Part 3 Norms and norm inequalities

The study of norms has connections to many pure and applied areas. We will focus on approximation problems and norm inequalities in matrix spaces.

1 S-invariant norms

Definition 1.1 A norm $\|\cdot\|$ on a vector space V is a function from V to R such that

- (a) $||v|| \ge 0$ for all $v \in V$, where ||v|| = 0 if and only if v = 0.
- (b) $|\gamma v|| = |\gamma| ||v||$ for all $\gamma \in \mathbf{F}$ and $v \in V$.
- (c) $||u + v|| \le ||u|| + ||v||$ for all $u, v \in V$.

If the condition "||v|| = 0 if and only if v = 0" is relaxed, we have a semi-norm.

Definition 1.2 Let S be a set of operators acting on the vector space \mathbf{V} . A norm $\|\cdot\|$ on \mathbf{V} is S-invariant if $\|Av\| = \|v\|$ for all $A \in S$ and $v \in \mathbf{V}$.

Example 1.3 Here are several commonly used S-invariant norms on vectors or matrices.

- 1. Absolute norms on \mathbf{F}^n , i.e., ||Dv|| = ||v|| for all diagonal unitary / diagonal orthogonal matrices D.
- 2. Permutationally invariant norms on \mathbf{F}^n , *i.e.*, ||Pv|| = ||v|| for all permutation matrices P.
- 3. Symmetric norms (also known as symmetric gauge functions) on \mathbb{R}^n , *i.e.*, absolute permutationally invariant norms.
- 4. Unitarily invariant norms on $m \times n$ matrices, i.e., ||UAV|| = ||A|| for all unitary matrices U and V.
- 5. Unitary similarity invariant norms on M_n or H_n , *i.e.*, $||U^*AU|| = ||A||$ for all unitary matrices U.
- 6. Unitary congruence invariant norms on M_n , symmetric matrices, or skew-symmetric matrices, i.e., $||U^tAU|| = ||A||$ for all unitary matrices U.

Theorem 1.4 Suppose V is an inner product space and S is a group of unitary operators.

(a) For $\gamma \in \mathbf{V}$, the $\mathcal{S}(\gamma)$ -radius defined by

 $r_{\gamma}(v) = \max\{|\langle v, g(\gamma) \rangle| : g \in \mathcal{S}\}$

is an S-invariant semi-norm. It is a norm if and only if $S(\gamma) = \{g(\gamma) : g \in S\}$ spans **V**.

(b) For every S-invariant norm $\|\cdot\|$ on V, there is a compact subset \mathcal{E} of V such that

 $||v|| = \max\{r_{\gamma}(v) : \gamma \in \mathcal{E}\}.$

(c) For any $u, v \in \mathbf{V}$, $||u|| \leq ||v||$ for all S-invariant norms if and only if $r_{\gamma}(u) \leq r_{\gamma}(v)$ for all $\gamma \in \mathbf{V}$ (or a suitable collection of γ).

Remark 1.5 The theorem shows that $S(\gamma)$ -radii are the building blocks of S-norms if S is a group of unitary operators.

2 UI norms, USI norms, and UCI norms

Definition 2.1 Let $c = (c_1, \ldots, c_n)$ be a vector with nonnegative entries arranged in descending order. The c-norm (or c-spectral norm) on M_n is defined by

$$||A||_c = \sum_{j=1}^n c_j s_j(A).$$

When $c_1 = \cdots = c_k = 1$ and $c_j = 0$ for j > k, have the **Ky Fan** k-norm $F_k(A)$.

Theorem 2.2 There is a one-one correspondence between symmetric gauge functions on \mathbb{R}^n and UI norms on M_n , namely, each UI norm $\|\cdot\|$ corresponds to a unique symmetric gauge unction Φ such that $\|A\| = \Phi(s(A))$.

 (a) Every UI norm ||·|| there is a compact set E of nonnegative vectors with entries arranged in descending order such that

$$||A|| = \max\{||A||_c : c \in \mathcal{E}\}.$$

(b) Let $A, B \in M_n$. Then $||A|| \le ||B||$ for all UI norms $||\cdot||$ if and only if $F_k(A) \le F_k(B)$ for all k = 1, ..., n.

Theorem 2.3 There is a one-one correspondence between permutationally invariant norms on \mathbb{R}^n and USI norms on H_n , namely, each USI norm $\|\cdot\|$ corresponds to a permutationally invariant norm Φ such that $\|A\| = \Phi(\lambda(A))$.

