Part 4 Numerical ranges and quantum computing

The numerical range and the numerical radius of $A \in M_n$ are defined as

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n, x^*x = 1\}$$
 and $r(A) = \max\{|\mu| : \mu \in W(A)\}$

These concepts are useful in the study of matrices. There are many generalizations motivated by applications. We discussed some basic properties and selected generalizations useful in quantum computing.

1 The classical numerical range

Proposition 1.1 Let $A \in M_n$.

- 1. $W(U^*AU) = W(A)$ for any unitary $U \in M_n$.
- 2. W(A + cI) = W(A) + c for any $c \in \mathbb{C}$.
- 3. W(cA) = cW(A) for any $c \in \mathbf{C}$.
- 4. $\sigma(A) \subseteq W(A)$.
- 5. $W(A+B) \subseteq W(A) + W(B)$ for any $B \in M_n$.
- 6. $W(A \oplus B) = \operatorname{conv} [W(A) \cup W(B)]$ for any $B \in M_m$.
- 7. $W(A) = \operatorname{conv} \{a_1, \ldots, a_n\}$ if A is normal with eigenvalues a_1, \ldots, a_n .

Theorem 1.2 For any $A \in M_n$, W(A) is a compact convex set in **C**. If $A \in M_2$ then W(A) is an elliptical disk with the eigenvalues a_1, a_2 of A as foci and $\gamma = \sqrt{\operatorname{tr} (A^*A) - |a_1|^2 - |a_2|^2}$ as minor axis.

Theorem 1.3 Let $A \in M_n$.

- 1. $W(A) = \{\mu\}$ if and only if $A = \mu I$.
- 2. $W(A) \subseteq a\mathbf{R} + b$ if and only if A = aH + bI with $H = H^*$.
- 3. A is unitary if and only if A is invertible such that both W(A) and $W(A^{-1})$ are subsets of the closed unit disks.

Theorem 1.4 Let $A \in M_n$. Then $\operatorname{Re}(W(A)) = W((A + A^*)/2)$. Consequently,

$$W(A) = \{ \mu \in \mathbf{C} : e^{it}\mu + e^{-it}\bar{\mu} \le \lambda_1(e^{it}A + e^{-it}A^*), t \in [0, 2\pi) \}$$

Theorem 1.5 Let $A \in M_3$ be a unitarily reducible matrix or $A \in M_2$. Then $B \in M_n$ satisfies $W(B) \subseteq W(A)$ if and only if $B = X^*(A \otimes I_m)X$ for some matrix X of appropriate size such that $X^*X = I_n$.

Theorem 1.6 Let A and B be square matrices. Define the function Φ from span $\{I, A, A^*\}$ to span $\{I, B, B^*\}$ by $\Phi(aI + bA + cA^*) = aI + bB + cB^*$.

(a) Then $W(B) \subseteq W(A)$ if and only if Φ is a positive linear map.

(b) The matrix B is a compression of $A \otimes I$ if and only if Φ is a completely positive linear map.

Theorem 1.7 Let $A \in M_n$. Then

$$\rho(A) \le r(A) \le \|A\| \le 2r(A)$$

and

$$r(A^k) \le r(A)^k, \qquad k = 1, 2, \dots$$

- (a) The equality ρ(A) = r(A) holds if and only if A is unitarily similar to a matrix of the form [μ] ⊕ A₂ such that |μ| = r(A).
- (b) The equality ρ(A) = ||A|| holds if and only if r(A) = ||A||. This happens if and only if A is unitarily similar to a matrix of the form [μ] ⊕ A₂ such that |μ| = ||A||.
- (c) The equality ||A|| = 2r(A) holds if and only if A/r(A) is unitarily similar to a matrix of the form $\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \oplus A_2$ with $r(A_2) \le 1$.

Theorem 1.8 Let $A, B \in M_n$. Then

$$r(AB) \le 4r(A)r(B).$$

If AB = BA, then

$$r(AB) \le 2r(A)r(B).$$

Problem 1.9 Determine the best (smallest) constant γ such that $r(AB) \leq \gamma r(A) ||B||$ for A and B such that AB = BA.

Problem 1.10 Determine the best (smallest) constant γ such that

$$\|p(A)\| \le \gamma \max\{|p(\mu)| : \mu \in W(A)\}\$$

for any complex polynomial p(z).

2 The higher rank numerical range

In connection to quantum error correction, see the appendix, researchers consider the **rank** k-numerical range of $A \in M_n$ defined by

$$\Lambda_k(A) = \{ \mu \in \mathbf{C} : \text{ there is } P \in \mathcal{P}_k \text{ such that } PAP = \mu P \},\$$

where \mathcal{P}_k is the set of rank k-orthogonal projections in M_n .

