Summer School on Quantum Information Science Taiyuan University of Technology

YIU TUNG POON Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA (ytpoon@iastate.edu).

Quantum operations

Table of content

- 1. Dilation and extension of completely positive map
- 2. Completely positive linear maps on matrix spaces
- 3. Cones of positive maps and duality
- 4. Decomposable positive linear maps
- 5. Completely positive map and entanglement
- 6. Interpolating problems
- 7. Exercise
- 8. References

1 Dilation and extension of completely positive map

Mathematically, quantum operations (channels) are completely positive linear maps. The basic references for completely positive map and its connection with quantum information are [3], [4], [13] [14] and [15]. For the consistence with other lectures, we will use $|x\rangle$ for (column) vectors and A^{\dagger} for the adjoint of an operator A in the following discussion.

In this section, we study dilation and extension of completely positive maps on C^* -algebras. Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$, the set of bounded linear operators on \mathcal{H} . A C^* -algebra \mathcal{A} is a complex Banach algebra with a conjugate linear map $A \to A^{\dagger}$ satisfying $||AA^{\dagger}|| = ||A||^2$ for all $A \in \mathcal{A}$. By the GNS-construction [8], every C^* -algebra is isomorphic to a norm closed self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ for some \mathcal{H} . Every commutative C^* -algebra is isomorphic to some $C_0(X)$, the algebra of continuous function vanishing at infinity on a locally compact Haudorff space X.

An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be positive if $\langle x|Ax \rangle \geq 0$ for all $|x\rangle \in \mathcal{H}$. The set of positive operators in $\mathcal{B}(\mathcal{H})$ is denoted by $\mathcal{B}(\mathcal{H})^+$. For each $k \geq 1$, we can identify $M_k(\mathcal{B}(\mathcal{H}))$ with $\mathcal{B}(\mathcal{H}^k)$, the bounded linear operators on \mathcal{H}^k and the positive operators in $M_k(\mathcal{B}(\mathcal{H}))$ with $\mathcal{B}(\mathcal{H}^k)^+$. By identifying a C^* -algebra \mathcal{A} as a norm closed self-adjoint subalgebra of some $\mathcal{B}(\mathcal{H})$, we can defined the positive elements of $M_k(\mathcal{A})$. A linear map $\Phi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is k-positive if $I_k \otimes \Phi$ maps the positive elements of $M_k(\mathcal{A})$ to the positive elements of $M_n(\mathcal{B}(\mathcal{H}))$. Φ is completely positive if Φ is k-positive for all k. Following is the most fundamental result on completely positive maps [16].

Theorem 1.1 (Stinespring's dilation theorem) Let \mathcal{A} be a unital C^* -algebra, and let $\Phi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V : H \to \mathcal{K}$ such that

$$\Phi(A) = V^{\dagger} \pi(A) V \text{ for all } A \in \mathcal{A}.$$

We will outline the proof of this theorem in the exercise. For commutative A, we have the following [17].

Theorem 1.2 Suppose \mathcal{A} is a commutative C^* -algebra and $\Phi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is positive. Then Φ is completely positive.

One of the application of the study of completely positive maps is the extension problem for positive maps on C^* -algebra. Let \mathcal{A} be a unital C^* -algebra and S a self-adjoint $(S = S^{\dagger})$ subspace of \mathcal{A} . A linear map $\Phi : S \to \mathcal{B}(\mathcal{H})$ is said to be positive if $\Phi(A)$ is positive in $\mathcal{B}(\mathcal{H})$ for every positive $A \in S$. The extension problem asks if Φ can be extended to a positive map on \mathcal{A} . When the range of Φ is commutative, the answer is affirmative. We first state some results of Arveson [1].

Theorem 1.3 Let S be a self-adjoint subspace of a C^* -algebra \mathcal{A} and \mathcal{B} a commutative C^* -algebra. Every positive linear map from S to \mathcal{B} is completely positive.

Theorem 1.4 Let \mathcal{A} be a unital C^* -algebra and S be a norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity $1_{\mathcal{A}}$ in \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Theorem 1.5 Let \mathcal{A} be a unital C^* -algebra and S be a norm-closed self-adjoint subspace of \mathcal{A} , which contains the identity in \mathcal{A} . Then every positive map from S to a commutative C^* -algebra \mathcal{B} can be extended to a positive map from \mathcal{A} to \mathcal{B} .

The following example shows that Theorem 1.4 does not hold for positive maps. It also shows that Theorem 1.3 does not hold if we exchange the commutativity of \mathcal{B} with \mathcal{A} . See also Theorem 1.2.

Example 1.6 (Arveson [1]) Let C(T) be the commutative C^* -algebra of continuous function on the unit circle of the complex plane and S the subspace of C(T) spanned by $\{1, z, \overline{z}\}$. Define $\Phi: S \to M_2$ by

$$\Phi(a+bz+c\overline{z}) = \left[\begin{array}{cc} a & 2b\\ 2c & a \end{array}\right].$$

Then Φ is positive (exercise). We are going to show that Φ cannot be extended to a positive map on C(T).

Suppose the contrary that Φ can be extended to a positive map on C(T). Then by Theorem 1.2, $\Phi: C(T) \to M_2$ is completely positive. By Theorem 1.1, there exist a Hilbert space \mathcal{K} , a unital C^* -homomorphism $\pi: C(T) \to \mathcal{B}(\mathcal{K})$, and a bounded operator $V: \mathbb{C}^2 \to \mathcal{K}$ such that

$$\Phi(A) = V^{\dagger} \pi(A) V$$
 for all $A \in C(T)$.

Since Φ is unital, $V^{\dagger}V = I_2$. Therefore, VV^{\dagger} is a projection in $\mathcal{B}(\mathcal{K})$. So, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Phi(1) = \Phi(z\overline{z}) = V^{\dagger}\pi(z\overline{z})V = V^{\dagger}\pi(z)\pi(\overline{z})V$$
$$\geq V^{\dagger}\pi(z)VV^{\dagger}\pi(\overline{z})V = \Phi(z)\Phi(\overline{z})$$
$$= \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix},$$

a contradiction.

We remark that in Theorem 1.4, the condition $1_{\mathcal{A}} \in S$ is also important because it ensures that every self adjoint element in S is a difference of two positive elements. Without this condition, the Theorem would not hold (exercise).

A norm closed subspace S of a C^* -algebra \mathcal{A} is called an *operator space* of A. A linear map $\Phi: S \to \mathcal{B}(\mathcal{H})$ is called a *complete contraction* if Φ_k is a contraction $(||\Phi_k|| \leq 1)$ for every k. If an operator space S is self-adjoint and $1_{\mathcal{A}} \in S$, then S is called an *operator system*. There is a close connection between the study of complete contraction on operator system and completely positive map on operator system. This stems from the connection between the norm and positivity in $\mathcal{B}(\mathcal{H})$.

Lemma 1.7 (Choi and Effros, [6]) Let $A \in \mathcal{B}(\mathcal{H})$. Then we have

$$||A|| \le 1 \Leftrightarrow \left[\begin{array}{cc} I & A \\ A^{\dagger} & I \end{array} \right] \ge 0 \,.$$

We leave the proof as an exercise.

The following theorem [2, 15] is an analog to Theorem 1.4.

Theorem 1.8 Let S be an operator space in a C^{*}-algebra \mathcal{A} and $\Phi : S \to \mathcal{B}(\mathcal{H})$ a complete contraction. Then Φ can be extended to a complete contraction on \mathcal{A}

Proof. Without loss of generality, we may assume that \mathcal{A} is unital. Let

$$S_2 = \left\{ \left[\begin{array}{cc} \lambda I_{\mathcal{A}} & A \\ A^{\dagger} & \lambda I_{\mathcal{A}} \end{array} \right] : A \in S, \ \lambda \in \mathbf{C} \right\}.$$

Then S_2 is an operator system of $M_2(\mathcal{A})$. Define $\Psi: S_2 \to \mathcal{B} = M_2(\mathcal{B}(\mathcal{H}))$ by

$$\Psi\left(\left[\begin{array}{cc}\lambda I_{\mathcal{A}} & A\\ A^{\dagger} & \lambda I_{\mathcal{A}}\end{array}\right]\right) = \left[\begin{array}{cc}\lambda I_{\mathcal{B}(\mathcal{H})} & \Phi(A)\\ \Phi(A)^{\dagger} & \lambda I_{\mathcal{B}(\mathcal{H})}\end{array}\right].$$

Claim Ψ is completely positive on S_2 . (Exercise)