(a) For every USI norm on H_n , there is a compact set \mathcal{E} of real vectors $c = (c_1, \ldots, c_n)$ with entries arranged in descending order such that

$$||A|| = \max\{r_c(A) : c \in \mathcal{E}\},\$$

where

$$r_c(A) = \max\left\{\sum_{j=1}^n c_j \lambda_j(A), -\sum_{j=1}^n c_{n-j+1} \lambda_j(A)\right\}$$

is the c-numerical radius of A.

(b) Let $A, B \in H_n$. Then $||A|| \le ||B||$ for all USI norms $||\cdot||$ if and only if $r_c(A) \le r_c(B)$ for a dense subset of

$$\left\{ (c_1, \dots, c_n) : c_1 \ge \dots \ge c_n, \sum_{j=1}^n c_j^2 = 1 \right\}.$$

Definition 2.4 Let $C \in M_n$. Define the C-numerical radius of A by

 $r_C(A) = \max\{|\operatorname{tr}(CU^*AU)| : U \text{ is unitary}\},\$

and define the C-congruence numerical radius of A by

$$\tilde{r}_C(A) = \max\{|\operatorname{tr}(CU^t A U)| : U \text{ is unitary}\}.$$

Theorem 2.5 (a) For every USI norm on M_n , there is a compact set \mathcal{E} of matrices

 $||A|| = \max\{r_C(A) : C \in \mathcal{E}\}.$

(b) For every UCI norm on M_n , there is a compact set \mathcal{E} of matrices

$$||A|| = \max\{\tilde{r}_C(A) : C \in \mathcal{E}\}.$$

Theorem 2.6 A norm $\|\cdot\|$ on M_n is UI if and only if it is USI and UCI.

3 Best approximations

Theorem 3.1 Let $\|\cdot\|$ be a UI norm on M_n .

- (a) $||A (A + A^*)/2|| \le ||A H||$ for any $H \in H_n$.
- (b) $||A (A A^*)/2|| \le ||A G||$ for any $G \in iH_n$.
- (c) If A = UP for a unitary U and a positive semi-definite P, then $||A U|| \le ||A V||$ for any unitary $V \in M_n$.

Theorem 3.2 Let $\|\cdot\|$ be a UI norm on $m \times n$ matrices.

- (a) If A = UDV, where $U, V \in M_n$ are unitary and $D = \text{diag}(s_1, \ldots, s_n)$ such that $s_1 \geq \cdots \geq s_n \geq 0$, then $A_k = U \text{diag}(s_1, \ldots, s_k, 0, \ldots, 0) V$ satisfies $||A A_k|| \leq ||A X||$ for all X with rank at most k.
- (b) If $A = XDY^*$ so that X is $m \times k$ with $X^*X = I_k$, Y is $n \times k$ with $Y^*Y = I_k$, and $D = \text{diag}(s_1, \ldots, s_k)$ with $s_1 \ge \cdots \ge s_k > 0$, then for any given $m \times n$ matrix B $||A - UD^{-1}VB|| \le ||A - X||$ for all $m \times n$ matrix X.

4 Norm bounds for sum and difference of matrices

Theorem 4.1 Let $\|\cdot\|$ be a UI norm on M_n . Suppose $A, B \in H_n$ have singular values $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$. Then

$$\frac{1}{\sqrt{2}} \|A + iB\| \le \|\text{diag}(a_1 + ib_1, \dots, a_n + ib_n)\| \le \sqrt{2} \|A + iB\|.$$

Theorem 4.2 Suppose $\|\cdot\|$ is a USI norm on H_n . If $A, B \in H_n$ have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$, then

$$\|\text{diag}(a_1 - b_1, \dots, a_n - b_n)\| \le \|A - B\| \le \|\text{diag}(a_1 - b_n, \dots, a_n - b_1)\|.$$

Theorem 4.3 Suppose $\|\cdot\|$ is a UI norm on M_n . If $A, B \in H_n$ have singular values $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$, then

$$\|\text{diag}(a_1 - b_1, \dots, a_n - b_n)\| \le \|A - B\|.$$

Theorem 4.4 Let $A, B \in M_n$, and let $\|\cdot\|$ be the operator norm. Then

$$\max\{\|U^*AU - V^*BV\| : U, Vunitary\} = \min\{\|A + \mu I\| + \|B + \mu I\| : \mu \in \mathbf{C}\}.$$

The minimum on the right hand side will attain at a certain μ_0 with $|\mu_0| \leq \max\{||A||, ||B||\}$.

5 Norm bounds involving product of matrices

Proposition 5.1 Suppose $A, B \in M_n$ are such that $AB \in H_n$.

- (a) For any USI norm on H_n , $||AB|| \leq ||\operatorname{Re}(BA)||$.
- (b) For any UI norm on M_n , $||AB|| \leq ||\operatorname{Re}(BA)||$.

