Part 4 Numerical ranges and quantum computing

The numerical range and the numerical radius of A € M,, are defined as
W(A) ={2"Ax : 2 € C", 2"z =1} and r(A) = max{|pu| : p € W(A)}.

These concepts are useful in the study of matrices. There are many generalizations motivated
by applications. We discussed some basic properties and selected generalizations useful in

quantum computing.

1 The classical numerical range
Proposition 1.1 Let A € M,,.
1. W(U*AU) = W (A) for any unitary U € M,,.
2. W(A+cl)=W(A) + ¢ for any c € C.
3. W(cA) = cW(A) for any c € C.
4. o(A) CW(A).
5. W(A+ B) CW(A)+ W(B) for any B € M,,.
6. W(A® B) = conv [W(A)UW(B)] for any B € M,,.
7. W(A) = conv {ay,...,a,} if A is normal with eigenvalues ay, . .., ay.

Theorem 1.2 For any A € M,,, W(A) is a compact convex set in C. If A € My then W(A)
is an elliptical disk with the eigenvalues ay, as of A as foci and v = /tr (A*A) — |a1|? — |ag|?

as minor axis.

Theorem 1.3 Let A € M,,.
1. W(A) ={pu} if and only if A= pl.
2. W(A) CaR + b if and only if A = aH + bl with H = H*.

3. A is unitary if and only if A is invertible such that both W (A) and W(A™') are subsets
of the closed unit disks.

Theorem 1.4 Let A € M,,. Then Re(W(A)) = W((A+ A*)/2). Consequently,

W(A) ={peC:e'u+en< M(e"A+e"A%),t €[0,2m)}.



Theorem 1.5 Let A € Mjs be a unitarily reducible matric or A € Ms. Then B € M,
satisfies W(B) C W(A) if and only if B = X*(A® I,,)X for some matrix X of appropriate
size such that X*X = I,,.

Theorem 1.6 Let A and B be square matrices. Define the function ® from span{I, A, A*}
to span{I, B, B*} by ®(al + bA+ cA*) = al + bB + ¢B*.

(a) Then W(B) C W(A) if and only if  is a positive linear map.
(b) The matriz B is a compression of AR I if and only if ® is a completely positive linear

map.
Theorem 1.7 Let A € M,,. Then
p(A) <r(A) < [[A]l < 2r(A)

and
r(AF) < r(A)F, k=1,2,....

(a) The equality p(A) = r(A) holds if and only if A is unitarily similar to a matrixz of the
form [u] & As such that |pu| = r(A).

(b) The equality p(A) = ||A|| holds if and only if r(A) = ||Al|. This happens if and only if
A is unitarily similar to a matrixz of the form [u] ® As such that |u| = || A]|.

(¢) The equality ||A|| = 2r(A) holds if and only if A/r(A) is unitarily similar to a matrix
of the form (8 (2)) @ Ay with r(As) < 1.
Theorem 1.8 Let A, B € M,,. Then
r(AB) < 4r(A)r(B).

If AB = BA, then
r(AB) < 2r(A)r(B).

Problem 1.9 Determine the best (smallest) constant vy such that r(AB) < ~r(A)||B] for
A and B such that AB = BA.

Problem 1.10 Determine the best (smallest) constant vy such that

Ip(A < ymax{[p(u)] : p € W(A)}

for any complex polynomial p(z).



2 The higher rank numerical range

In connection to quantum error correction, see the appendix, researchers consider the rank

k-numerical range of A € M,, defined by
Ai(A) = {pn € C: thereis P € Py such that PAP = pP},

where Py, is the set of rank k-orthogonal projections in M,,.
Theorem 2.1 Let Ae M, and1 <k <n.

1. For any a,b € C, Ag(aA+bl) = alx(A) + .

2. For any unitary U € M,,, Ay(U*AU) = Ax(A).

3. If B € M, is a compression of A with r > k, then Ax(B) C Ax(A).

4. Suppose n < 2k. The set A(A) has at most one element.
Theorem 2.2 Let w = >3 and

B=1 1 ®wlh 1 ®wl ;.

If n <3k — 3, then for any (3k — 3) x n matriz X satisfying X*X = I,,, A, (X*BX) = 0.
If n > 3k — 2 then Ag(A) is non-empty for any A € M,,.