Then, by Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{A})$. Hence, there exist linear maps $\Phi_{ij} : \mathcal{A} \to \mathcal{B}(\mathcal{H}), 1 \leq i, j \leq 2$, such that for $[A_{ij}] \in M_2(\mathcal{A})$, we have

$$\Psi\left(\left[A_{ij}\right]\right) = \left[\Phi_{ij}(A_{ij})\right]$$

Therefore, Φ_{12} is an extension of Φ . Since Ψ is completely positive, $\Psi(B)$ is self-adjoint for all self-adjoint $B \in M_2(\mathcal{A})$. In particular, for all $A \in \mathcal{A}$, we have

$$\begin{bmatrix} 0 & \Phi_{12}(A) \\ \Phi_{21}(A^{\dagger}) & 0 \end{bmatrix} = \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right) = \Psi\left(\begin{bmatrix} 0 & A \\ A^{\dagger} & 0 \end{bmatrix}\right)^{\dagger} = \begin{bmatrix} 0 & \Phi_{21}(A^{\dagger})^{\dagger} \\ \Phi_{12}(A)^{\dagger} & 0 \end{bmatrix}$$

Therefore, $\Phi_{21}(A^{\dagger}) = \Phi_{12}(A)^{\dagger}$ for all $A \in \mathcal{A}$. Suppose $A \in \mathcal{A}$, with $||A|| \leq 1$. Then we have

$$\begin{bmatrix} I_{\mathcal{A}} & A \\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \ge 0 \Rightarrow \Psi \left(\begin{bmatrix} I_{\mathcal{A}} & A \\ A^{\dagger} & I_{\mathcal{A}} \end{bmatrix} \right) = \begin{bmatrix} I_{\mathcal{B}(\mathcal{H})} & \Phi_{12}(A) \\ \Phi_{12}(A)^{\dagger} & I_{\mathcal{B}(\mathcal{H})} \end{bmatrix} \ge 0 \Rightarrow \|\Phi_{12}(A)\| \le 1.$$

This shows that Φ_{12} is a contraction. Similar argument applied to $I_k \otimes \Psi$ shows that $I_k \otimes \Phi_{12}$ is a contraction for all $k \ge 1$. Therefore, Φ_{12} is a complete contractive extension of Φ to \mathcal{A} . \Box

2 Completely positive linear maps on matrix spaces.

Lemma 2.1 Let $A \in M_n$. Then the following conditions are equivalent:

- 1. $\langle x|Ax \rangle \ge 0$ for all $|x\rangle \in \mathbf{C}^n$.
- 2. $A = A^{\dagger}$ and all eigenvalues of A are non-negative.

A is said to be positive (semidefinite) $(A \ge 0)$ if it satisfies any one of the above conditions. The set of all positive semidefinite matrices in M_n will be denoted by \mathcal{P}_n . **Definition 2.2** A linear map $\Phi : M_n \to M_m$ is *positive* $(\Phi \ge 0)$ if $\Phi(\mathcal{P}_n) \subseteq \mathcal{P}_m$. More generally, given a positive integer k, define

 $\Phi_k = I_k \otimes \Phi : M_k(M_n) \cong M_{kn} \to M_k(M_m) \cong M_{km} \qquad \text{by} \qquad \Phi_k(A_{ij}) = (\Phi(A_{ij})).$

 Φ is *k*-positive if Φ_k is positive. Let $P_k(n, m)$ denote the set of *k*-positive map from M_n to M_m . Φ is completely positive if $\Phi \in P_k(n, m)$ for all positive integer *k*.

Let $\{|e_i\rangle : 1 \leq i \leq n\}$ be the canonical basis for \mathbb{C}^n . Set $E_{ij} = |e_i\rangle\langle e_j|$. Then $\{E_{11}, E_{12}, \ldots, E_{nn}\}$ is the canonical basis for M_n .

Example 2.3 The map $\Phi: M_n \to M_n$ defined by $\Phi(A) = A^t$ is positive, but not 2-positive. To see this, consider $A = \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} \in M_{2n}$. Then $(I_2 \otimes \Phi)(A) = \begin{pmatrix} E_{11} & E_{21} \\ E_{12} & E_{22} \end{pmatrix}$ has a principal matrix of the form $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, which is indefinite.

Example 2.4 (Choi [3]) For every n > 1, the map $\Phi : M_n \to M_n$ with

$$\Phi(A) = (n-1)(\mathrm{Tr}A)I_n - A$$

is n - 1-positive but not n-positive.

Given a linear map $\Phi: M_n \to M_m$, define the *Choi matrix* of Φ by

$$C(\Phi) = (\Phi(E_{ij}))_{ij=1}^n = \sum_{i,j} E_{ij} \otimes \Phi(E_{ij}).$$

Theoretically, Φ is completely determined by its Choi matrix. In this section, we will explore the relationship between Φ and $C(\Phi)$. Let $S_k(n,m) = \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, |y_i\rangle \in \mathbf{C}^m\}.$

Theorem 2.5 Given a linear map $\Phi : M_n \to M_m$ and $k \ge 1$, the following conditions are equivalent:

- (a) Φ is k-positive.
- (b) $\langle z | C(\Phi) z \rangle \geq 0$ for all $|z\rangle \in S_k(n,m)$.
- (c) $(I_n \otimes P)C(\Phi)(I_n \otimes P)$ is positive for all orthogonal projection P with rank $\leq k$.

Proof. (a) \Leftrightarrow (b) : First consider the case k = 1. We have

$$\begin{split} \Phi &\ge 0 \\ \Leftrightarrow \quad \Phi(|x\rangle\langle x|) \ge 0 \quad \text{for all } |x\rangle \in \mathbf{C}^n \\ \Leftrightarrow \quad (|x\rangle \otimes I_m)^{\dagger} C(\Phi)(|x\rangle \otimes I_m) \ge 0 \quad \text{for all } |x\rangle \in \mathbf{C}^n \\ \Leftrightarrow \quad \langle y| \left((|x\rangle \otimes I_m)^{\dagger} C(\Phi)(|x\rangle \otimes I_m) \right) |y\rangle \ge 0 \quad \text{for all } |x\rangle \in \mathbf{C}^n, \ |y\rangle \in \mathbf{C}^m \\ \Leftrightarrow \quad \langle y|\langle x|C(\Phi)|x\rangle|y\rangle \ge 0 \quad \text{for all } |x\rangle \in \mathbf{C}^n, \ |y\rangle \in \mathbf{C}^m \\ \Leftrightarrow \quad \langle z|C(\Phi)z\rangle \ge 0 \quad \text{for all } |z\rangle \in S_1 \end{split}$$

For general k > 1, by definition, Φ is k-positive if and only if $I_k \otimes \Phi$ is positive. We can apply the above result with Φ replaced by $I_k \otimes \Phi$ to get the result (exercise).

(b) \Leftrightarrow (c): Suppose (c) holds. Given $|z\rangle = \sum_{p=1}^{k} |x_p\rangle |y_p\rangle \in S_k(n,m)$, where $|x_p\rangle \in \mathbb{C}^n$, $|y_p\rangle \in \mathbb{C}^m$, $1 \le p \le k$, let *P* be the orthogonal projection to the subspace spanned by $\{|y_p\rangle : 1 \le p \le k\}$. Then $(I_n \otimes P)(|z\rangle) = |z\rangle$. Therefore,

$$\langle z|C(\Phi)z\rangle = \langle (I_n \otimes P)z|C(\Phi)((I_n \otimes P)|z\rangle = \langle z|(I_n \otimes P)C(\Phi)(I_n \otimes P)z\rangle \ge 0$$

Conversely, suppose (b) holds. Let P be an orthogonal projection in M_m with rank k. Let $\{|y_p\rangle : 1 \le p \le k\}$ be an orthonormal basis of the range space of P. For every $|z\rangle \in \mathbb{C}^{mn}$, there exist $|x_p\rangle \in \mathbb{C}^n$, $1 \le p \le k$ such that $(I_k \otimes P)|z\rangle = \sum_{p=1}^k |x_p\rangle |y_p\rangle \in S_k$. We have

$$\langle z | (I_k \otimes P) C(\Phi) (I_k \otimes P) z \rangle = \langle (I_k \otimes P) z | C(\Phi) ((I_k \otimes P) | z \rangle \ge 0$$

Hence, $(I_k \otimes P)C(\Phi)(I_k \otimes P) \ge 0.$

We have the following result by Choi [4] (see also [9]).

Theorem 2.6 Let $\Phi: M_n \to M_m$. The following are equivalent.

- (a) Φ is completely positive.
- (b) Φ is *n*-positive.
- (c) The Choi matrix $C(\Phi) = (\Phi(E_{ij}))$ is positive.
- (d) Φ admits an operator-sum representation:

$$\Phi(A) \mapsto \sum_{j=1}^{r} F_j A F_j^{\dagger}.$$
(1)

Furthermore, suppose (d) holds. Then we have

- (1) The map Φ is unital if and only if $\sum_{j=1}^{r} F_j F_j^{\dagger} = I_m$.
- (2) The map Φ is trace preserving if and only if $\sum_{j=1}^{r} F_{j}^{\dagger} F_{j} = I_{n}$.