Theorem 2.1 Let $A \in M_n$ and $1 \le k \le n$.

- 1. For any $a, b \in \mathbf{C}$, $\Lambda_k(aA + bI) = a\Lambda_k(A) + b$.
- 2. For any unitary $U \in M_n$, $\Lambda_k(U^*AU) = \Lambda_k(A)$.
- 3. If $B \in M_r$ is a compression of A with $r \ge k$, then $\Lambda_k(B) \subseteq \Lambda_k(A)$.
- 4. Suppose n < 2k. The set $\Lambda_k(A)$ has at most one element.

Theorem 2.2 Let $w = e^{i2\pi/3}$ and

$$B = I_{k-1} \oplus wI_{k-1} \oplus w^2I_{k-1}.$$

If $n \leq 3k - 3$, then for any $(3k - 3) \times n$ matrix X satisfying $X^*X = I_n$, $\Lambda_k(X^*BX) = \emptyset$. If $n \geq 3k - 2$ then $\Lambda_k(A)$ is non-empty for any $A \in M_n$.

Theorem 2.3 Let $A \in M_n$. Then $\Lambda_k(A) = \Omega_k(A)$, where

$$\Omega_k(A) = \bigcap_{\xi \in [0,2\pi)} \left\{ \mu \in \mathbf{C} : e^{i\xi}\mu + e^{-i\xi}\bar{\mu} \le \lambda_k (e^{i\xi}A + e^{-i\xi}A^*) \right\}.$$

In particular, if $A \in M_n$ is a normal matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$\Lambda_k(A) = \bigcap_{1 \le j_1 < \dots < j_{n-k+1} \le n} \operatorname{conv} \{\lambda_{j_1}, \dots, \lambda_{j_{n-k+1}}\}$$

Corollary 2.4 For any $A \in M_n$ and $1 \le k \le n$, $\Lambda_k(A)$ is convex.

3 The joint higher rank numerical range

Definition 3.1 Let $A_1, \ldots, A_m \in M_n$. The joint rank-k numerical range of $\mathbf{A} = (A_1, \ldots, A_m)$ is defined by

 $\Lambda_k(\mathbf{A}) = \{(a_1, \ldots, a_m): \text{ there is } P \in \mathcal{P}_k \text{ such that } PA_jP = a_jP, j = 1, \ldots, m\},\$

where \mathcal{P}_k is the set of rank k orthogonal projections in M_n .

Remark 3.2 If $A_j = H_j + iG_j$ with $H_j = H_j^*$ and $G_j = G_j^*$, then $\Lambda_k(A_1, \ldots, A_m) \subseteq \mathbb{C}^{1 \times m}$ can be identified as $\Lambda_k(H_1, G_1, \ldots, H_m, G_m) \subseteq \mathbb{R}^{1 \times 2m}$. So, we may focus on the joint rank k-numerical range of Hermitian matrices.

Proposition 3.3 Suppose $A_1, \ldots, A_m \in H_n$. Let $T = (t_{ij}) \in M_m(\mathbf{R})$ and (c_1, \ldots, c_m) be a real vectors. If $B_j = c_j I + \sum_{j=1}^m t_{ij} A_i$, then

$$\Lambda_k(B_1, \dots, B_m) = \{ (c_1, \dots, c_m) + (a_1, \dots, a_m)T : (a_1, \dots, a_m) \in \Lambda_k(A_1, \dots, A_m) \}.$$

Theorem 3.4 Let $A_1, \ldots, A_m \in H_n$. Then $W(A_1, \ldots, A_m)$ is convex if

(a) span $\{I, A_1, \ldots, A_m\}$ has dimension at most 3, or

(b) $n \ge 3$ and span $\{I, A_1, \ldots, A_m\}$ has dimension at most 4.

Example 3.5 Let

$$B_1 = I_2 \oplus 0_{n-2}, \ B_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \oplus 0_{n-2}, \ B_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus 0_{n-2}, \ B_4 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \oplus 0_{n-2}.$$

Then $W(B_1, B_2, B_3, B_4)$ is not convex.

Theorem 3.6 Let $A_1, A_2, A_3 \in H_n$ be such that span $\{I, A_1, A_2, A_3\}$ has dimension 4. Then there is A_4 such that $W(A_1, A_2, A_3, A_4)$ is not convex.

There are many problems on $\Lambda_k(A_1, \ldots, A_m)$ under active research.

Problem 3.7 Let $A_1, \ldots, A_m \in H_n$. For k > 1 the set $\Lambda_k(A_1, \ldots, A_m)$ may be empty. Determine the minimum n (in terms of m and k) so that $\Lambda_k(A_1, \ldots, A_m)$ is always nonempty for $A_1, \ldots, A_m \in H_n$.

