An extension of the Fuglede-Putnam theorem to
log-hyponormal operators $*^{† †}$

February 3, 2005

Salah Mecheri

Abstract

The familiar Fuglede-Putnam Theorem is as follows (see [5], [9] and [11]): If A and B are normal operators and if X is an operator such that $AX = XB$, then $A^*X = XB^*$. In this paper, the hypothesis on A and B can be relaxed by using a Hilbert-Schmidt operator X: Let A and B^* be log-hyponormal operators such that $AX = XB$ for a Hilbert Schmidt operators X. Then $A^*X = XB^*$. As a consequence of this result, we obtain that the range of the generalized derivation induced by this class of operators is orthogonal to its kernel.

1 Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let $B(H)$ denote the algebra of all bounded operators on H. For any operator A in $B(H)$ set, as usual, $|A| = (A^*A)^{1/2}$ and $[A^*, A] = A^*A - AA^*$ (the self commutator of A), and consider the following standard definitions: A is normal if $A^*A = AA^*$, hyponormal if $A^*A - AA^* \geq 0$, p-hyponormal if $(A^p - A^{*p}) \geq 0$. A is said to be log-hyponormal if A is invertible and satisfies the following equality

\[\log(A^*A) \geq \log(TT^*). \]
It is known that invertible \(p \)-hyponormal operators are log-hyponormal operators but the converse is not true [18]. However it is very interesting that we may regards log-hyponormal operators as 0-hyponormal operators [18, 19]. The idea of log-hyponormal operator is due to Ando [3] and the first paper in which log-hyponormality appeared is [10]. See ([2, 18, 19, 21] for properties of log-hyponormal operators.

\(A \) is said to be \(p \)-quasihyponormal if \(A^* ((A^* A)^p - (AA^*)^p) A \geq 0 \) (\(p > 0 \)), \((p, k)\)-quasihyponormal if \(A^* ((A^* A)^p - (AA^*)^p) A^k \geq 0 \) \((p > 0, k \in \mathbb{N})\), if \(p = 1, k=1 \) and \(p = k = 1 \), then \(A \) is \(k \)-quasihyponormal, \(p \)-quasihyponormal and quasi-hyponormal respectively. \(A \) is normoloid if \(\|A\| = r(A) \) (the spectrum radius of \(A \)). Let \((N), (HN), Q(p), (Q(p, k))\) and \((NL)\) denote the classes constituting of normal, hyponormal, \(p \)-quasihyponormal, \((p, k) \)-quasihyponormal, and normoloid operators. These classes are related by proper inclusion:

\[
(N) \subset (HN) \subset (Q(p)) \subset (Q(p, k)) \subset (NL).
\]

(see [12])

The familiar Fuglede-Putnam theorem is as follows (see [5], [9] and [11]):

Theorem 1.1 If \(A \) and \(B \) are normal operators and if \(X \) is an operator such that \(AX = XB \), then \(A^* X = XB^* \).

S.K. Berberian [4] relaxes the hypothesis on \(A \) and \(B \) in Theorem 1.1 as the cost of requiring \(X \) to be Hilbert-Schmidt class. H.K. Cha [6] showed that the hyponormality in the result of Berberian [4] can be replaced by the quasihyponormality of \(A \) and \(B^* \) under some additional conditions. Lee ([13], Theorem 4) showed that the quasihyponormality in the above result can replaced by the \((p, k)\)-quasihyponormality of \(A \) and \(B^* \) with the additional condition \(\|A^{1-p}\| \|B^{-1}\|^{1-p} \leq 1 \). In [14] the author showed that Lee’s result remains true without the additional condition \(\|A^{1-p}\| \|B^{-1}\|^{1-p} \leq 1 \). In this paper we will show that the \((p, k)\)-quasihyponormality can be replaced by the log-hyponormality of \(A \) and \(B^* \). Let \(\delta_{A,B} \) be the generalized derivation defined on \(B(H) \) by \(\delta_{A,B}(X) = AX - XB \). As a consequence of this result, we obtain that the range of the generalized derivation induced by this class of operators is orthogonal to its kernel.

Let \(T \in B(H) \) be compact, and let \(s_1(X) \geq s_2(X) \geq ... \geq 0 \) denote the singular values of \(T \), i.e., the eigenvalues of \(|T| = (T^* T)^{1/2} \) arranged in their decreasing order. The operator \(T \) is said to belong to the Schatten \(p \)-class \(C_p \) if \(\|T\|_p = [\sum_{i=1}^{\infty} s_i(T)^p]^{1/p} = [tr|T|^p]^{1/p} < \infty, 1 \leq p < \infty \), where \(tr \) denotes the trace functional. Hence \(C_1(H) \) is the trace class, \(C_2(H) \) is the Hilbert-Schmidt class, and \(C_\infty \) is the class of compact operators with \(\|T\|_\infty = s_1(T) = \sup_{\|f\| = 1} \|Tf\| \) denoting the usual operator norm. For the general theory of the Schatten \(p \)-classes the reader is referred to [15], [16].
2 Main results

Lemma 2.1 Let A and B be operators in $B(H)$. If A and B^* are log-hyponormal operators such that $|A^*| \geq 1$ and $|B^*| \geq 1$, then the operator $\tau : C_2H \to C_2(H)$ defined by $\tau X = AXB$ is log-hyponormal.

