
Part 1 Diagonal Entries, Eigenvalues & Singular Values

Recall that the singular values s1(A) ≥ · · · ≥ sn(A) of A ∈ Mn are the nonnegative square

roots of the eigenvalues of A∗A. Finding bounds and estimates of eigenvalues, singular values,

and diagonal entries of matrices are important in many applications. We will study some

basic results and techniques. Here are some facts about eigenvalues and singular values.

• Let A ∈ Mn. There are unitary U, V ∈ Mn such that UAV = diag (s1(A), . . . , sn(A)).

• Let A ∈ Mn. There is a unitary U such that U∗AU is in (upper or lower) triangular

form with the eigenvalues of A arranged in any specific order on the diagonal.

• A matrix A ∈ Mn is normal (Hermitian) if and only if A is unitarily similar to a (real)

diagonal matrix.

1 Real symmetric and complex Hermitian Matrices

Theorem 1.1 (Courant-Fischer-Weyl) Let A ∈ Hn have eigenvalues a1 ≥ · · · ≥ an. Then

for 1 ≤ k ≤ n,

ak = max
dim W=k

min
v∈W, v∗v=1

v∗Av = min
dim W=n−k+1

max
v∈W,v∗v=1

v∗Av.

When k = 1, we have the following corollary, which is known as the Rayleigh principle.

Corollary 1.2 (Rayleigh Principle) Let A ∈ Hn. For any unit vector x ∈ Fn, we have

λ1(A) ≥ x∗Ax ≥ λn(A).

Corollary 1.3 (Cauchy’s Interlacing Inequalities) Let A ∈ Hn have eigenvalues a1 ≥ · · · ≥
an. Suppose B is a m×m principal submatrix of A with eigenvalues b1 ≥ · · · ≥ bm. Then

aj ≥ bj ≥ an−m+j for j = 1, . . . ,m.

Theorem 1.4 (Fan-Pall) Suppose a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bm with 1 ≤ m ≤ n satisfy

aj ≥ bj ≥ an−m+j for j = 1, . . . ,m.

Then there exists A ∈ Hn with eigenvalues a1, . . . , an such that the leading m×m principal

submatrix of A has eigenvalues b1 ≥ · · · ≥ bm.

Problem 1.5 Let 1 ≤ m < n. Determine the conditions on a1, . . . , an, b1, . . . , bm ∈ C for

the existence of a normal matrix with eigenvalues a1, . . . , an and a leading principal normal

submatrix with eigenvalues b1, . . . , bm.
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Definition 1.6 Let a = (a1, . . . , an) and b = (b1, . . . , bn) be real vectors. We say that b is

weakly majorized by a, denoted by b ≺w a, if the sum of the k largest entries of b is not

larger than the sum of the k largest entries of a for k ∈ {1, . . . , n}. In addition, if the sum

of the entries of the two vectors are the same, we say that b is majorized by a, denoted by

b ≺ a.

Theorem 1.7 (Schur-Horn) There exists A ∈ Hn with eigenvalues a1 ≥ · · · ≥ an and

diagonal entries d1, . . . , dn if and only if

(d1, . . . , dn) ≺ (a1, . . . , an).

Problem 1.8 Determine the relation between the eigenvalues and diagonal entries of a

normal matrix.

2 General matrices

Theorem 2.1 Suppose x, y ∈ Rn and z ∈ Cn.

• There exists T ∈ Mn with entries of z as eigenvalues and entries of x as eigenvalues

of (T + T ∗)/2 if and only if Re(z) ≺ x.

• There exists T ∈ Mn with entries of z as eigenvalues and entries of y as eigenvalues

of (T − T ∗)/(2i) if and only if Im(z) ≺ y.

Problem 2.2 Given x, y ∈ Rn and z ∈ Cn, determine the necessary and sufficient condi-

tions for T ∈ Mn with entries of z as eigenvalues, entries of x as eigenvalues of (T + T ∗)/2

and entries of y as eigenvalues of (T − T ∗)/(2i).

Theorem 2.3 (Weyl-Horn) There exists A ∈ Mn with singular values s1 ≥ · · · ≥ sn and

eigenvalues λ1, . . . , λn with |λ1| ≥ · · · ≥ |λn| if and only if
∏n

j=1 |λj| =
∏n

j=1 sj and

k∏
j=1

|λj| ≤
k∏

j=1

sj, k = 1, . . . , n− 1.

