, and the sum of the k largest entries
of x is not larger than that of y for k=1,...,n—1;
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An Interpolating Problem

A quantum channel/completely positive map ® : M,, — M, is called mixed
unitary (mixing process) if there exist unitary matrices Us,...,U, € M, and
positive numbers p1,...,p, summing up to 1 such that

(X)) = Z§:1 ij]TXUj. Clearly, every mixed unitary completely positive map
is unital and trace preserving. For n > 3, there exists a unital trace preserving
completely positive map which is not mixed unitary [14].

For x,y € R™, we say that x is majorized by y, denoted by x <y, if the sum
of all entries of x is the same as that of y, and the sum of the k largest entries
of x is not larger than that of y for k=1,...,n—1;

Example 6.11

(3,2,1,0) < (6,1,0,—1), (3,3,0,0) 4 (4,1,1,0).
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Theorem 6.12
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An Interpolating Problem

Theorem 6.12

Let A, B € H,. The following are equivalent.

(a) There exists a unital trace preserving completely positive map ® such
that ®(A) = B.
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An Interpolating Problem

Theorem 6.12

Let A, B € H,. The following are equivalent.

(a) There exists a unital trace preserving completely positive map ® such
that ®(A) = B.

(b) There is a mixed unitary channel ® such that ®(A4) = B.
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An Interpolating Problem

Theorem 6.12

Let A, B € H,. The following are equivalent.
(a) There exists a unital trace preserving completely positive map ® such
that ®(A) = B.
(b) There is a mixed unitary channel ® such that ®(A4) = B.

(c) There exist unitary matrices U;, 1 < j < n such that
B=1%" UAU].

Jj=1
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An Interpolating Problem

Theorem 6.12

Let A, B € H,. The following are equivalent.
(a) There exists a unital trace preserving completely positive map ® such
that ®(A) = B.
(b) There is a mixed unitary channel ® such that ®(A4) = B.
(c) There exist unitary matrices U;, 1 < j < n such that
—_ 1\ T
B=2) ., UiAUj.
(d) There is a unitary U such that UAU" has diagonal entries
A1(B), ..., A\ (B).

Yiu-Tung Poon Quantum operations



An Interpolating Problem

Theorem 6.12

Let A, B € H,. The following are equivalent.
(a) There exists a unital trace preserving completely positive map ® such
that ®(A) = B.
(b) There is a mixed unitary channel ® such that ®(A4) = B.
(c) There exist unitary matrices U;, 1 < j < n such that
B=13"  UAUYL.

(d) There is a unitary U such that UAU" has diagonal entries
A(B),..., A\ (B).

(e) A(B) < A(A).
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An Interpolating Problem

Theorem 6.12

Let A, B € H,. The following are equivalent.

(a) There exists a unital trace preserving completely positive map ® such
that ®(A) = B.

(b) There is a mixed unitary channel ® such that ®(A4) = B.

(c) There exist unitary matrices U;, 1 < j < n such that
B=13"  UAUYL.

(d) There is a unitary U such that UAU" has diagonal entries
A(B),..., A\ (B).

(e) A(B) =< A(A).
(f) There is a doubly stochastic matrix D such that A\(B) = A(A)D.
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Thank you
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