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Schedule (Tentative)

July 27 (Sunday) Arrival and sightseeing in Krakow.

July 28 (Monday)
9:00 - 10:30 a.m. Chair: Chi-Kwong Li

Man-Duen Choi, Numerical ranges and dilations.
Hiroshi Nakazato, Kepler’s vicarious ovum lies on an algebraic curve with degree 12, genus 7.
Mao-Ting Chien, Numerical range for orbits under a central force.

10:30 - 11:00 a.m. coffee break.
11:00 a.m. - 12:30 p.m. Chair: Yiu-Tung Poon

Karol Zyczkowski, On restricted numerical range.
Zbigniew Puchala, Numerical shadow and its generalizations.
Frank Uhlig, Methods for the inverse numerical range problem

12:30- 2:00 p.m. Workshop photo and Lunch break.
2:00 - 3:30 p.m. Chair: Jaroslav Zemanek

Yiu-Tung Poon, Spectrum, numerical range and Davis Wielandt shell of a normal operator.
Chi-Kwong Li, Spectra, norms, and numerical ranges of generalized quadratic operators.
Dariusz Cichon, Local spectral radius for unbounded operators.

3:30 - 4:00 p.m. Coffee break
4:00 - 5:30 p.m. Chair: Tin-Yau Tam

Michel Crouzeix, A matrix factorization based on numerical radii.
Grzegorz Lewicki, Best approximation in numerical radius.
Javier Meri, On the numerical radius of some classes of operators in Lp spaces.

6:15 - 7:30 p.m. visit to University Museum, Collegium Maius
7:30 p.m. - Workshop dinner

June 29 (Tuesday)
9:00 - 10:30 a.m. Chair: Man-Duen Choi

Miroslav Fiedler, Complementary basic matrices.
Moshe Goldberg, Homotonic algebras
Fuzhen Zhang, Ky Fan: Beautiful results and beautiful life

10:30 - 11:00 a.m. Coffee break
11:00 a.m. - 12:30 p.m. Chair: Thomas Schulte-Herbrüggen

Iwona Wróbel, On the Gauss-Lucas theorem and the numerical range of companion matrices
Alexander Markus, Connectedness of zero sets of some functionals and convexity of C-numerical
ranges.
Tin-Yau Tam, A cousin of the numerical range.

12:30 - 2:00 p.m. Lunch break
2:00 - 3:30 p.m. Chair: Karol Zyczkowski

Thomas Schulte-Herbrüggen, Least-squares approximation by matrix orbits and rank-k
numerical ranges: Flows for optimization in quantum dynamics.
Raymond Nung-Sing Sze, Higher rank numerical range of normal matrices.
Natalia Bebiano, Higher rank numerical range for J-Hermitian matrices.

3:30 - 4:00 p.m. Coffee break
4:00 - 5:30 p.m. Chair: Tom Laffey

Aikaterini Aretaki, The higher rank numerical range of matrix polynomials.
K.-H. Förster, The block numerical range of matrix polynomials.
A. Nata, On the boundary of the Krein space tracial numerical range.
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Title The higher rank numerical range of matrix polynomials

Speaker Aikaterini Aretaki, National Technical University of Athens, Greece

Co-author John Maroulas, National Technical Univ. of Athens, Greece, maroulas@math.ntua.gr

Abstract
Let Mn(C) be the algebra of n × n complex matrices. For matrix polynomials L(λ) =

Amλ
m + . . . + A1λ + A0 with Ai ∈ Mn(C), i = 0, . . . ,m, the notion of the higher rank nu-

merical range Λk(L(λ)) is introduced here and it is described as an intersection of the numerical
ranges w(M∗L(λ)M) through all (n−k+1)-dimensional compressions M∗L(λ)M of L(λ). Further,
the boundedness and connectedness of Λk(L(λ)) are investigated. The sharp points of Λk(L(λ)) are
defined and their relation to w(L(λ)) is presented as well as a relationship between Λk(L(λ)) and
Λk(CL(λ)), where CL(λ) is the companion polynomial of L(λ). Finally, the boundary points of the
joint higher rank numerical range Λk(A) of an (m+1)-tuple A = (A0, . . . , Am) are considered with
respect to the boundary points of the joint numerical range w(A) and an interplay of Λk(L(λ)) and
Λk(A) is discussed.

