Part 2 Submatrices, Sum and Product of Matrices

In perturbation theory, one often study the change of eigenvalues and singular values of
sum and product of matrices. Here we present some basic results and techniques.
1 Sum of Matrices

Theorem 1.1 (Lidskii) Let A, B € H,, has eigenvalues a; > --- > a, and by > -+ > by,
respectively. Suppose C' = A+ B has eigenvalues ¢; > -+ > ¢,. Forany 1 <i; < -+ <y,
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More generally, we have the following.

Theorem 1.2 (Thompson) Let A, B € H,, have eigenvlues ay > -+ > a, and by > -+ > by,
respectively. Suppose C' = A + B has eigenvalues ¢ > -+ > ¢,. If 1 <y < -+ < iy, and
1§]1 < <.]m§n7 then
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Theorem 1.3 Let A € M,, have singular values sy > --- > s,. Then
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have eigenvalues £sq, ..., s,.

Theorem 1.4 Let A, B € M, have singular values ay > --- > a, and by > -+ > b,
respectively. Suppose C' = A + B has singular values ¢y > --- > ¢,. Then for any 1 < i; <
< poand 1 < j1 <o < Jgm <n,
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2 Product of Matrices

Theorem 2.1 Let A, B € H, have eigenvalues ay > -+ > a, and by > --- > b,.

(a) There exists an invertible S such that B = S*AS if and only if A and B have the same
mertia.
(b) If there exists S € M, with A\,(S*S) > 1 such that B = S*AS, then |a;| < |b;| for all
7=1,... n.
Theorem 2.2 Let S € M, be invertible and A € H,. Then A = S*AS and A have the

same inertia. If 1 <i; < --- <1, <n are such that
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Theorem 2.3 Let A, B € M, have singular values ay > --- > a, and by > -+ > b,
respectively. Suppose C' = AB has singular values ¢y > -++ > ¢,. Then for any 1 < 1; <

e <dpand 1 < <o < gm <,
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3 Submatrices

Theorem 3.1 Let A € H, and Uy, ..., U, € M, be unitary. Then
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Corollary 3.2 If A= (A;j)i<ij<k € Hy, then
/\<A11 PD---P Akk) =< )\(A)

Lemma 3.3 Let A and B be m X n matrices. Then AB and BA have the same nonzero

ergenvalues.



Theorem 3.4 Suppose C' = (Cij)1<ij<2 € Hy has eigenvalues ¢; > --- > ¢,, Ci1 € Hy, has
eigenvalues a; > -+ > ay, and Coy € H,,_y has eigenvalues by > --- > b,_. Set a; = ¢, for
ied{k+1,...,n} andb; =c, forj e {n—k+1,...,n}. Then foranyl <i; <--- <i, <n
and 1 < j; < -+ < Jm < n,
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Remark 3.5 We can obtain inequalities relating the singular values of Cho and the eigen-
values of C' using the fact that

) ( 0c Cra ) = C— (I ® L )OI ® —Ty).

4 Cartesian decomposition

Theorem 4.1 Let A, B € H, have singular values a; > --- > a, and by > --- > b,. If

A+ 1B has eigenvalues z1, . . ., z,, then

Re(27,...,22) < (a] —b2,...,a2 — b3).

Theorem 4.2 Let A, B € H,, have singular valuesa; > --+ > a, andby > --- > b,. Suppose

A+ iB has singular values si,...,S,. Then

(a2 +0b2,...,a2 +0b]) < (s],...,82) and (si+s2,...,80+s7) <2(al+b],...,a2 +0b2).
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Proposition 4.3 Let A € M,, have singular values sy > -+- > s,. Fork € {1,...,n},
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Theorem 4.4 Using the notation in Theorem 4.2, we have
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Theorem 4.5 Suppose A, B € H,, have singular values a; > -+ > a, and by > -+ > b,.
Then

) <w (Jar + i1, ..., |an + iba]) <w V2(s1, ..., 5n).

|det(A+iB)| < [ [ la; + ibnjsa]-
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If A and B are positive definite, then
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5 Tensor products

Definition 5.1 Let A = (a;j) and B = (b;;) be matrices. The tensor product of A and B
is the matric A® B = (a;;B). If A and B are of the same size, then the Schur product of
A and B is the matriz Ao B = (a;;b;;), which is a submatriz of A® B.