Proof. The equivalence of (a) \Leftrightarrow (b) \Leftrightarrow (c) follows from Theorem 2.5.

Suppose (c) holds. There exist $|f_j\rangle \in \mathbf{C}^{mn}, 1 \leq j \leq r$ such that

$$(\Phi(E_{ij})) = |f_1\rangle\langle f_1| + \dots + |f_r\rangle\langle f_r|.$$

Arrange each $|f_j\rangle$ as $m \times n$ matrix F_j by taking the first m entries as the first column, the next m entries as the second column, etc., for each j. Once can check that

$$\Phi(E_{pq}) = \sum_{j=1}^{r} F_j E_{pq} F_j^{\dagger}.$$

By linearity, condition (d) holds.

Suppose (d) holds. Then

$$\Phi_k(A_{ij}) = \sum_{j=1}^r (I_k \otimes F_j)(A_{ij})(I_k \otimes F_j)^{\dagger}$$

is a positive map for each k. Thus (a) holds.

Furthermore, suppose (d) holds. We have

- (1) Φ is unital $\Leftrightarrow \Phi(I_n) = I_m \Leftrightarrow \sum_{j=1}^r F_j F_j^{\dagger} = I_m.$
- (2) Φ is trace preserving if and only if

$$\operatorname{Tr}\left(\sum_{j=1}^{r} F_{j}AF_{j}^{\dagger}\right) = \operatorname{Tr}A \text{ for all } A \in M_{n}$$

$$\Leftrightarrow \operatorname{Tr}\left(\sum_{j=1}^{r} AF_{j}^{\dagger}F_{j}\right) = \operatorname{Tr}A \text{ for all } A \in M_{n}$$

$$\Leftrightarrow \operatorname{Tr}\left(A\left(\sum_{j=1}^{r} F_{j}^{\dagger}F_{j} - I_{n}\right)\right) = 0 \text{ for all } A \in M_{n}$$

$$\Leftrightarrow \left(\sum_{j=1}^{r} F_{j}^{\dagger}F_{j} - I_{n}\right) = 0$$

$$\Leftrightarrow \left(\sum_{j=1}^{r} F_{j}^{\dagger}F_{j}\right) = I_{n}$$

г	-	-	
L			
L			1

Remark 2.7

- From mathematical point of view, checking the positivity of the Choi matrix $(\Phi(E_{ij}))$ is the simplest and most natural thing to do, and it turns out to be the right test for complete positivity.
- The matrices F_j in (1) are called the *Choi operators* or the *Kraus operators*. In the context of quantum error correction, F_j are called the *error operators*.

Theorem 2.8 Suppose $\Phi: M_n \to M_m$ of the form (1) such that $\{F_1, \ldots, F_r\}$ is linearly independent, and Φ has another operator sum representation

$$\Phi(A) = \sum_{j=1}^{s} \tilde{F}_j A \tilde{F}_j^{\dagger}.$$

Then there is $V = (v_{ij}) \in M_{r,s}$ such that VV^* dag = I_r and

$$\tilde{F}_i = \sum_j v_{ij} F_j, \quad i = 1, \dots, r.$$

Proof. Use the vector f_j corresponding to F_j to write

$$(\Phi(E_{ij})) = [|f_1\rangle \cdots |f_r\rangle][|f_1\rangle \cdots |f_r\rangle]^{\dagger}.$$

Also, use the vector \tilde{f}_j corresponding to \tilde{F}_j to write

$$(\Phi(E_{ij})) = [|\tilde{f}_1\rangle \cdots |\tilde{f}_s\rangle][|\tilde{f}_1\rangle \cdots |\tilde{f}_r\rangle]^{\dagger}.$$

Since $[|f_1\rangle \cdots |f_r\rangle]$ has linearly independent columns spending the column space of $(\Phi(E_{ij}))$, we see that

$$[|\tilde{f}_1\rangle\cdots|\tilde{f}_s\rangle] = [|f_1\rangle\cdots|f_r\rangle]V$$

for some $r \times s$ matrix $V = (v_{ij})$ such that $VV^{\dagger} = I_r$.

Define an inner product on $M_{p,q}$ by $\langle X|Y \rangle = \text{Tr}(X^{\dagger}Y)$. Suppose $\Phi: M_n \to M_m$ is a linear map. Then the dual map $\Phi^{\dagger}: M_m \to M_n$ is the linear map defined by

$$\langle B|\Phi^{\dagger}(A)\rangle = \langle \Phi(B)|A\rangle$$

for all $A \in M_m$ and $B \in M_n$.

Theorem 2.9 Let $\Phi : M_n \to M_m$. Then for every $k \ge 1$, Φ is k-positive if and only if Φ^{\dagger} is k-positive.

Proof. Let $\{|e_i\rangle : 1 \le i \le n\}$ and $\{|f_s\rangle : 1 \le s \le m\}$ be canonical bases of \mathbb{C}^n and \mathbb{C}^m respectively. Define $P : \mathbb{C}^{mn} \to \mathbb{C}^{mn}$ by $P(|f_s\rangle|e_i\rangle) = |e_i\rangle|f_s\rangle$ for all $1 \le i \le n$ and $1 \le s \le m$. Let $E_{ij} = |e_i\rangle\langle e_j|$ and $F_{st} = |f_s\rangle\langle f_t|$. We have

$$\langle e_i | \langle f_s | C(\Phi^{\dagger}) | f_t \rangle | e_j \rangle$$

$$= \langle E_{ij} | \Phi^{\dagger}(F_{st}) \rangle$$

$$= \langle \Phi(E_{ij}) | F_{st} \rangle$$

$$= \overline{\langle F_{st} | \Phi(E_{ij}) \rangle}$$

$$= \overline{\langle f_s | \langle e_i | C(\Phi) | e_j \rangle | f_t \rangle}$$

$$= \overline{\langle P(|f_s \rangle | e_i \rangle))^{\dagger} | C(\Phi) P | f_t \rangle | e_j \rangle }$$

$$= \overline{\langle e_i | \langle f_s | P^{\dagger} C(\Phi) P | f_t \rangle | e_j \rangle}$$

Therefore, $C(\Phi^{\dagger}) = \overline{P^{\dagger}C(\Phi)P}$. Then we can apply Theorem 2.5 (b).

Theorem 2.10 Suppose $\Phi : M_n \to M_m$ is a completely positive linear map with operator sum representation in (1). Then the dual linear map $\Phi^{\dagger} : M_m \to M_n$ is by

$$\Phi^{\dagger}(B) = \sum_{j=1}^{r} F_j^{\dagger} B F_j \,.$$

Consequently, Φ^{\dagger} is also completely positive. Furthermore, Φ is unital (trace preserving, respectively) if and only if Φ^{\dagger} is trace preserving (unital, respectively).

Theorem 2.11 Let $\Phi: M_n \to M_m$ be a linear map. Then Φ is a completely positive if and only if Φ is k-positive for $k = \min\{m, n\}$. In particular, if n or m equals to 1, then Φ is positive if and only if Φ is completely positive.

Proof. It suffices to prove that if m < n and Φ is *m*-positive, then Φ is completely positive.

By Theorem 2.9, if Φ is *m*-positive then Φ^{\dagger} is *m*-positive. By Theorem 2.6, Φ^{\dagger} is completely positive. Therefore, Φ is completely positive by Theorem 2.10.

3 Cones of positive maps and duality

Given an inner product space \mathcal{V} , a non-empty subset \mathcal{C} of \mathcal{V} is said to be a *cone* if it satisfies:

- 1. $C + C \subseteq C$,
- 2. $r\mathcal{C} \subseteq \mathcal{C}$ for all $r \geq 0$,

 \mathcal{C} is said to be *pointed* if $\mathcal{C} \cap (-\mathcal{C}) = \{0\}$ and *full* if $\mathcal{C} - \mathcal{C} = \mathcal{V}$.

Given a subset $S \subset \mathcal{V}$, define the *dual cone* of S in \mathcal{V} is given by

$$S^* = \{ |v\rangle \in \mathcal{V} : \langle x|v\rangle \ge 0 \text{ for all } |x\rangle \in \mathcal{V} \}.$$

The following result describes some basic relationship between cone and dual cone.

Theorem 3.1 Suppose C, C_1, C_2 are cones of V. We have

- 1. \mathcal{C}^* is a closed cone of \mathcal{V} .
- 2. C^* is pointed (full) if and only if C is full (pointed, respectively).
- 3. $\mathcal{C} \subseteq (\mathcal{C}^*)^*$. $\mathcal{C} = (\mathcal{C}^*)^*$ if and only if \mathcal{C} is closed.
- 4. If $C_1 \subseteq C_2$, then $C_1^* \supseteq C_2^*$.
- 5. $(\mathcal{C}_1 \cap \mathcal{C}_2)^* \supseteq \mathcal{C}_1^* + \mathcal{C}_2^*$, and $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \mathcal{C}_1^* + \mathcal{C}_2^*$, if \mathcal{C}_1 and \mathcal{C}_2 are closed.
- 6. $(C_1 + C_2)^* = C_1^* \cap C_2^*$.