Title Higher Rank Numerical Ranges for J-Hermitian Matrices

Speaker Natalia Bebiano, University of Coimbra.

Abstract
We consider indefinite higher-rank versions of the classical numerical range for matrices. Our

results are stated to J-Hermitian matrices, J = Ir ⊕−In−r, 0 < r < n, that is, Hermitian matrices
on an indefinite inner product space. Particular attention is paid to aspects of the theory that
parallel the case of linear operators on Hilbert spaces, which has deserved special attention due to
its intimate relation with the problem of error correcting in quantum computing.

Title Numerical range for orbits under a central force

Speaker Mao-Ting Chien, Soochow University, Taiwan, mtchien@scu.edu.tw

Co-author Hiroshi Nakazato, Hirosaki University, Japan, nakahr@cc.hirosaki-u.ac.jp

Abstract
We present an explicit form for the central force that describes the orbit of a roulette curve,

and interpret the orbit of the roulette curve as an algebraic curve F (1, x, y) = 0 associated to the
homogeneous polynomial F (t, x, y) = det(tIn + x(A+A∗)/2 + y(A−A∗)/(2i)) of a matrix A. The
hodograph of the orbit is obtained as the boundary generating curve of the numerical range of A.
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Title Numerical ranges and dilations

Speaker Man-Duen Choi, Department of Mathematics, University of Toronto

Abstract
This is a survey talk on the relation between numerical range inclusions and dilations. Namely,

if a k×k complex matrix A is the top left corner of an n×n complex matrix B, then the numerical
range inclusion holds. Conversely, if the numerical range of A is subset of the numerical range of
B, it will be intriguing to get some sort of constructional features relating both matrices.

Title Local spectral radius for unbounded operators

Speaker Dariusz Cichon, Jagiellonian University, Dariusz.Cichon@im.uj.edu.pl

Co-authors Il Bong Jung (Kyungpook National University) and Jan Stochel (Uniwersytet Jagiel-
lonski).

Abstract
Focusing on local spectral radius of an unbounded operator we distinguish related linear sub-

spaces composed of vectors whose spectral radius is no greater than a fixed nonnegative parameter.
The subspaces are invariant under the operator in question thus considering family of associated
restrictions we define localoid and locally normaloid opereators (taking into account spectral radii
and norms of restrictions, respectively). The question arises how far those operators are from being
normal? The answer to this will be preceded by results and examples elucidating the behaviour of
local spectral radii for unbounded operators.

Title A matrix factorization based on numerical radii

Speaker Michel Crouzeix, Université de Rennes 1, michel.crouzeix@univ-rennes1.fr

Abstract
We described, in the matrix case, a variant of a decomposition introduced by M.A. Dritschel

and H.J. Woederman. In particular this shows that each n × n matrix A may be written on the
form

A = 2 sinB U∗diag (a1, . . . , an)U cosB,

with B a self-adjoint matrix satisfying 0 ≤ B ≤ π
2 , U a unitary matrix, and a1, . . . , an ∈ W (A).

This form is a variant of a Andô decomposition.

4



Complementary basic matrices

Speaker Miroslav Fiedler, Inst. of Computer Science, Academy of Sciences of the Czech Republic,
Pod vodáren. věž́ı 2, 182 07 Praha 8, Czech Republic, (fiedler@cs.cas.cz).

Abstract
In a few papers [1] - [3], the class of complementary basic matrices (CB-matrices) was intro-

duced as matrices, if of order n, A = Gi1Gi2 · · ·Gin−1 , where (i1, i2, . . . , in−1) is a permutation of
(1, 2, . . . , n− 1), and the matrices Gk, k = 1, . . . , n− 1 have the form

Gk =

 Ik−1

Ck
In−k−1


for some 2 × 2 matrices Ck. It was observed that 1. independently of the permutation, all such
matrices with given Ci’s have the same spectrum (though they do not form a similarity class), 2.
the classical companion matrix belongs to the class of CB-matrices, 3. the multiplication of the
Gi’s is intrinsic (cf. [4]) in the sense that in every product of a row and a column there is at most
one term different from zero, i.e. each non-zero entry of A is the product of some of the entries
of the matrices Ci; there is no addition. We add some more properties of CB-matrices and pose
a problem to use the property 2., the numerical range and the Gershgorin circles results to obtain
estimates of the roots of a univariate polynomial equation.