Theorem 5.2 Let A € M, and B € M,, have eigenvalues (respectively, singular values)
ai,...,a, and by, ... b,. Then A® B have eigenvalues (respectively, singular values) a;b,
with (i,7) € {1,...,m} x {1,...,n}.

Corollary 5.3 If A, B € H,, are positive definite, then
M40 B) > \(A)h(B).

Theorem 5.4 Suppose A € M, and B € M, have eigenvalues ay,...,a, and by, ..., bs.
Then A® I, + I, ® B have eigenvalues a; + b; with (i,7) € {1,...,7} x{1,...,s}.

Corollary 5.5 Suppose p(z) and q(z) are the integral polynomials with the algebraic numbers
a and b as zeros. Let A € M, and B € My be the companion matrices for p(z) and q(z).
Then ab is a zero of AQ B, and a + b is a zero of AQ I, + I, ® B.

6 Additional results and open problems

The necessary and sufficient condition has been determined for the existence of Hermitian
A, B and C = A + B with eigenvalues a; > --- > a,, by > - > b,, and ¢; > --- > ¢,,
respectively. The condition is described in term of the equality > 7 (a; +b;) = > 7.
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for a collection of subsets R, S,T of {1,...,n}.

There are similar results on

c; and

inequalities of the form

(a) the relations of the singular values of sum and product of matrices.
(b) the relations of the eigenvalues and singular values of submatrices and the entire matrix.
(c) the relations of singular values of A5 and the eigenvalues of A = (A4;;)1<; j<2 € Hy.

(d) the relations of the diagonal entries, eigenvalues, and singular values of sum and prod-

uct of matrices.



There are additional results concerning the determinant, the rank, the eigenvalues, the

inertia and the norms of sum of matrices from unitary orbits.
There are many problems under current research.

1. Determine the complete set of eigenvalues (respectively, singular values, inertia values,
ranks and norm values) of U*AU + V*BV for unitary U,V € M,,.

2. More generally, one may consider the above problems for square matrices A € M,, and
B € M,,, and use partial isometries U and V' such that U*U = I, and V*V = I. If
A and B are adjacency matrices of two graphs, then the above problem is related to

finding similar subgraphs in the two given graphs.

3. Let A = (a;;) € M, be real symmetric. Determine orthogonal matrices @1, ...,Q, €
M, such that

diag (a11, ..., an) =n"" Y QLAQ;.
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Note that
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where Dy, ..., Don—1 are all diagonal orthogonal matrices with (1,1) entry equal to 1.

4. Determine the condition on Ciq, Ci3, Cas for the existence of C' = (Cyj)1<ij<3 € H,

with prescribed eigenvalues ¢; > --- > ¢,.

5. Riemann hypothesis can be formulated as a problem of estimating the determinant.
Let D, = (dij) € M, be the divisor matrix defined by d;; = 1 if j is a multiple of
i, and d;; = 0 otherwise. Let L, € M, be the matrix with 1 at the (i,1) entry for
1=2,...,n, and all other entries equal to 0. If A,, = D,, + L,,, then

det(An) = Zu(j)

is the Mertens’ function, i.e., u(j) is the Mébius function. Hence, Riemann hypothesis

is true if and only if

|det(A,)] = O(n*?*¢)  for every € > 0.



Exercises

. Fill in the many missing details in our discussion.

. Let A, B € M, (C) have singular values a; > --+ > a, and by > --- > b,. Show that

n 0 if [a,,a1] N [by, b1] # 0,
E(aj + bn_j+1) Z |det(A + B)| Z { H?:l ’(Ij o bnfjJrl‘ otherwise.
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. Let A = g T has singular values s; > --- > s9, > 0, where R, S,T € M,. Show
that
S(TT'SR™Y) <w (820 — ST s Sy — S0 )
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. Let A117A127A217A22 € Mn and A = ( ) € HQn have eigenvalues aq Z cee >

asyn > 0. Show that

$(Ayy " An1) <w (Va1 — Vs - - \/n — \/Gns1) »
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