Theorem 2.4 (Thompson-Sing) There exists A ∈ Mn with singular values s1 ≥ · · · ≥ sn

and diagonal entries d1, . . . , dn with |d1| ≥ · · · ≥ |dn| if and only if

n−1∑
j=1

|dj| − |dn| ≤
n−1∑
j=1

sj − sn

and
k∑

j=1

|dj| ≤
k∑

j=1

sj, k = 1, . . . , n,
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Theorem 2.5 (Thompson) There exists a complex symmetric matrix A ∈ Mn with singular

values s1 ≥ · · · ≥ sn and diagonal entries d1 ≥ · · · ≥ dn if and only if

(a)
∑k

j=1 dj ≤
∑k

j=1 sj for j ∈ {1, . . . , n},
(b)

∑k−1
j=1 dj −

∑n
j=k dj ≤

∑n
j=1 sj − 2sk for k ∈ {1, . . . , n}, and

(c)
∑n−3

j=1 dj − dn−2 − dn−1 − dn ≤
∑n−2

j=1 sj − sn−1 − sn in case n ≥ 3.

Problem 2.6 The proof of Thompson is very long. It would be nice to find a short proof.

3 Compound matrices

Definition 3.1 If A is m × n and k ≤ min{m, n}, then the kth compound matrix

of A is the
(

m
k

)
×
(

n
k

)
matrix Ck(A) with entries equal to det A[i1, . . . , ik; j1, . . . , jk] with

1 ≤ i1 < · · · < ik ≤ m and 1 ≤ j1 < · · · < jk ≤ n, arranged in lexicographic order; the kth

additive compound matrix of A is the
(

m
k

)
×
(

n
k

)
matrix ∆k(A) appeared as the coefficient

matrix of t in the expansion

Ck(I + tA) = I + t∆k(A) + · · ·+ tkCk(A).

Theorem 3.2 Let A ∈ Mn have eigenvalues a1, . . . , an, and singular values s1, . . . , sn. Then

Ck(A) has eigenvalues aj1 · · · ajk
and singular values sj1 · · · sjk

with 1 ≤ j1 < · · · < jk.

Moreover, ∆k(A) has eigenvalues aj1 + · · ·+ ajk
with 1 ≤ j1 < · · · < jk.

4 Bounds for zeros of polynomials

Definition 4.1 Suppose A is the companion matrix of the monic polynomial p(z) =

zn + a1z
n−1 + · · ·+ an, i.e., the (1, j) entry of A is −aj for j = 1, . . . , n; the (j, j − 1) entry

of A is 1 for j = 2, . . . , n; all other entries of A are zero.

Theorem 4.2 (Gershgorin) Suppose A = (aij)) ∈ Mn. Let Ri =
∑

j 6=i |aij| be the deleted

row sum, and let Gi = {µ ∈ C : |µ− aii| ≤ Ri} be a Gershgorin disk. Then σ(A) ⊆ ∪n
j=1Gj.

Theorem 4.3 Suppose p(z) = zn + a1z
n−1 + · · ·+ an, and µ is a zero of µ. Then

|µ| ≤ max{1 + |aj| : 1 ≤ j ≤ n} and |µ| ≤ max

{
1,

n∑
j=1

|aj|

}
.

If an 6= 0, one can estimate the lower bound for |µ| by studying the companion matrix of

q(z) = znp(1/z)/an = zn + (an−1/an)zn−1 + · · ·+ 1/an.
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Moreover, if A is the companion matrix of p(z), then there are unitary matrices U and V

such that UAV =

(
an γ
0 1

)
⊕ In−2 with γ =

√∑n−1
j=1 |aj|2, and hence

|µ| ≤ s1(A) =
1

2

{√
γ2 + (1 + |an|)2 +

√
γ2 + (1− |an|)2

}
.

If A is singular, |µ| ≤
√

γ2 + 1. If A is invertible, one can get the lower bound |µ| ≥ sn(A).

Problem 4.4 (Sendov Conjecture) Suppose A is a complex circulant matrix with all eigen-

values in the closed unit disk {µ ∈ C : |µ| ≤ 1}. If λ is an eigenvalue of A and B is obtained

from A − λI by removing its last row and last column. Show that B has an eigenvalue in

the closed unit disk.

Remark 4.5 Note that if A′ is obtained from A by removing its first row and first column,

then the eigenvalues of A′ are the zeros of p′(z) for p(z) = det(zI − A).

5 Functions preserving majorization

To obtain more matrix inequalities from the basic ones one can use Schur convex functions.

Definition 5.1 A nonnegative matrix A ∈ Mn is doubly stochastic if all row sums and

column sums equal 1. If A is doubly stochastic and has two nonzero off-diagonal entries,

then A is a pinching matrix.

Proposition 5.2 Let x, y ∈ R1×n. The following are equivalent.

(a) x ≺ y.

(b) There exist pinching matrices T1, . . . , Tm with m < n such that x = yT1 · · ·Tm.