Theorem 3.8 For $m, k \geq 1$, let

$$n(m,k) = \begin{cases} 2 \cdot 3^{\frac{m-1}{2}}(k-1) + 1 & \text{when } m \text{ is odd }, \\ \\ 3^{\frac{m}{2}}(k-1) + 1 & \text{when } m \text{ is even }. \end{cases}$$

Then $\Lambda_k(A_1, \ldots, A_m)$ is non-empty for all $A_1, \ldots, A_m \in \mathcal{H}_n$.

Example 3.9 For m, k > 1, let n = (m+1)(k-1). Suppose $A_1 = I_{k-1} \oplus 0_{k-1} \oplus -I_{(m-1)(k-1)}$ and

$$A_j = I_{j(k-1)} \oplus 0_{(m+1-j)(k-1)}, \quad j = 2, \dots, m.$$

Then $\Lambda_k(A_1,\ldots,A_m) = \emptyset$.

Proposition 3.10 Suppose $A_1, \ldots, A_m \in H_n$ are diagonal matrices. If n > m + 1, then $\Lambda_2(A_1, \ldots, A_m) \neq \emptyset$.

Problem 3.11 Can we extend the above result to general Hermitian matrices A_1, \ldots, A_m ?

Theorem 3.12 Let $\mathbf{A} = (A_1, \ldots, A_m) \in H_n^m$. If $(a_1, \ldots, a_m) \in \Lambda_{\hat{k}}(\mathbf{A})$, where $\hat{k} \ge (m+2)k$ if k > 1 and $\hat{k} \ge (m+1)/2$ if k = 1. Then $\Lambda_k(A_1, \ldots, A_m)$ is star-shaped with (a_1, \ldots, a_m) as a star-center. Consequently, $\operatorname{conv} \Lambda_{\hat{k}}(A_1, \ldots, A_m)$ is a compact convex subset of $\Lambda_k(\mathbf{A})$.

- **Problem 3.13** 1. Determine the minimum n such that $\Lambda_k(A_1, \ldots, A_m)$ is star-shaped for any $A_1, \ldots, A_m \in H_n$.
 - 2. Determine the condition on $A_1, \ldots, A_m \in H_n$ so that $\Lambda_k(A_1, \ldots, A_m)$ is convex.
 - 3. Determine a "large" convex subset of $\Lambda_k(A_1, \ldots, A_m)$.

4 The C-numerical range and quantum control

Definition 4.1 Let $C \in M_n$. The C-numerical range and the C-numerical radius of $A \in M_n$ are defined by

 $W_C(A) = \{ \operatorname{tr} (CU^*AU) : U \text{ is unitary} \}$

and

 $r_C(A) = \max\{|\mu| : \mu \in W_C(A)\}.$

Note that the C-numerical radii are the building blocks for USI norms on M_n .

Theorem 4.2 Suppose C = aI + bR where R is Hermitian or rank one. Then $W_C(A)$ is convex for any $A \in M_n$.

Definition 4.3 A matrix C is a block shift operator if it is unitarily similar to a block matrix $(C_{ij})_{1 \le i,j \le m}$ such that C_{11}, \ldots, C_{mm} are square matrices, and $C_{ij} = 0$ whenever $i \ne j+1$.

Theorem 4.4 Suppose C = aI + R where R is a block shift operator. Then $W_C(A)$ is a circular disk for any $A \in M_n$.

Problem 4.5 Characterize matrices $C \in M_n$ such that $W_C(A)$ is convex for all $A \in M_n$.

Definition 4.6 Let $C \in M_n$ have eigenvalues c_1, \ldots, c_n . Define the C-spectral radius and C-spectral norm of $A \in M_n$ by

$$\rho_C(A) = \max\left\{ \left| \sum_{j=1}^n c_{i_j} \lambda_j(A) \right| : (i_1, \dots, i_n) \text{ is a permutation of } (1, \dots, n) \right\}$$

and

 $||A||_C = \max\{|tr(CUAV): U, V \text{ are unitary}\}.$

Theorem 4.7 Let $C \in M_n$ have singular values $c_1 \geq \cdots \geq c_n$. Then

$$||A||_C = \sum_{j=1}^n c_j s_j(A).$$

Note that the C-spectral norms are the building blocks of UI norms on M_n .

In quantum control, it is important to determine

$$\min\{\|C - U^*BU\| : U \text{ is unitary}\}\$$

for two given (nilpotent) matrices C and A arising from some quantum mechanical systems.