Proof. It is known [4] that $\tau X = A^*XB^*$. Note that by the uniqueness of the square root of a positive operators we have

$$(\tau^\tau)^{\frac{1}{2}} X = |\tau| X = |A|X|B^*|, \quad (\tau^*\tau)^{\frac{1}{2}} X = |\tau^*| = |A^*|X|B|.$$

We also have

$$(\log |\tau| - \log |\tau^*|) X = \log |A|X\log |B^*| - \log |A^*|X\log |B|$$

$$= (\log |A| - \log |A^*|)X\log |B^*| + \log |A^*|X\log |B^*| - \log |B|). \quad (2.1)$$

The assumption $|A^*| \geq 1, |B^*| \geq 1$ implies $\log |A^*| \geq 0, \log |B^*| \geq 0$. Since A and B^* are log-hyponormal, $\log |A| - \log |A^*| \geq 0$ and $\log |B^*| - \log |B| \geq 0$. Hence,

$$\langle \log |\tau| - \log |\tau^*| \rangle X, X \rangle$$

$$= tr(X^{*}(\log |A| - \log |A^*|)X\log |B^*| + X^{*}\log |A^*|X(\log |B^*| - \log |B|)) \text{ by (2.1)}$$

$$= tr((\log |B^*| - \log |B|)^{\frac{1}{2}} X^{*}\log |A^*|X(\log |B^*| - \log |B|)^{\frac{1}{2}}) \geq 0.$$

Which completes the proof. \hfill \Box

Now we are ready to extend Putnam-Fuglede theorem to log-hyponormal operators.

Theorem 2.1 Let A and B^* be log-hyponormal operators such that $|A^*| \geq 1$ and $|B^*| \geq 1$. If $AX = XB$ for $X \in C_2(H)$. Then $A^*X = XB^*$.

Proof. Recall that if A is log-hyponormal, then the nonzero eigenvalues of A are normal eigenvalues (i.e., if $\lambda \in \sigma_p(A) \setminus \{0\}$, then $\lambda \in \sigma_p(A^*)_*$)

Let K be defined on $C_2(H)$ by $KY = AYB^{-1}$ for all $Y \in C_2(H)$. Since B^* is log-hyponormal, $(B^*)^{-1}$ is also log-hyponormal. Then it follows from Lemma 2.1 that K is invertible log-hyponormal, furthermore, $KX = AXB^{-1} = X$ and so, X is an eigenvector of K. Now by applying (*) we get $K^*X = A^*X(B^{-1})^* = X$, that is, $A^*X = XB^*$ and the proof is achieved. \hfill \Box
Corollary 2.1 Let A be log-hyponormal operator and B^* be invertible (p,k)-quasihyponormal operators such that $|A^*| \geq 1$ and $|B^*| \geq 1$. If $AX = XB$ for $X \in C_2(H)$. Then $A^*X = XB^*$.

Proof. It is known that an invertible (p,k)-quasihyponormal operator is invertible p-hyponormal ([13], Lemma 3) and an invertible p-hyponormal is log-hyponormal [18]. Hence the result holds by the above theorem. \hfill \Box

Corollary 2.2 Let A be invertible (p,k)-quasihyponormal and B^* be log-hyponormal operators such that $|A^*| \geq 1$ and $|B^*| \geq 1$. If $AX = XB$ for $X \in C_2(H)$. Then $A^*X = XB^*$.

Theorem 2.2 Let A, B be operators in $B(H)$ and $S \in C_2$. Then

\begin{equation}
\|\delta_{A,B}(X) + S\|_2^2 = \|\delta_{A,B}(X)\|_2^2 + \|S\|_2^2 \tag{2.1}
\end{equation}

and

\begin{equation}
\|\delta_{A,B}^*(X) + S\|_2^2 = \|\delta_{A,B}^*(X)\|_2^2 + \|S\|_2^2 \tag{2.2}
\end{equation}

if and only if $\delta_{A,B}(S) = 0 = \delta_{A^*,B^*}(S)$, for all $X \in C_2(H)$.

Proof. It is well known that the Hilbert-Schmidt class $C_2(H)$ is a Hilbert space under the inner product

$$\langle Y, Z \rangle = tr(Z^*Y) = tr(YZ^*).$$

Note that

$$\|\delta_{A,B}(X) + S\|_2^2 = \|\delta_{A,B}(X)\|_2^2 + \|S\|_2^2 + 2Re(\delta_{A,B}(X), S)$$

$$= \|\delta_{A,B}(X)\|_2^2 + \|S\|_2^2 + 2Re(X, \delta_{A,B}(S))$$

and

$$\|\delta_{A,B}^*(X) + S\|_2^2 = \|\delta_{A,B}^*(X)\|_2^2 + \|S\|_2^2 + 2Re(X, \delta_{A,B}(S)).$$

Hence by the equality $\delta_{A,B}(S) = 0 = \delta_{A^*,B^*}(S)$ we obtain (2.1) and (2.2). \hfill \Box

Corollary 2.3 Let A, B be operators in $B(H)$ and $S \in C_2$. Then

$$\|\delta_{A,B}(X) + S\|_2^2 = \|\delta_{A,B}(X)\|_2^2 + \|S\|_2^2$$

and

$$\|\delta_{A,B}^*(X) + S\|_2^2 = \|\delta_{A,B}^*(X)\|_2^2 + \|S\|_2^2$$

if and only if A and B^* are log-hyponormal such that $|A^*| \geq 1$ and $|B^*| \geq 1$.

References

An extension of the Fuglede-Putnam Theorem