We will use this concept to reformulate the results in Theorems 2.5 and 5.1. See [19] for details. Recall from Section 2, the set

$$S_k(n,m) = \{\sum_{i=1}^k |x_i\rangle |y_i\rangle : |x_i\rangle \in \mathbf{C}^n, \ |y_i\rangle \in \mathbf{C}^m\}.$$

A Hermitian matrix $A \in M_n \otimes M_m$ is k-block positive if

$$\langle u|Au\rangle \ge 0$$
 for all $|u\rangle \in S_k(m,n)$.

We will denote the k-block positive matrices in $M_n \otimes M_m$ by $BP_k(n, m)$. By Theorem 2.5, a linear map Φ is k-positive if and only if $C(\Phi) \in BP_k(n, m)$.

Let

$$Ent_k(n,m) = \{ X \in M_n \otimes M_m : \langle A | X \rangle \ge 0 \text{ for all } A \in BP_k(n,m) \}$$

be the dual cone of the $BP_k(n, m)$. A density matrix is said to be k-entangled if it is in $Ent_k(n, m)$. 1-entangled states are *separable* (see Section 5).

The k-superpositive maps are given by

$$SP_k(n,m) = \{\Phi : M_n \to M_m : C(\Phi) \in Ent(n,m)\}.$$

We can show that (exercise) $\Phi \in SP_k(n,m)$ if and only if there exist $F_i \in M_{m,n}$ with rank $F_i \leq k$, $1 \leq i \leq r$ such that

$$\Phi(X) = \sum_{i=1}^{r} F_i X F_i^{\dagger} \text{ for all } X \in M_n.$$

Let $d = \min(n, m)$. For convenience of notation, we have omitted (n, m) in the following

Φ		SI	P_1	\subseteq	SP_2	\subseteq	• • •	$SP_d =$	CP =	P_d	\subseteq	P_{d-1}	\subseteq	• • •	P_1
$\begin{bmatrix} 1\\ C(\mathbf{q}) \end{bmatrix}$	Þ)	En	t_1	\subseteq	Ent_2	\subseteq		$Ent_d =$	P = I	$3P_d$	\subseteq	BP_{d-1}	\subseteq		BP_1
\mathcal{C}	SI	P_1	\subseteq	SP	$P_2 \subseteq$	• • •	SP_{c}	l = CP	Ent_1	\subseteq	Ent	$\downarrow_2 \subseteq$	•••	Ent_d	= P
$\begin{array}{c} \uparrow\\ \mathcal{C}^* \end{array}$	P	1	\supseteq	P_2	⊇		P_d	= CP	BP_1	⊇	BP	$2 \supseteq$		BP_d	= P

Under the correspondence $\Phi \leftrightarrow C(\Phi)$ and duality $\mathcal{C} \leftrightarrow \mathcal{C}^*$, study in one category, e.g. entanglement can be translated/related to study in other categories, e.g. positive maps, block positive matrices.

4 Decomposable positive linear Maps

Suppose $\Phi: M_n \to M_m$. For each k, define $\Phi_k^T: M_k \otimes M_n \to M_k \otimes M_m$ by $\Phi_k^T(A \otimes B) = A^T \otimes \Phi(B)$, and extend by linearity. Φ is said to be k-copositive if the map Φ_k^T is positive. Φ is completely copositive if Φ_k^T is positive for all k. Φ is decomposable if $\Phi = \Phi_1 + \Phi_2$, where Φ_1 is completely positive and Φ_2 is completely copositive.

Suppose n, m > 1. If $n + m \le 5$, every positive $\Phi : M_n \to M_m$ is decomposable. For n + m > 5, there exists a positive $\Phi : M_n \to M_m$ which is not decomposable.

The following criterion for decomposable map is due to Størmer [18]

Theorem 4.1 Let \mathcal{A} be a C^* -algebra and Φ a linear map of A into $\mathcal{B}(\mathcal{H})$. Then Φ is decomposable if and only if for all $k \geq 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Proof. Suppose Φ is decomposable. Then $\Phi = \Theta + \Psi$ where where Θ is completely positive and Ψ is completely copositive. For $k \ge 1$, (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$, $\Theta_k((A_{ij})) \ge 0$ and $\Psi_k((A_{ij})) = (\Psi(A_{ij})) = \Psi_k^T((A_{ji})) \ge 0$. Therefore, $\Phi_k((A_{ij})) \ge 0$.

Conversely, suppose for all $k \ge 1$, whenever (A_{ij}) and (A_{ji}) belong to $M_k(\mathcal{A})^+$ then $(\Phi(A_{ij})) \in M_k(\mathcal{B}(\mathcal{H}))^+$.

Without loss of generality, we may assume that $\mathcal{A} \subseteq \mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} . We can also assume that $I_{\mathcal{B}(\mathcal{K})} \in \mathcal{A}$. Fix an orthonormal basis $\{|e_i\rangle\}$ of \mathcal{K} and let the elements in $\mathcal{B}(\mathcal{K})$ be represented by $A = (a_{ij})$, with $a_{ij} = \langle e_i | A e_j \rangle$. Then we can define the transpose in $\mathcal{B}(\mathcal{K})$, $\mathcal{A}^T = (a_{ij})$. Let $\mathcal{S} = \{\begin{bmatrix} A & 0 \\ 0 \end{bmatrix} \in \mathcal{M}(\mathcal{B}(\mathcal{K})) : \mathcal{A} \in \mathcal{A}\}$. Then \mathcal{S} is an expected system in

 $A^T = (a_{ji}).$ Let $S = \{ \begin{bmatrix} A & 0 \\ 0 & A^T \end{bmatrix} \in M_2(\mathcal{B}(\mathcal{K})) : A \in \mathcal{A} \}.$ Then S is an operator system in $M_2(\mathcal{B}(\mathcal{K})).$ Define $\Psi : S \to \mathcal{B}(\mathcal{H}) \}$ by

$$\Psi\left(\left[\begin{array}{cc}A&0\\\\0&A^{T}\end{array}\right]\right)=\Phi(A).$$

For each $k \ge 1$, suppose $\left(A_{ij} \oplus A_{ij}^T\right) \in M_k(S)$ is positive. Then $(A_{ij}), \left(A_{ij}^T\right) \ge 0$. Since

$$\left(A_{ij}^{T}\right) \ge 0 \Rightarrow \left(A_{ji}\right) = \left(A_{ij}^{T}\right)^{T} \ge 0,$$

we have $\left(\Psi\left(A_{ij} \oplus A_{ij}^{T}\right)\right) = (\Phi(A_{ij})) \geq 0$. So, Ψ is k-positive. Hence, Ψ is completely positive on the operator system S. By Theorem 1.4, Ψ can be extended to a completely positive map on $M_2(\mathcal{B}(\mathcal{H}))$. Let $\Theta_1, \ \Theta_2 : \mathcal{A} \to M_2(\mathcal{B}(\mathcal{K}))$ be given by

$$\Theta_1(A) = \begin{bmatrix} A & 0 \\ \\ 0 & 0 \end{bmatrix}, \text{ and } \Theta_2(A) = \begin{bmatrix} 0 & 0 \\ \\ 0 & A^T \end{bmatrix}$$

Then Θ_1 is completely positive and Θ_2 is completely copositive. Therefore, $\Phi = \Psi \circ (\Theta_1 + \Theta_2)$ is decomposable.

Example 4.2 (Choi [5]) Let $\Phi: M_3 \to M_3$ be given by

Then Φ is positive but not indecomposable.

Proof. To prove that Φ is positive, we use Theorem 2.5 (a) \Leftrightarrow (c) for k = 1. By direct calculation,

Suppose $P = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} \overline{x_1} & \overline{x_2} & \overline{x_3} \end{bmatrix}$ is a rank one orthogonal projection. Then

$$(I_3 \otimes P)C(\Phi)(I_3 \otimes P) = X \otimes P, \text{ where } X = \begin{bmatrix} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 & -\overline{x_1}x_3\\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 & -\overline{x_2}x_3\\ -x_1\overline{x_3} & -x_2\overline{x_3} & |x_3|^2 + 2|x_1|^2 \end{bmatrix}.$$

Since

$$\begin{aligned} |x_1|^2 + 2|x_2|^2 &\ge 0, \\ \det\left(\left[\begin{array}{cc} |x_1|^2 + 2|x_2|^2 & -\overline{x_1}x_2 \\ -x_1\overline{x_2} & |x_2|^2 + 2|x_3|^2 \end{array}\right]\right) &= 2(|x_2|^4 + |x_3|^3(|x_1|^2 + 2|x_2|^2)) \ge 0 \\ \det(X) &= 4\left(|x_1|^2|x_2|^4 + |x_1|^4|x_3|^2 + |x_1|^2|x_2|^2|x_3|^2 + |x_2|^2|x_3|^4\right) \ge 0, \end{aligned}$$

we have $X \ge 0$. Hence, $(I_3 \otimes P)C(\Phi)(I_3 \otimes P) = X \otimes P \ge 0$. By Theorem 2.5, Φ is positive.