Theorem 5.2 Let $\|\cdot\|$ be a UI norm on M_n . For any matrices A, B, X, we have

$$||AXB^*|| \le \frac{1}{2} ||A^*AX + XB^*B||.$$

Theorem 5.3 Let $\|\cdot\|$ be a UI norm. Suppose $A, B \in H_n$ are positive semi-definite. Then

$$4\|AB\| \le \|(A+B)^2\|.$$

Actually, we can prove

$$2s_j(A^{3/2}B^{1/2} + A^{1/2}B^{3/2}) \le s_j(A+B)^2, \quad j = 1, \dots, n.$$

Consequently,

$$4\|AB\| = 4\|A^{1/2}(A^{1/2}B^{1/2})B^{1/2}\| \le 2\|A^{3/2}B^{1/2} + A^{1/2}B^{3/2}\| \le \|(A+B)\|^2.$$

6 Additional results and problems

Definition 6.1 For $p \ge 1$, define the Schatten p-norm on M_n by

$$||A||_p = \left\{\sum_{j=1}^n s_j(A)^p\right\}^{1/p}$$

Theorem 6.2 Let $A, B \in H_n$.

(a) If $1 \le p \le 2$, then

$$2^{2/p-1} \|A + iB\|_p^2 \ge \|A\|_p^2 + \|B\|_p^2 \ge 2^{1-2/p} \|A + iB\|_p^2.$$

(b) If $2 \le p \le \infty$, then

$$2^{2/p-1} \|A + iB\|_p^2 \le \|A\|_p^2 + \|B\|_p^2 \le 2^{1-2/p} \|A + iB\|_p^2.$$

Theorem 6.3 Let $A, B \in H_n$ be such that A is positive semidefinite.

(a) If $1 \le p \le 2$, then

$$||A + iB||_p^2 \ge ||A||_p^2 + 2^{1-2/p} ||B||_p^2$$

(b) If $2 \le p \le \infty$, then

$$||A + iB||_p^2 \le ||A||_p^2 + 2^{1-2/p} ||B||_p^2$$

(c) $||A||_1^2 + ||B||_1^2 \le ||A + iB||_1^2$.

In addition, suppose B is also positive semidefinite.

(d) If $1 \le p \le 2$, then

 $||A + iB||_p^2 \ge ||A||_p^2 + ||B||_p^2.$

(e) If $2 \le p \le \infty$, then

$$||A + iB||_p^2 \le ||A||_p^2 + ||B||_p^2.$$

Problem 6.4 Can one prove (d) and (e) without the assumption that B is also positive semidefinite?

Theorem 6.5 (Böttcher and Wenzel) Let $A, B \in M_n$. Then

$$||AB - BA||_2 \le \sqrt{2} ||A||_2 ||B||_2.$$

Problem 6.6 Characterize A and B so that the equality holds.

It is known that if the equality holds, then A and B have rank at most 2, $A \in \{X \in M_n : BX = XB\}^{\perp}$ and $B \in \{X \in M_n : AX = XA\}^{\perp}$.

Problem 6.7 Prove or disprove that

$$||AB - BA||_p \le 2^{1/\min(p,q)} ||A||_p ||B||_p.$$

7 Exercises

- 1. Show that every symmetric gauge function is Schur convex monotone.
- 2. Show that there exist a UI norm and $A, B \in M_n$ with singular values $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$ such that

$$||A - B|| > ||\text{diag}(a_1 - b_n, \dots, a_n - b_1)||.$$

- 3. Suppose $\|\cdot\|$ is a UI norm on M_n . Let $A, B \in M_n$ have singular values $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$, and C = AB have singular values $c_1 \geq \cdots \geq c_n$. Prove the following.
 - (a) For any r > 0,

$$(c_1^r,\ldots,c_n^r)\prec_{log}(a_1^rb_1^r,\ldots,a_n^rb_n^r).$$

(b) For any $p, q \ge 1$ such that 1/p + 1/q = 1,

$$||AB|| \le |||A|^p ||^{1/p}|||B|^q ||^{1/q}.$$

(c) For any p, q > 0 and 1/p + 1/q = 1/r,

$$|||AB|^r ||^{1/r} \le |||A|^p ||^{1/p} |||B|^q ||^{1/q}.$$

For p = q = 2, we have the Cauchy-Schwarz inequality for UI norms.

4. For any USI norm $\|\cdot\|$ on M_n , and $A = (A_{ij})_{1 \leq i,j \leq 2} \in M_n$ with $A_{11} \in M_m$ and $A_{22} \in M_{n-m}$, show that

$$||A_{11} \oplus A_{22}|| \le ||A||.$$

If $\|\cdot\|$ is UI, then $\|A_{11} \oplus 0_{n-m}\| \le \|A\|$. What about USI norms?