Theorem 2.3 Let A € M,,. Then Ax(A) = Q(A), where

Q(A) = m {peCie®p+e™n< \(e®A+e AN},

£€0,2m)
In particular, if A € M, is a normal matriz with eigenvalues Ay, ..., \,, then
A(A) = ﬂ conv{A;,....,\; ...}

1§j1<"'<jn7k+l Sn

Corollary 2.4 For any A€ M, and 1 < k <n, Ap(A) is conver.



3 The joint higher rank numerical range

Definition 3.1 Let Ay,...,A,, € M,. The joint rank-k numerical range of A =
(Ay,..., Ap) is defined by

Ap(A) = {(a1,...,an) : there is P € Py such that PA;P = a;P, j=1,...,m},
where Py s the set of rank k orthogonal projections in M,.

Remark 3.2 If Aj = Hj + ZGJ with Hj = H]* and Gj = Gj;, then Ak(Al, ce ,Am) - Cl><m
can be identified as Np(Hy, G, ..., Hy, G) € RY>2™. So, we may focus on the joint rank

k-numerical range of Hermitian matrices.

Proposition 3.3 Suppose A;,..., A, € H,. Let T = (t;;) € M,,(R) and (c1,...,¢m) be a
real vectors. If B; = ¢;I + Z;n:l tijAi, then

Ak(Bl,. . ,Bm> = {(Cl,. .. ,Cm) + (al,. .. ,am)T : (0,1,. . ,am) c Ak(Al,. .. ,Am)}.
Theorem 3.4 Let Ay,..., A, € H,. Then W(Ay,..., Ap) is convex if

(a) span{l, Ay, ..., A} has dimension at most 3, or

(b) n >3 and span{I, Ay, ..., A} has dimension at most 4.

Example 3.5 Let
1 0 0 1 0 =
By =1, 30,2, By = (0 _1> ® 0,2, B3 = (1 O) ® 0,2, By = (—i 0) ® 0,—2.

Then W (By, By, Bs, By) is not convet.

Theorem 3.6 Let Ay, Ay, A3 € H,, be such that span{I, Ay, As, A3} has dimension 4. Then
there is Ay such that W (A, Ag, Az, Ay) is not conver.

There are many problems on Ag(Ay, ..., A,,) under active research.

Problem 3.7 Let Ay,..., A, € H,. For k > 1 the set Ai(Ay,..., Ay) may be empty.
Determine the minimum n (in terms of m and k) so that Ap(Ay, ..., Ay) is always non-
empty for Aq,..., A, € H,.

Theorem 3.8 For m,k > 1, let

m—1

2:32 (k—=1)+1 whenm is odd
n(m, k) =
32 (k—1)+1 when m is even .

Then Ak(Aq, ..., Ay) is non-empty for all Ay, ..., A, € Hy.
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Example 3.9 Form, k> 1, letn = (m+1)(k—1). Suppose Ay = I;;_1 ®0p—1® —L(m—1)(h—1)
and

Aj = Lig-1) @ Opmrr—je-1),  J =250,
Then Ap(Aq, ..., An) =0.

Proposition 3.10 Suppose Ay, ..., A, € H, are diagonal matrices. If n > m + 1, then
Ao(Ay, ... Ap) # 0.

Problem 3.11 Can we extend the above result to general Hermitian matrices Ay, ..., A, ?

Theorem 3.12 Let A = (Ay,..., Ay) € H'. If (a1,...,am) € Aj(A), where k> (m+2)k
ifk>1and k> (m+1)/2 if k=1. Then Ap(Ay, ..., Ay) is star-shaped with (ay, ..., ap)

as a star-center. Consequently, conv Ay (A, ..., Ap) is a compact conver subset of Ai(A).

Problem 3.13 1. Determine the minimum n such that Ai(Aq,..., Ay) is star-shaped
for any Aq,..., A, € H,.

2. Determine the condition on Ay, ..., Ay, € H, so that Ap(Ay, ..., Ay) is conver.

3. Determine a “large” convex subset of Ap(Ax, ..., An).

4 The C-numerical range and quantum control

Definition 4.1 Let C' € M,,. The C-numerical range and the C-numerical radius of
A € M, are defined by

We(A) ={tr (CU*AU) : U is unitary}

and

re(A) = max{|p| : p € We(A)}
Note that the C'-numerical radii are the building blocks for USI norms on M,,.

Theorem 4.2 Suppose C' = al + bR where R is Hermitian or rank one. Then Wa(A) is
convex for any A € M,.