Next, we will use Theorem 4.1 to show that Φ is not decomposable. Let $(x_{ij}) \in M_3(M_3)$ be given by

	4	0	0	0	4	0	0	0	4
	0	16	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0
$(x_{ij}) =$	4	0	0	0	4	0	0	0	4
	0	0	0	0	0	16	0	0	0
	0	0	0	0	0	0	16	0	0
	0	0	0	0	0	0	0	1	0
	4	0	0	0	4	0	0	0	4

It is easy to check that (x_{ij}) and (x_{ji}) are positive but

$$\Phi((x_{ij})) = \begin{bmatrix} \mathbf{6} & 0 & 0 & 0 & -\mathbf{4} & 0 & 0 & 0 & -\mathbf{4} \\ 0 & 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 33 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 33 & 0 & 0 & 0 & 0 & 0 \\ -\mathbf{4} & 0 & 0 & 0 & \mathbf{6} & 0 & 0 & 0 & -\mathbf{4} \\ 0 & 0 & 0 & 0 & 0 & 24 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 24 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 33 & 0 \\ -\mathbf{4} & 0 & 0 & 0 & -\mathbf{4} & 0 & 0 & 0 & \mathbf{6} \end{bmatrix}$$

is not positive because -2 is an eigenvalue of $\Phi((x_{ij}))$.

5 Completely positive map and entanglement

A positive semi-definite matrix $A \in M_n$ with $\operatorname{Tr} A = 1$ is called a *state (density matrix)*. A state $\rho \in M_n \otimes M_m \cong M_{nm}$ is said to be *separable* if there exist states $\rho_i^1 \in M_n$ and $\rho_i^2 \in M_m$, $i = 1, \ldots, k$ such that $\rho = \sum_{i=1}^k p_i \rho_i^1 \otimes \rho_i^2$ for some $p_i \ge 0$, $\sum_{i=1}^k p_i = 1$. Determining the separability of a state is one of the most important and difficult problems in quantum information. Suppose $\Phi : M_m \to M_n$ is a positive map. Then for all states $\rho^1 \in M_n$ and $\rho^2 \in M_m$, we have

$$(I_{M_n} \otimes \Phi) (\rho^1 \otimes \rho^2) = \rho^1 \otimes \Phi(\rho^2) \ge 0.$$

Hence, $(I_{M_n} \otimes \Phi)(\rho) \ge 0$ for all separable states ρ . The converse of this is also true and we have [7].

Theorem 5.1 A state $\rho \in M_{nm}$ is separable if and only if $(I_{M_n} \otimes \Phi)(\rho) \ge 0$ for all positive map $\Phi: M_m \to M_n$.

The proof is divided into several lemmas.

Lemma 5.2 $\Phi : M_m \to M_m$ is positive if and only if $\operatorname{Tr}(C(\Phi)(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_n$ and $Q \in M_m$.

Proof.

 Φ is positive

- $\Leftrightarrow \Phi(P)$ is a positive matrix in M_m for all positive matrix in M_n
- $\Leftrightarrow \quad \Phi(P)$ is a positive matrix in M_m for all rank one projection in M_n

$$\Leftrightarrow \quad (|x\rangle I_m)^{\dagger} C(\Phi)(|x\rangle \otimes I_m) \text{ is a positive matrix in } M_m \text{ for all } |x\rangle \in \mathbf{C}^n$$

- $\Leftrightarrow \quad \langle y | (|x\rangle I_m)^{\dagger} C(\Phi)(|x\rangle \otimes I_m) | y \rangle \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n, \ |y\rangle \in \mathbf{C}^m$
- $\Leftrightarrow \quad \langle y | \langle x | C(\Phi) | x \rangle | y \rangle \ge 0 \text{ for all } | x \rangle \in \mathbf{C}^n, \ | y \rangle \in \mathbf{C}^m$
- $\Leftrightarrow \operatorname{Tr} \left(C(\Phi)(|x\rangle|y\rangle\langle y|\langle x|) \right) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n, \ |y\rangle \in \mathbf{C}^m$
- $\Leftrightarrow \quad \operatorname{Tr}\left(C(\Phi)(|x\rangle\langle x|\otimes |y\rangle\langle y|)\right) \ge 0 \text{ for all } |x\rangle \in \mathbf{C}^n, \ |y\rangle \in \mathbf{C}^m$
- $\Leftrightarrow \quad \operatorname{Tr}(C(\Phi)(P \otimes Q)) \geq 0 \text{ for all orthogonal projections } P \in M_n, \ Q \in M_m$

Lemma 5.3 A state $\rho \in M_n \otimes M_m$ is separable if and only if $\operatorname{Tr}(\rho A) \geq 0$ for all $A \in M_{mn}$ such that $\operatorname{Tr}(A(P \otimes Q)) \geq 0$ for all orthogonal projections $P \in M_n$ and $Q \in M_m$.

Proof. By definition, the set of separable states S is the convex hull of all $P \otimes Q$, where $P \in M_n$ and $Q \in M_m$ are rank 1 projections. The separation theorem says that $\rho \in M_n \otimes M_m$ is separable if and only if $f(\rho) \ge 0$ for all linear functional f on M_{mn} , which is positive on S. Since every linear functional f on M_{mn} is of the form f(X) = Tr(AX) for some $A \in M_{mn}$, the result follows.

Proof of Theorem 5.1 Suppose a state $\rho \in M_n \otimes M_m$ such that $I_{M_n} \otimes \Phi(\rho) \ge 0$ for all positive map $\Phi : M_m \to M_n$. Let $A = (A_{ij}) \in M_m \otimes M_n$ such that $\operatorname{Tr}(A(P \otimes Q)) \ge 0$ for all orthogonal projections $P \in M_m$ and $Q \in M_n$. Choose $\Psi : M_n \to M_m$ such that $C(\Psi) = A$. Then by Lemma 5.2, Ψ is positive. Hence, $\Phi = \Psi^{\dagger} : M_m \to M_n$ is also positive. Let $\{|e_i\rangle : 1 \le i \le n\}$ be the canonical basis for \mathbb{C}^n and $E_{ij} = |e_i\rangle\langle e_j|$. Then $\{E_{ij} : 1 \le i, j \le n\}$ is the set of canonical matrix units for M_n . We have

$$E = \sum_{i,j=1}^{n} E_{ij} \otimes E_{ij} = \left(\sum_{i=1}^{n} |e_i\rangle |e_i\rangle\right) \left(\sum_{j=1}^{n} |e_j\rangle |e_j\rangle\right)^{\dagger}$$

is positive and

$$C(\Phi) = (I_n \otimes \Phi)(E)$$
.

Hence,

$$(I_n \otimes \Phi)(\rho) \ge 0$$

$$\Rightarrow \quad \langle E | (I_n \otimes \Phi)(\rho) \rangle \ge 0$$

$$\Rightarrow \quad \langle (I_n \otimes \Phi)^*(E) | \rho \rangle \ge 0$$

$$\Rightarrow \quad \langle (I_n \otimes \Psi)(E) | \rho \rangle \ge 0$$

$$\Rightarrow \quad \langle C(\Psi) | \rho \rangle \ge 0$$

$$\Rightarrow \quad \operatorname{Tr}(\rho A) \ge 0.$$

So, by lemma 5.3, ρ is separable.

Define two partial transpose map on $M_n \otimes M_m$ by

$$T_1(A \otimes B) = A^T \otimes B$$
, and $T_2(A \otimes B) = A \otimes B^T$

and extend by linearity. Note that for $(a_{ij}) \in M_n \otimes M_m$, we have

$$T_1((a_{ij})) = (a_{ji}), \text{ and } T_2((a_{ij})) = (a_{ij}^T)$$

We have the PPT criterion for separability:

Theorem 5.4 (Horodecki [7]) Let ρ be a state in $M_n \otimes M_m$. Then we have

- (1) If ρ is separable, then $T_2(\rho) \ge 0$.
- (2) If $n + m \leq 5$ and $T_2(\rho) \geq 0$, then ρ is separable.

Proof. Note that $T_1(\rho) = (T_2(\rho))^T$. Therefore, the condition $T_2(\rho) \ge 0$ is equivalent to $T_1(\rho) \ge 0$. A state ρ is said to be PPT if $T_2(\rho) \ge 0$.

