The Counterfeit Coin Problems

Chi-Kwong Li
Department of Mathematics
The College of William and Mary
Williamsburg, Virginia 23187-8795
ckli@math.wm.edu
1. A Simple Problem

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.
1. A Simple Problem

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?
1. A Simple Problem

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?
1. A Simple Problem

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Solution If there are 3^m coins, we need only m weighings.
1. A Simple Problem

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Solution If there are 3^m coins, we need only m weighings.

More generally, if there are k coins with $3^{m-1} < k \leq 3^m$, then we need only m weighings.
<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>1 – 3</td>
<td>4 – 9</td>
<td>10 – 27</td>
<td>28 – 81</td>
<td>82 – 243</td>
</tr>
</tbody>
</table>
The general formula \(\lceil \log_3(k) \rceil \).
The general formula \([\lceil \log_3(k) \rceil]\).

Deeper Ideas Tree diagram/graph. Divide and conquer algorithm.
The general formula $\lceil \log_3(k) \rceil$.

Deeper Ideas Tree diagram/graph. Divide and conquer algorithm.

Generalization Suppose you have a three pan balance. Then one can find the fake coin out of k coins by m weighings if $4^{m-1} < k \leq 4^m$.

<table>
<thead>
<tr>
<th>k:</th>
<th>1 – 3</th>
<th>4 – 9</th>
<th>10 – 27</th>
<th>28 – 81</th>
<th>82 – 243</th>
</tr>
</thead>
<tbody>
<tr>
<td>m:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
The general formula \([\log_3(k)]\).

Deeper Ideas Tree diagram/graph. Divide and conquer algorithm.

Generalization Suppose you have a three pan balance. Then one can find the fake coin out of \(k\) coins by \(m\) weighings if \(4^{m-1} < k \leq 4^m\).

If there is a \(p\) pan balance, then one can find the fake coin out of \(k\) coins by \(m\) weighings if \((p + 1)^{m-1} < k \leq (p + 1)^m\).
A More Difficult Problem

Suppose 12 coins are given such that one of them has a different weight. Use three weighings to find the different coin, and determine whether it is heavier or lighter.
A More Difficult Problem

Suppose 12 coins are given such that one of them has a different weight. Use three weighings to find the different coin, and determine whether it is heavier or lighter.

More challenging problems

* How many weighings to find a different coin from k given coins.

* What if there are two lighter / different coins?

* What if there are three lighter / different coins?