Definition 4.3 A matriz C is a block shift operator if it is unitarily similar to a block
matriz (Cij)i<ij<m such that Ciy, ..., Cym are square matrices, and Cy; = 0 whenever i #
J+ 1

Theorem 4.4 Suppose C' = al + R where R is a block shift operator. Then Wg(A) is a
circular disk for any A € M,,.



Problem 4.5 Characterize matrices C € M,, such that Wa(A) is convex for all A € M,

Definition 4.6 Let C' € M,, have eigenvalues ¢y, . .., c,. Define the C-spectral radius and
C-spectral norm of A € M, by

pc(A) = max { Z ci;\j(A)

(i1, ..., 1,) 18 a permutation of (1,. .. ,n)} ,

and

|Allc = max{|tr(CUAV) : U,V are unitary}.

Theorem 4.7 Let C € M, have singular values ¢; > --- > ¢,. Then
[Allc = ejs;(A).
j=1
Note that the C-spectral norms are the building blocks of UI norms on M,,.
In quantum control, it is important to determine

min{||C' — U*BU]| : U is unitary}

for two given (nilpotent) matrices C' and A arising from some quantum mechanical systems.

Note that
|C — U*BU||2 = HC’||2 + ||A||2 — 2Re(tr (CU*B*U)).

So, the problem reduces to finding
ro(B*) = max{Re(tr (CU*B*U)) : U is unitary}.

Problem 4.8 Determine re, (Ay) for

Ck = 02k OQk and Ak = Nk D Nk,
IQk 02k

where

B (N O
No=(0), Ni= <12k1 Nk_l.)

Here are some conjectured values:

k: 3 4 5 6
re, (Ar): 41+v3)  8(1++v3)  16(1+V3)+4v5  32(1++3)+8V5




Recently, researchers study the local C-numerical range and C-numerical radius with

respect to a certain subgroup S of the unitary group defined by

and

Ws(())(A) = {tl" (CU*AU) U € S}

rsey(A) = Hpl - 1 € Wseoy(A)}-

Exercises

. Suppose p € o(A) is a boundary point of W(A). Show that A is unitarily similar to

(1] @ As.
Show that if 4 € W(A) satisfies |u| = ||A|, then A is unitarily similar to [u] ® As.

Show that if A € M,, and W (A) is a convex polygon (with interior) with n —1 vertices,
then A is normal. For each n > 5, show that there is a non-normal matrix B such that

W (B) is a convex polygon with n — 2 vertices.

10 0 1 0 i
(o ) = (a) = (G0)

W (A, A, A3) = {(a,b,c) : a,b,c € R,a* + b* + & = 1}.

Let

Show that

. Give a complete description of As(A) for a normal matrix A € My in terms of its

eigenvalues.

Show that if A € M, has rank less than k, then Ay(A) = {0}.

Suppose n > 2k. There is A € M, such that Ay (A) is the unit circular disk.

Suppose n > 2k + m. There is A € M,, such that Ax(A) is a regular m-side polygons.

If We(A) is always a circular disk centered at the origin, show that C' is a block shift
operator.

If We(A) is always a circular disk, can we conclude that C' = al + R for a block shift
operator R?



Appendix: Background of quantum error correction

In classical computing, information is stored as binary sequences. A length k sequence is
encoded as a length n sequence, and then transmitted through a noisy channel. The received
sequence can be correctly decoded provided there are fewer than r(n, k) error.

In quantum computing, information is stored in quantum bits (qubits). Mathemat-

ically, a qubit is represented by a 2 x 2 rank one projection ) = % (x i—; ﬁtg) with

22 + 2 4+ 22 = 1. A state of K-qubits Q1,...,Qx is represented by their tensor products
in M, with k¥ = 2%, Again, a state of K-qubits is encoded as a state of N-qubits, and
transmitted through a quantum channel, where a quantum channel for states of N-qubits
is a trace preserving completely positive linear map ® : M,, — M, with n = 2V. By
the result of Choi, there are T1,...,7T,, € M, with ZT:1 T7T; = I, such that

(X)) = iT]XTJ (1)

In this setting an quantum error correction code is a subspace V of C" such that the
compression of ® on V is the identity map. By the result of Knill-Laflamme, this happens
if and only if there are scalars v;; with 1 <47, j < r such that

where P € M,, is an orthogonal projection of C™ onto V.

In connection to this, researchers study the joint rank-k numerical range of (A4;,..., A,,)
to be the set Ax(Ay, ..., A,) of complex vectors (ay, ..., a,) € C™! for the existence of an
rank-k orthogonal projection P € M,, such that PA;P = qa;P for j =1,...,m.