Note that

$$||C - U^*BU||^2 = ||C||^2 + ||A||^2 - 2\operatorname{Re}(\operatorname{tr}(CU^*B^*U)).$$

So, the problem reduces to finding

$$r_C(B^*) = \max\{\operatorname{Re}(\operatorname{tr}(CU^*B^*U)) : U \text{ is unitary}\}.$$

Problem 4.8 Determine $r_{C_k}(A_k)$ for

$$C_k = \begin{pmatrix} 0_{2^k} & 0_{2^k} \\ I_{2^k} & 0_{2^k} \end{pmatrix}$$
 and $A_k = N_k \oplus N_k$,

where

$$N_0 = (0), \qquad N_k = \begin{pmatrix} N_{k-1} & 0\\ I_{2^{k-1}} & N_{k-1}. \end{pmatrix}$$

Here are some conjectured values:

<i>k</i> :	3	4	5	6
$r_{C_k}(A_k)$:	$4(1+\sqrt{3})$	$8(1+\sqrt{3})$	$16(1+\sqrt{3})+4\sqrt{5}$	$32(1+\sqrt{3})+8\sqrt{5}$

Recently, researchers study the local C-numerical range and C-numerical radius with respect to a certain subgroup S of the unitary group defined by

$$W_{\mathcal{S}(C)}(A) = \{ \operatorname{tr} (CU^*AU) : U \in \mathcal{S} \}$$

and

$$r_{\mathcal{S}(C)}(A) = \{ |\mu| : \mu \in W_{\mathcal{S}(C)}(A) \}.$$

5 Exercises

- 1. Suppose $\mu \in \sigma(A)$ is a boundary point of W(A). Show that A is unitarily similar to $[\mu] \oplus A_2$.
- 2. Show that if $\mu \in W(A)$ satisfies $|\mu| = ||A||$, then A is unitarily similar to $[\mu] \oplus A_2$.
- 3. Show that if $A \in M_n$ and W(A) is a convex polygon (with interior) with n-1 vertices, then A is normal. For each $n \ge 5$, show that there is a non-normal matrix B such that W(B) is a convex polygon with n-2 vertices.
- 4. Let

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}.$$

Show that

$$W(A_1, A_2, A_3) = \{(a, b, c) : a, b, c \in \mathbf{R}, a^2 + b^2 + c^2 = 1\}.$$

- 5. Give a complete description of $\Lambda_2(A)$ for a normal matrix $A \in M_4$ in terms of its eigenvalues.
- 6. Show that if $A \in M_n$ has rank less than k, then $\Lambda_k(A) = \{0\}$.
- 7. Suppose $n \ge 2k$. There is $A \in M_n$ such that $\Lambda_k(A)$ is the unit circular disk.
- 8. Suppose $n \ge 2k + m$. There is $A \in M_n$ such that $\Lambda_k(A)$ is a regular *m*-side polygons.
- 9. If $W_C(A)$ is always a circular disk centered at the origin, show that C is a block shift operator.

If $W_C(A)$ is always a circular disk, can we conclude that C = aI + R for a block shift operator R?

Appendix: Background of quantum error correction

In classical computing, information is stored as binary sequences. A length k sequence is encoded as a length n sequence, and then transmitted through a noisy channel. The received sequence can be correctly decoded provided there are fewer than r(n, k) error.

In quantum computing, information is stored in **quantum bits (qubits)**. Mathematically, a qubit is represented by a 2×2 rank one projection $Q = \frac{1}{2} \begin{pmatrix} 1+z & x+iy \\ x-iy & 1-z \end{pmatrix}$ with $x^2 + y^2 + z^2 = 1$. A state of K-qubits Q_1, \ldots, Q_K is represented by their tensor products in M_n with $k = 2^K$. Again, a state of K-qubits is encoded as a state of N-qubits, and transmitted through a **quantum channel**, where a quantum channel for states of N-qubits is a **trace preserving completely positive linear map** $\Phi : M_n \to M_n$ with $n = 2^N$. By the result of Choi, there are $T_1, \ldots, T_m \in M_n$ with $\sum_{j=1}^m T_j^*T_j = I_n$ such that

$$\Phi(X) = \sum_{j=1}^{m} T_j X T_j^*.$$
 (1)

In this setting an quantum error correction code is a subspace \mathbf{V} of \mathbf{C}^n such that the compression of Φ on \mathbf{V} is the identity map. By the result of Knill-Laflamme, this happens if and only if there are scalars γ_{ij} with $1 \leq i, j \leq r$ such that

$$PT_i^*T_jP = \gamma_{ij}P, \quad 1 \le i, j \le m_j$$

where $P \in M_n$ is an orthogonal projection of \mathbf{C}^n onto \mathbf{V} .

In connection to this, researchers study the joint rank-k numerical range of (A_1, \ldots, A_m) to be the set $\Lambda_k(A_1, \ldots, A_m)$ of complex vectors $(a_1, \ldots, a_m) \in \mathbb{C}^{m \times 1}$ for the existence of an rank-k orthogonal projection $P \in M_n$ such that $PA_jP = a_jP$ for $j = 1, \ldots, m$.