(c) There exists a doubly stochastic matrix A such that x = yA.

Proposition 5.3 Let f : R → R, and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R1×n.

(a) If f is convex and x ≺ y, then

(f(x1), . . . , f(xn)) ≺w (f(y1), . . . , f(yn)).

(b) If f is convex increasing and x ≺w y, then

(f(x1), . . . , f(xn)) ≺w (f(y1), . . . , f(yn)).
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Definition 5.4 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) have nonnegative entries. If the

product of the k largest entries of x is not larger than that of y for k = 1, . . . , n, we say that

x is weakly log majorized by y, denoted by x ≺wlog y. In addition, if the product of the

entries of the two vectors are the same, then we say that x is log majorized by y, denoted

by x ≺log y.

Proposition 5.5 If x ≺wlog y then x ≺w y.

Definition 5.6 A function f : Rn → R is Schur-convex if f(u) ≤ f(v) whenever u ≺ v.

Example 5.7 (a) If f : R → R is convex, then for any k ∈ {1, . . . , n},

φk(x1, . . . , xn) = max{f(xj1) + · · ·+ f(xjk
) : 1 ≤ j1 < · · · < jk ≤ n}

is Schur convex. In addition, if g is increasing, then φ(x) ≤ φ(y) whenever x ≺w y.

(b) If g : Rn → R is convex, then φ(x) = max{g(Px) : P is a permutation matrix}, is

Schur-convex. In addition, if g is increasing, then φ(x) ≤ φ(y) whenever x ≺w y.

(c) The variance function on real vectors x = (x1, . . . , xn) defined by

V (x) =
1

n

n∑
j=1

(xj − x̄)2 with x̄ =

(
n∑

j=1

xj

)
/n

is Schur-convex.

(d) The entropy function on nonnegative vectors x = (x1, . . . , xn) is defined by

H(x) = −
j∑

j=1

xj log xj,

where by convention t log t = 0 if t = 0. Then −H(x) is Schur -convex, i.e., H(x) is

Schur-concave,

Definition 5.8 For k ∈ {1, . . . , n}, define the kth elementary symmetric function by

Ek(x1, . . . , xn) =
∑

1≤j1<···<jk≤n

xj1 · · ·xjk
.

Proposition 5.9 Let k ∈ {2, . . . , n}, the functions −Ek(x1, . . . , xn) and

Ek−1(x1, . . . , xn)/Ek(x1, . . . , xn)

are Schur convex on positive vectors x = (x1, . . . , xn).
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6 Inequalities on determinant and related functions

Theorem 6.1 Let f be a Schur-convex function on real vectors x = (x1, . . . , xn). If A ∈ Hn

has diagonal entries d1, . . . , dn and eigenvalues a1, . . . , an, then

f(d1, . . . , dn) ≤ f(a1, . . . , an).

Theorem 6.2 Let A ∈ Hn have diagonal entries d1, . . . , dn and eigenvalues a1, . . . , an > 0.

Then
En(d1, . . . , dn)

En(a1, . . . , an)
≥ En−1(d1, . . . , dn)

En−1(a1, . . . , an)
≥ · · · ≥ E1(d1, . . . , dn)

E1(a1, . . . , an)
= 1.

Corollary 6.3 Suppose A ∈ Mn. Then | det(A)| ≤
∏

j=1 ‖Ai‖, where Ai is the ith column

of A.

Theorem 6.4 If A ∈ Hn is positive semi-definite, then

(det A)1/n = inf{tr (AB)/n : B is positive definite with det(B) = 1}.

If A is invertible, then the infimum is attainable.

Corollary 6.5 (Minkowski) Let A, B ∈ Hn be positive. Then

(det(A + B))1/n ≥ (det A)1/n + (det B)1/n.

7 Exercises

1. Please make suggestions and comments to the lecture.

2. Provide the missing details of the proofs of various results such as Example 5.7, Propo-

sition 5.9, and results in Section 6, etc.

3. Prove that if A ∈ Mn is complex symmetric, there is unitary U such that U tAU =

diag (s1(A), . . . , sn(A)). Hint: Choose unit vector u so that Re(utAu) is largest possi-

ble. Show that U tAU = [s1]⊕ A2 if U has u as the first column. Induct on A2.

4. Let A ∈ Hn. Show that a unit vector v ∈ Cn satisfies v∗Av = λj(A) for j = 1 or n if

and only if v is an eigenvector of λj(A).

5. Let A, B ∈ Hn. Use Theorem 1.1 to show that

λi+j−1(A + B) ≤ λi(A) + λj(B), i + j − 1 ≤ n.

Formulate and prove a lower bound on λi+j−1(A + B).
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