(1) follows from Theorem 5.1 because the map $A \to A^T$ is positive.

To proof (2), suppose $n + m \leq 5$ and $T_2(\rho) \geq 0$. Let $\Phi : M_m \to M_n$ be a positive map. Then $\Phi = \Phi_1 + \Phi_2$, where $\Phi_1 : M_m \to M_n$ is completely positive and $\Phi_2 : M_m \to M_n$ is completely copositive. Then $(I \otimes \Phi_1)(\rho) \geq 0$ and $(I \otimes \Phi_2)(\rho) = (I \otimes \Phi_2^T)(T_2(\rho)) \geq 0$. Hence, $(I \otimes \Phi)(\rho) \geq 0$. So, by Theorem 5.1, Φ is completely positive. \Box To show that the conclusion in Theorem 5.4 (b) may not hold for n = m = 3, let Φ be as given in Example 4.2 and

	4	0	0	0	4	0	0	0	4
$\rho = \frac{1}{9}$	0	16	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0
	4	0	0	0	4	0	0	0	4
	0	0	0	0	0	16	0	0	0
	0	0	0	0	0	0	16	0	0
	0	0	0	0	0	0	0	1	0
	4	0	0	0	4	0	0	0	4

Then by the discussion in Example 4.2, ρ , $T_2(\rho) \ge 0$. So, ρ is a PPT state but $(I \otimes \Phi)(\rho) \ge 0$. Therefore, by Theorem 5.1, ρ is not separable.

6 Interpolating problems

In this section, we study the following [11].

Problem 6.1 Given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, determine the necessary and sufficient condition for the existence of a completely positive linear map $\Phi : M_n \to M_m$ possibly with some special properties (e.g., $\Phi(I_n) = I_m$ or/and Φ is trace preserving) such that

$$\Phi(A_j) = B_j \qquad for \ j = 1, \dots, k. \tag{2}$$

Given $A = (a_{ij}) \in M_n$, let $\operatorname{vec}(A) = (a_{11}, \ldots, a_{1n}, \ldots, a_{21}, \ldots, a_{nn}) \in \mathbb{C}^{n^2}$. $A \to \operatorname{vec}(A)$ gives a linear isomorphism between M_n and \mathbb{C}^{n^2} . Let $C = (C_{ij}) \in M_n(M_m)$, the *realignment* matrix of C is given by

$$C^{R} = \begin{bmatrix} \operatorname{vec} (C_{11}) \\ \operatorname{vec} (C_{12}) \\ \vdots \\ \operatorname{vec} (C_{1n}) \\ \operatorname{vec} (C_{21}) \\ \vdots \\ \operatorname{vec} (C_{nn}). \end{bmatrix}$$

We have $\Phi(A) = \Phi(\sum_{i,j} a_{ij} E_{ij}) = \sum_{i,j} a_{ij} \Phi(E_{ij})$. Therefore,

$$\operatorname{vec}\left(\Phi(A)\right) = \operatorname{vec}\left(A\right)C(\Phi)^{R} \tag{3}$$

It follows from (3) that given $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$, (2) holds for some completely positive Φ if and only if there exists a positive semidefinite matrix $C \in M_{mn}$ such that

$$\operatorname{vec}(B_i) = \operatorname{vec}(A_i)C^R$$
, for all $1 \le i \le k$ (4)

For general A_i and B_i , checking if (4) holds for a positive semidefinite matrix $C \in M_{mn}$ can be very difficult. We will consider the case where $\{A_i : 1 \leq 1 \leq k\}$ and $\{B_i : 1 \leq 1 \leq k\}$ are commuting families of Hermitian matrices. In this case, there exist unitary matrices $U \in M_n$ and $V \in M_m$ such that $U^{\dagger}A_iU$ and $V^{\dagger}B_iV$ are diagonal matrices. Clearly, there is a completely positive map taking A_i to B_i if and only if there is a completely positive map taking $U^{\dagger}A_iU$ to $V^{\dagger}B_iV$. Therefore, we only need to consider the case where A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . In this case, C can be chosen of the form $C = (C_{ij})$, where each C_{ij} is an $m \times m$ diagonal matrix (exercise). So, we have

Theorem 6.2 Suppose A_i , B_i are diagonal matrices with diagonals \mathbf{a}_i , \mathbf{b}_i . Then the following conditions are equivalent:

- 1. There exists a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A_i) = B_i$ for all $1 \le i \le k$.
- 2. There exists an $n \times m$ nonnegative matrix D such that $\mathbf{b}_i = \mathbf{a}_i D$ for all $1 \leq i \leq k$.

A nonnegative matrix is column (respectively, row) stochastic if in each column (respectively, row) the entries sum up to 1. If A is both column and row stochastic, then (the necessarily square matrix) A is doubly stochastic.

Theorem 6.3 Φ in Theorem 6.2 can be choose to be unital (trace preserving, unital and tracepreserving, respectively) if and only if D can be chosen to be column stochastic (row stochastic, doubly stochastic, respectively).

Denote by H_n the set of $n \times n$ Hermitian matrices. For $A \in H_n$, let

$$\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$$

be the vector of eigenvalues of A with entries arranged in descending order.

Corollary 6.4 Let $A \in H_n$ and $B \in H_m$. Then the following conditions are equivalent.

- (a) There is a completely positive linear map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.
- (b) There is a nonnegative $n \times m$ matrix D such that $\lambda(B) = \lambda(A)D$.
- (c) There are real numbers $\gamma_1, \gamma_2 \geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$.

Proof. The equivalence of (a) and (b) follows from Theorem 6.3.

(b) \Rightarrow (c) : Suppose (b) holds with $D = (d_{ij})$. Let $\gamma_1 = (\sum_{i=1}^n d_{i1})$ and $\gamma_2 = (\sum_{i=1}^n d_{im}) \lambda_1(A)$ Then we have

$$\lambda_1(B) = \sum_{i=1}^n d_{i1}\lambda_i(A) \le \left(\sum_{i=1}^n d_{i1}\right)\lambda_1(A) = \gamma_1\lambda_1(A) \text{ and}$$

$$\lambda_m(B) = \sum_{i=1}^n d_{im}\lambda_i(A) \ge \left(\sum_{i=1}^n d_{im}\right)\lambda_n(A) = \gamma_2\lambda_n(A)$$

(c) \Rightarrow (b) : Suppose (c) holds. Then for each $1 \le j \le m$, we have

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B) \ge \lambda_j(B) \lambda_m(B) \ge \gamma_2 \lambda_n(A).$$

So we can choose $0 \le t_j \le 1$ such that $\lambda_j(B) = t_j \gamma_1 \lambda_1(A) + (1 - t_j) \gamma_2 \lambda_n(A)$. Let $D = (d_{ij})$ with

$$d_{ij} = \begin{cases} t_j \gamma_1 & \text{for } i = 1\\ 0 & \text{for } 1 < i < n\\ (1 - t_j) \gamma_2 & \text{for } i = n \end{cases}$$

Then we have $\lambda(B) = \lambda(A)D$.

Example 6.5 Let A = diag(2,1,0), $B_1 = \text{diag}(4,3,1)$ and $B_2 = \text{diag}(1,1,-1)$. There is a completely positive linear map Φ such that $\Phi(A) = B_1$, but there is no completely positive linear map Φ such that $\Phi(A) = B_2$.

Note that
$$(4,3,1) = (2,1,0) \begin{bmatrix} 2 & 3/2 & 1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, and $B_1 = \sum_{j=1}^2 F_j A F_j^{\dagger}$ with $F_1 = \sqrt{2}E_{11} + \sqrt{3}E_{22}, \quad F_2 = E_{32}.$

Theorem 6.6 Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- (a) There exists a unital completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.
- (b) There exists an $n \times m$ column stochastic matrix D such that $\lambda(B) = \lambda(A)D$.
- (c) $\lambda_n(A) \leq \lambda_i(B) \leq \lambda_1(A)$ for all $1 \leq i \leq m$.

Proof. Similar to that of Theorem 2.1. Note that when D is column stochastic, we can take $\gamma_1 = \gamma_2 = 1$. Conversely, if $\gamma_1 = \gamma_2 = 1$, the matrix D constructed in the proof of 2.1 is column stochastic.

Theorem 6.7 Suppose $(A, B) \in H_n \times H_m$. Denote by $\lambda_+(X)$ the sum of positive eigenvalues of a Hermitian matrix X. The following conditions are equivalent.

(a) There is a trace preserving completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$.

- (b) There exists an $n \times m$ row stochastic matrix D such that $\lambda(B) = \lambda(A)D$.
- (c) $\lambda_+(B) \leq \lambda_+(A)$, and $\operatorname{Tr} A = \operatorname{Tr} B$.

Proof. The equivalence of (a) and (b) follows from Theorem 6.3.