References

[1] M. Fiedler, Complementary basic matrices. Linear Algebra Appl.
384(2004), 199 – 206.

[2] M. Fiedler, A note on companion matrices. Linear Algebra Appl. 372(2003), 325 - 331.

[3] M. Fiedler, A note on sign-nonsingular matrices. Linear Algebra Appl. 408(2005), 14 - 18.

[4] M. Fiedler, Intrinsic products and factorizations of matrices. Linear Algebra Appl. 428(2008),
5 - 13.

Title The Block Numerical Range of Matrix Polynomials

Speaker K.-H. Förster, Technical University of Berlin.

Co-authors N. Hartanto, M.M. Nafalska and B. Nagy.

Abstract
The block numerical range of a linear operator in Hilbert spaces and of a monic matrix polyno-

mial was introduced by Ch. Tretter and M. Wagenhofer (2003); the spectrum, the usual numerical
range and the quadratic numerical range are special cases.

We discuss the relation between the block numerical range of arbitrary matrix polynomials
and its linearizations or degree reductions. Properties of the block numerical range of semi-monic
Perron-Frobenius polynomials will be considered in detail.
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Title Homotonic Algebras

Speaker Moshe Goldberg, Technion – Israel Institute of Technology, Haifa, Israel,
goldberg@math.technion.ac.il.

Abstract
An algebra A of real or complex valued functions defined on a set T shall be called homotonic

if A is closed under forming of absolute values, and for all f and g in A, the product f × g

satisfies |f × g| ≤ |f | × |g|. Our main purpose in this talk is two-fold: To show that the above
definition is equivalent to an earlier definition of homotonicity, and to provide a simple inequality
which characterizes sub-multiplicativity and strong stability for weighted sup norms on homotonic
algebras.

Title Best approximation in numerical radius

Speaker Grzegorz Lewicki, Department of Mathematics and Computer Science, Jagiellonian Uni-
versity, Kraków, Poland, Grzegorz.Lewicki at im.uj.edu.pl

Co-authors Asuman Güven Aksoy

Abstract
Let X be a reflexive Banach space. In this paper we give a necessary and sufficient condition

for an operator T ∈ K(X) to have the best approximation in numerical radius from the convex
subset U ⊂ K(X), where K(X) denotes the set of all linear, compact operators from X into X.

We will also present an application to minimal extensions with respect to the numerical radius.
In particular some results on best approximation in norm will be generalized to the case of the
numerical radius.

Title Spectra, norms and numerical ranges of generalized quadratic operators

Speaker Chi-Kwong Li, College of William and Mary.

Co-author Masaru Tominaga, Hiroshima Institute of Technology; Yiu-Tung Poon, Iowa State
University.

Abstract
A bounded linear operator acting on a Hilbert space is a generalized quadratic operator if it

has an operator matrix of the form (
aI cT
dT ∗ bI

)
.

It reduces to a quadratic operator if d = 0. In this paper, spectra, norms, and various kinds of
numerical ranges of generalized quadratic operators are determined. Some operator inequalities are
also obtained. In particular, it is shown that for a given generalized quadratic operator, the rank-k
numerical range, the essential numerical range, and the q-numerical range are elliptical disks; the
c-numerical range is a sum of elliptical disks. The Davis-Wielandt shell is the convex hull of a
family of ellipsoids unless the underlying Hilbert space has dimension 2.
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Title Connectedness of zero sets of some functionals and convexity of C-numerical ranges

Speaker A. Markus, Ben-Gurion University of the Negev, Israel (markus@math.bgu.ac.il).

Abstract
The first proof of the convexity of numerical range given by Hausdorff was based on an auxiliary

statement on connectedness of zero sets of Hermitian forms (see [1], pp. 314-315). This approach
was systematically used for joint numerical ranges in [2,3], and we follow a similar way. We prove,
in particular, the following statement.