Let

$$\lambda_1(A) \ge \cdots \ge \lambda_r(A) \ge 0 > \lambda_{s+1}(A) \ge \cdots \lambda_n(A)$$

$$\lambda_1(B) \ge \cdots \ge \lambda_s(B) \ge 0 > \lambda_{r+1}(B) \ge \cdots \lambda_m(B).$$

(b) \Rightarrow (c) : Suppose (b) holds with $D = (d_{ij})$. Then we have

$$\lambda_{+}(B) = \sum_{j=1}^{s} \sum_{i=1}^{n} d_{ij}\lambda_{i}(A) \le \sum_{j=1}^{s} \sum_{i=1}^{r} d_{ij}\lambda_{i}(A) \le \sum_{i=1}^{r} \sum_{j=1}^{m} d_{ij}\lambda_{i}(A) = \sum_{i=1}^{r} \lambda_{i}(A) = \lambda_{+}(A),$$

and

$$TrB = \sum_{j=1}^{m} \lambda_j(B) = \sum_{j=1}^{m} \sum_{i=1}^{n} d_{ij}\lambda_i(A) = \sum_{i=1}^{n} \sum_{j=1}^{m} d_{ij}\lambda_i(A) = \sum_{i=1}^{n} \lambda_i(A) = TrA.$$

(c) \Rightarrow (b): Suppose TrA = TrB, $\lambda_+(A) \ge \lambda_+(B)$ Let $\lambda_-(A) = \text{Tr}(A) - \lambda_+(A)$ and $\lambda_-(B) = \text{Tr}(B) - \lambda_+(B)$. Then $\lambda_-(A) \le \lambda_-(B)$. Let

$$t_q = \begin{cases} \frac{\lambda_q(B)}{\lambda_+(A)} & \text{for } 1 \le q \le s, \\\\ \frac{\lambda_q(B)}{\lambda_-(A)} & \text{for } s < q \le m. \end{cases}$$

Here, if $\lambda_+(A) = 0$ then $\lambda_+(B) = 0$, and we can set $t_q = 0$ for $1 \le q \le s$. If $\lambda_-(A) = 0$ then $\lambda_-(B) = 0$, and s = m. Therefore, $t_q \ge 0$ for all $1 \le q \le m$. We have

$$\lambda_+(A) \ge \lambda_+(B) = (\lambda_+(A)) \sum_{q=1}^s t_q, \quad \text{and} \quad |\lambda_-(A)| \ge |\lambda_-(B)| = |\lambda_-(A)| \sum_{q=s+1}^n t_q.$$

Let $u = 1 - \sum_{q=1}^{s} t_q \ge 0$, $v = 1 - \sum_{q=s+1}^{n} t_q \ge 0$ and D be an $n \times m$ row stochastic matrix with

$$p \text{ th row} = \begin{cases} (t_1, t_2, \dots, t_s, 0, \dots, 0, u) & \text{for } 1 \le p \le r, \\ (0, \dots, 0, t_{s+1}, t_{s+2}, \dots, t_{m-1}, t_m + v) & \text{for } r+1 \le p \le n \end{cases}$$

We have ,

$$\sum_{i=1}^{n} d_{ij}\lambda_i(A) = t_j\lambda_+(A) = \lambda_j(B), \text{ for } 1 \le j \le s$$

$$\sum_{i=1}^{n} d_{ij}\lambda_i(A) = t_j\lambda_-(A) = \lambda_j(B), \text{ for } s+1 \le j < m$$

$$\sum_{i=1}^{n} d_{im}\lambda_i(A) = u\lambda_+(A) + v\lambda_-(A) + t_m\lambda_-(A) = \lambda_m(B)$$

because

$$u\lambda_{+}(A) + v\lambda_{-}(A) = (\lambda_{+}(A) - \lambda_{+}(B)) + (\lambda_{-}(A) - \lambda_{-}(B)) = 0.$$

Therefore, $\lambda(B) = \lambda(A)D$.

Example 6.8 Let A = diag(2, 1, -1), B = diag(2, 0, 0), and C = diag(1, 1, 0). Then there are trace preserving completely positive linear maps Φ_1, Φ_2 such that $\Phi_1(A) = B$, $\Phi_2(B) = C$, and $\Phi_2 \circ \Phi_1(A) = C$. There is no completely positive linear map Φ satisfying $\Phi(C) = A$.

Remark 6.9 For two density matrices A and B, there is always a trace preserving completely positive map such that $\Phi(A) = B$. But there may not be a unital completely positive map Ψ such that $\Psi(A) = B$.

Suppose there is a unital completely positive map taking A to B, and also a trace preserving completely positive map taking A to B. Is there a unital trace preserving completely positive map sending A to B? The following example shows that the answer is negative.

Example 6.10 Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0). By Theorems 6.6 and 6.7 there is a trace preserving completely positive map sending A to B, and also a unital completely positive map sending A to B. Let $A_1 = A - I_4 = \text{diag}(3, 0, 0, -1)$ and $B_1 = B - I_4 = \text{diag}(2, 2, -1, -1)$. By Theorem 6.7, there is no trace preserving completely positive linear map sending A_1 to B_1 . Hence, there is no unital trace preserving completely positive map sending A to B.

A quantum channel/completely positive map $\Phi: M_n \to M_n$ is called *mixed unitary* (mixing process) if there exist unitary matrices $U_1, \ldots, U_r \in M_n$ and positive numbers p_1, \ldots, p_r summing up to 1 such that $\Phi(X) = \sum_{j=1}^k p_j U_j^{\dagger} X U_j$. Clearly, every mixed unitary completely positive map is unital and trace preserving. For $n \geq 3$, there exists a unital trace preserving completely positive map which is not mixed unitary [10].

For two real vectors x, y of the same dimension, say, n, we say that x is majorized by y, denoted by $x \prec y$, if the sum of entries of x - y is zero, and the sum of the k largest entries of x is not larger than that of y for k = 1, ..., n - 1; e.g., see [12] for the background on majorization.

Example 6.11 $(3,2,1,0) \prec (6,1,0,-1), (3,3,0,0) \not\prec (4,1,1,0).$

Theorem 6.12 Let $A, B \in H_n$. The following are equivalent.

- (a) There exists a unital trace preserving completely positive map Φ such that $\Phi(A) = B$.
- (b) There is a mixed unitary channel Φ such that $\Phi(A) = B$.
- (c) There exist unitary matrices U_j , $1 \le j \le n$ such that $B = \frac{1}{n} \sum_{j=1}^n U_j A U_j^{\dagger}$.

- (d) There is a unitary U such that UAU^{\dagger} has diagonal entries $\lambda_1(B), \ldots, \lambda_n(B)$.
- (e) $\lambda(B) \prec \lambda(A)$.
- (f) There is a doubly stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Proof. (a) \Rightarrow (f) follows from Theorem 6.3

(f) \Rightarrow (e) By the theory of majorization; see [12].

(e) \Rightarrow (d): is Horn's Theorem; see [12]. (d) \Rightarrow (c): Let $U \in M_n$ such that UAU^{\dagger} with $\lambda_1(B), \ldots, \lambda_n(B)$ We may assume that $B = \text{diag}(\lambda_1(B), \ldots, \lambda_n(B))$. Let $D = \text{diag}(1, w, \ldots, w^{n-1})$ with $w = e^{i2\pi/n}$, and $F_j = D^j U$ for $j = 1, \ldots, n$. Then $B = (\sum_{j=1}^n F_j AF_j^{\dagger})/n$.

The implications (c) \Rightarrow (b) \Rightarrow (a) are clear.

Remark 6.13

- For non-commuting family, Problem 6.1 is very challenging and is still under current research. One needs to use other tools such as dilation, numerical range, etc. to study the problem.
- Also, there are study of Problem 6.1 with the extra restriction that Φ has a bounded Choi/Kraus rank. This corresponds to the problem of constructing the quantum operations with the minimum number of Choi/Kraus operators F_1, \ldots, F_r .