Theorem 1. Let H be a Hilbert space, A = A∗ ∈ L(H), n ∈ N, {ck}n1 ⊂ R. Then the set of
all orthonormal systems {ek}n1 such that

∑n
k=1 ck(Aek, ek) = 0, is connected.

We show that Theorem 1 implies some convexity results for C-numerical ranges, in particular,
the Westwick theorem (for details see [4], Section 5.5). Some other connectedness results and their
applications also will be presented.

References
[1] P.R. Halmos, A Hilbert Space Problem Book. Springer-Verlag, New York, 1982.
[2] Yu. Lyubich, A. Markus, Connectivity of level sets of quadratic forms and Hausdorff-Toeplitz

type theorems. Positivity 1 (1997), 239-254.
[3] P. Binding, A. Markus, Joint zero sets and ranges of several Hermitian forms over complex

and quaternionic scalars. Linear Algebra Appl. 385 (2004), 63-72.
[4] K.E. Gustafson, D.K.M. Rao, Numerical Range. Springer-Verlag, Berlin, 1997.

Title On the numerical radius of some classes of operators in Lp spaces

Speaker Javier Meŕı, Universidad de Granada (Spain), jmeri@ugr.es

Co-authors M. Mart́ın, Universidad de Granada (Spain); M. Popov, Chernivtsi National Univer-
sity (Ukraine); B. Randranantoanina, Miami University (USA)

Abstract
We introduce the concept of absolute numerical radius for bounded linear operators defined on

Lp spaces. This allows us to show that the numerical radius is an equivalent norm to the usual
operator norm for the real Lp spaces. Besides, we give lower bounds for the numerical radius of
rank-one operators and finite-rank operators on the space Lp[0, 1] in both the real and complex
setting.
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Title Kepler’s vicarious ovum lies on an algebraic curve with degree 12, genus 7

Speaker Hiroshi Nakazato, Hirosaki University, (nakahr@cc.hirosaki-u.ac.jp)

Abstract
In “Astronomia Nova” Johannes Kepler provided some convex curves for models of planetary

orbits. Some of his models are related to the numerical range of matrices. In this talk I discuss the
algebraic properties of his models.

Title On the boundary of the Krein space tracial numerical range

Speaker A. Nata, CMUC and Department of Mathematics of the Polytechnic Institute of Tomar,
Portugal, and anata@ipt.pt

Co-authors N. Bebiano (CMUC and Department of Mathematics, University of Coimbra, Portu-
gal), H. Nakazato (Hirosaki University, Department of Mathematical Sciences, Japan) and J. P. da
Providência (Department of Physics, University of Coimbra, Portugal)

Abstract
In this talk, tracial numerical ranges, W J

C (A), associated with matrices in an indefinite inner
product space are investigated. The equations of the boundary generating curve of W J

C (A) are
obtained and the connection between the J-normality of A and the smoothness of W J

C (A) is in-
vestigated. Namely, if A is J-normal, a characterization of W J

C (A) is deduced. As an application,
a numerical algorithm for plotting the tracial numerical range of an arbitrary complex matrix, is
presented. Our approach uses the elementary idea that the boundary may be traced by computing
the supporting lines.

Title Spectrum, Numerical Range and Davis-Wielandt Shell of a Normal Operator

Speaker Yiu-Tung Poon, Iowa State University.

Co-author Chi-Kwong Li, William and Mary.

Abstract
It is well known that the closure of the numerical range of a normal operator is the convex

hull of its spectrum. Thus, the two sets have the same interior. But the boundary structure of
the numerical range is not so well understood. In this paper, characterization is given to points
of the numerical range that lie on the boundary. It is shown that such boundary points reveal a
lot of information about the normal operator that cannot be obtained from its spectrum and point
spectrum. For instance, such a boundary point always associates with an invariant (reducing)
subspace of the normal operator. It follows that a normal operator acting on a separable Hilbert
space cannot have a closed strictly convex set as its numerical range. Similar results are obtained
for the Davis-Wielandt shell of a normal operator. One can deduce additional information of the
normal operator by studying the boundary of its Davis-Wielandt shell.