7 Exercises

1. Prove Stinespring's Dilation Theorem by the following steps: Define \langle , \rangle on the algebraic tensor product space $\mathcal{A} \otimes \mathcal{H} = \{\sum_{i=1}^{n} A_i \otimes \mathbf{x}_i : A_i \in \mathcal{A}, \mathbf{x}_i \in \mathcal{H}\}$ by

$$\langle A \otimes \mathbf{x}, B \otimes \mathbf{y} \rangle = \langle \Phi(B^{\dagger}A)(\mathbf{x}), \mathbf{y} \rangle_{\mathcal{H}}$$

and extend by linearity. Use the completely positivity of Φ to show that for all $\mathbf{u}, \mathbf{v} \in \mathcal{A} \otimes \mathcal{H}$, we have

- (a) $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0.$
- (b) $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}.$
- (c) $|\langle \mathbf{u}, \mathbf{v} \rangle|^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle.$
- (d) Let $\mathcal{N} = \{ u \in \mathcal{A} \otimes \mathcal{H} : \langle \mathbf{u}, \mathbf{u} \rangle = 0 \}$. Then show that $\mathcal{N} = \{ u \in \mathcal{A} \otimes \mathcal{H} : \langle \mathbf{u}, \mathbf{v} \rangle = 0$ for all $\mathbf{u} \in \mathcal{A} \otimes \mathcal{H} \}$ is a subspace of $\mathcal{A} \otimes \mathcal{H}$.
- (e) Use $\langle \mathbf{u} + \mathcal{N}, \mathbf{v} + \mathcal{N} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ to define an inner product on the quotient space $(\mathcal{A} \otimes \mathcal{H}) / \mathcal{N}$.
- (f) Let \mathcal{K} be the Hilbert space completion of $(\mathcal{A} \otimes \mathcal{H})/\mathcal{N}$ under the inner product in 5. Let $A \in \mathcal{A}$. Show that the linear map $\pi(A) : \mathcal{A} \otimes \mathcal{H} \to \mathcal{A} \otimes \mathcal{H}$ defined by

$$\pi(A)\left(\sum_{i=1}^n A_i \otimes \mathbf{x}_i\right) = \sum_{i=1}^n (AA_i) \otimes \mathbf{x}_i$$

induces a bounded linear map on \mathcal{K} such that $A \mapsto \pi(A)$ gives the required *-homorphism.

2. Let C(T) be the commutative C^* -algebra of continuous function on the unit circle of the complex plane and S the subspace of C(T) spanned by $\{1, z, \overline{z}\}$. Define $\Phi : S \to M_2$ by

$$\Phi(a+bz+c\overline{z}) = \left[\begin{array}{cc} a & 2b\\ 2c & a \end{array}\right]$$

Prove that Φ is positive.

- 3. Give an example of a norm-closed self-adjoint subspace S of M_2 and a positive map from S to M_1 which cannot be extended to a positive map from M_2 to M_1 . (See also Theorem 1.5.)
- 4. Prove Lemma 1.7.
- 5. Prove the claim in the proof of Theorem 1.8.
- 6. Prove Lemma 2.1.
- 7. Suppose $\{E_{ij} : 1 \le i, j \le n\}$ is the set of canonical matrix units for M_n . Let $A = \sum_{i,j}^n E_{ij} \otimes E_{ji}$ and $B = \sum_{i,j}^n E_{ij} \otimes E_{ij}$. Prove that A is unitary and $\frac{1}{n}B$ is an orthogonal rank one projection.

- 8. Let $A = (a_{ij}) \in M_n$. Define $\Phi_A : M_n \to M_n$ by $\Phi(B) = (a_{ij}b_{ij})$ for $B = (b_{ij}) \in M_n$. Prove that the following conditions are equivalent:
 - (a) Φ_A is completely positive.
 - (b) Φ_A is positive.
 - (c) $A \ge 0$.
- 9. Given $\Phi_A : M_n \to M_m$, define $s_{\Phi} : M_m(M_n) \cong M_m \otimes M_n \to \mathbb{C}$ by $s_{\Phi}(F_{pq} \otimes E_{ij}) = (p,q)$ entry of $\Phi(E_{ij})$ and extend by linearity. Prove that Φ is completely positive if and only if s_{Φ} is positive.
- 10. Let $\Phi : M_n \to M_m$ be a linear map. Prove that there exist completely positive map $\Phi_j : M_n \to M_m, 1 \le j \le 4$ such that $\Phi = \Phi_1 \Phi_2 + i(\Phi_3 \Phi_4)$.
- 11. Prove that the following two definitions for Schmidt rank of a unit vector $|u\rangle \in \mathbf{C}^n \otimes \mathbf{C}^m$ are equivalent.
 - (a) The k such that $|u\rangle = \sum_{i=1}^{k} s_i |x_i\rangle |y_i\rangle$, where $s_i > 0, 1 \le i \le k, \{|x_i\rangle\}_{i=1}^k$ and $\{|y_i\rangle\}_{i=1}^k$ are orthonormal sets in \mathbb{C}^n and \mathbb{C}^m respectively.
 - (b) The smallest k such that $|u\rangle \in S_k(n,m)$.
- 12. Write down the details for the proof of (a) \Leftrightarrow (b) in Theorem 2.5 for k > 1.
- 13. Prove Theorems 2.10 and 2.11.
- 14. Prove Theorem 3.1.
- 15. Given $\Phi: M_n \to M_m$, define $\Psi^T: M_n \to M_m$ by $\Psi^T(A) = \Phi(A)^T$, the transpose of $\Phi(A)$. Prove that Φ is completely copositive if and only if Ψ^T is completely positive.
- 16. Show that $\Phi \in SP_k(n,m)$ if and only if there exist $F_i \in M_{m,n}$ with rank $F_i \leq k, 1 \leq i \leq r$ such that

$$\Phi(X) = \sum_{i=1}^{r} F_i X F_i^{\dagger} \text{ for all } X \in M_n.$$

- 17. Suppose $C = \in M_{nm}$ is positive senidefinite, $A_j \in M_n$ and $B_j \in M_m$ satisfy (4). Show that if A_j and B_j are diagonal matrices, then (4) still holds if we replace all off diagonal matrix of C by 0.
- 18. Suppose $x = (x_1, \ldots, x_n)$ has nonnegative entries summing up to 1. Show that

$$(1,\ldots,1)/n \prec x \prec (1,0,\ldots,0).$$

19. Show that conditions (a) - (d) in Theorem 6.7 is equivalent to the condition:

$$\operatorname{Tr} A = \operatorname{Tr} B$$
 and $\sum_{j=1}^{n} |\lambda_j(A)| \ge \sum_{j=1}^{m} |\lambda_j(B)|.$

- 20. Suppose A, $B \in H_n$. Prove that the following conditions are equivalent:
 - (a) There is a unital trace preserving completely positive map such that $\Phi(A) = B$ if and only if the following holds.
 - (b) For each $t \in \mathbf{R}$, there is a trace preserving completely positive map Φ_t such that

$$\Phi_t(A - tI) = B - tI.$$

Acknowledgement

The author would like to thank the organizers of the Summer School on Quantum Information Science, Professor Jinchuan Hou, Professor Chi-Kwong Li and their colleagues at the Taiyuan University of Technology for their warm hospitality and support during his stay at Taiyuan. This work was also supported in part by a USA NSF grant.

References

- [1] W.B. Arveson, Subalgebras of C*-algebras, Acta Math., 123 (1969).
- W.B. Arveson, Dilation theory yesterday and today. A glimpse at Hilbert space operators, 99123, Oper. Theory Adv. Appl., 207, Birkhuser Verlag, Basel, 2010.
- [3] M.D. Choi, Positive linear maps on C^{*}-algebras, Canad. J. Math. 24 (1972), 520–529.
- [4] M.D. Choi, Completely positive linear maps on complex matrices. Linear Algebra and Appl. 10 (1975), 285–290.
- [5] M.D. Choi, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory, 4 (1980), 271–285.
- [6] M.D. Choi and E.G. Effros, Separable nuclear C*-algebras and injectivity, Duke Math. J. 43 (1976), 309–322.
- [7] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Let. A, 223 (1996), 1–8.
- [8] R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras I, Academic Press, 1983, New York.
- [9] K. Kraus, States, effects, and operations: fundamental notions of quantum theory, Lectures in mathematics physics at the University of Texas at Austin, Lecture Notes in Physics 190, Springer-Verlag, Berlin-Heidelberg, 1983.
- [10] L. Landau and R. Streater, On Birkhoffs theorem for doubly stochastic completely positive maps of matrix algebras, Linear Algebra and Appl., 193 (1993), 107–127.
- [11] C.K. Li and Y.T. Poon, Interpolation by Completely Positive Maps, Linear and Multilinear Algebra, to appear.
- [12] A.W. Marshall and I. Olkin, Inequaltiles: Theo Theory of Majorizations and its Applications, Academic Press, 1979.
- [13] M. Nakahara and T. Ohmi, Quantum Computing: From Linear Algebra to Physical Realizations, CRS Press, New York, 2008.
- [14] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, U.K., 2000.
- [15] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advance Mathematics 18, Cambridge University Press, 2002.

- [16] W.F. Stinespring, Positive functions on C^* -algebras, Pro. Amer. Math. Soc. 6 (1955), 211–216.
- [17] E. Størmer, Positive linear map of operator algebras, Acta Math., 110 (1963), 233–278.
- [18] E. Størmer, Decomposable positive linear maps on C^* -algebras, Proc. Amer. Math. Soc., 86 (1982), 402–404.
- [19] L. Skowronek, E. Størmer and K. Życzkowski, Cones of positive maps and their duality relations, J. Math. Phy., 50 (2009), 062106.