8



Title Numerical Shadow and its generalizations

Speaker Zbigniew Puchala, Polish Academy of Sciences, Gliwice.

Co-authors C. Dunkl, P. Gawron, J. Holbrook, J.A. Miszczak, K. Zyczkowski

Abstract
We analyze probability distributions induced on the numerical range of a given operator by

the unique unitarily invariant (Fubini-Study) measure on the set unit vectors. Such a density will
be called ’numerical shadow of an operator’, since for a normal operator it covers the numerical
range with the probability corresponding to the projection of a regular N -simplex embedded in
N -1dimensions into a plane.

As the numerical range of a non-normal matrix is not a polygon, the corresponding numerical
shadow occurs to be a more complicated probability distribution. For instance, the shadow of a
non-normal operator of size N=2 corresponds to the shadow of a hollow sphere S2 projected onto
the plane. We derive explicit results for the shadow of certain non-normal operators of small sizes
and analyze numerical shadow of the Jordan nilpotent JN .

Title Least-Squares Approximation by Matrix Orbits and Rank-k Numerical Ranges: Flows for
Optimisation in Quantum Dynamics

Speaker T. Schulte-Herbrüggen, Technical University of Munich (TUM), tosh@ch.tum.de

Co-authors C.-K. Li, College of William and Mary, Williamsburg VA, USA, Y.-T. Poon, Iowa
State University, Ames IA, USA, N.-S. Sze, Hong-Kong Polytechnic University, Hong Kong.

Abstract
For the first set of problems, let (A) denote the orbit of a complex or real matrix A under

a certain equivalence relation such as unitary similarity, unitary equivalence, etc. Based on the
differential geometry of the various orbits seen as Riemannian manifolds with bi-invariant metrics
on their respective tangent spaces, efficient gradient-flow algorithms are constructed to determine
the best approximation of a given matrix A0 by the sum of matrices in S(A1), . . . , S(AN ) in the
sense of finding the Euclidean least-squares distance

min{‖X1 + · · ·+XN −A0‖ : Xj ∈ S(Aj), j = 1, . . . , N}.

For the second set of problems, let Hn denote the set of n × n Hermitian matrices. Suppose
1 ≤ k ≤ (n − 1)/2 so Pk is the set of rank-k projectors. Then the rank k-numerical range of
A = (A1, . . . , Am) ∈ Hm

n is defined as the set

Λk(A) = {(a1, . . . , am) ∈ Rm : ∃P ∈ Pk with PAjP = ajP for all j ∈ [1,m]}.

We are interested in gradient-flow based computer programs to generate (or approximate) Λk(A)
or checking whether Λk(A) is empty. — The basic idea takes ε > 0 as a given a tolerance. For
each P ∈ Pk, we check whether

|PAjP − ajP | < ε for j = 1, . . . ,m.

If yes, then (a1, . . . , am) is a point in Λεk(A).

Both problems are addressed by designing gradient-flows. We discuss their differential geometry
in view our special focus on applications in quantum dynamics of open systems.
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Title Higher Rank Numerical Range of Normal Matrices

Speaker Raymond Nung-Sing Sze, Department of Applied Mathematics, The Hong Kong Poly-
technic University, Hung Hom, Hong Kong (raymond.sze@inet.polyu.edu.hk).

Co-authors H.L. Gau (Central University), C.K. Li (College of William and Mary), and Y.T.
Poon (Iowa State University).

Abstract
It is known that the higher rank numerical range Λk(A) of a normal matrix A is either an empty

set or a convex polygon in C. In this talk, the following two interesting problems will be addressed.

1. Given a normal matrix A, determine the number of sides of the convex polygon Λk(A).

2. Given a polygon P and k > 1, construct a normal matrix A with smallest dimension such
that Λk(A) = P.

Title A cousin of the numerical range

Speaker Tin-Yau Tam, Auburn University. (tamtiny@auburn.edu)

Abstract
Abstract: We study the range

S(A) := {xTAy : x, yare two columns of an n× n orthogonal matrix}

where A is an n × n complex skew symmetric matrix. When n = 3, 4, 5, 6, relation between S(A)
and the classical numerical range W (A) is given. We also obtain the axiomatic characterization
of S(A), the characterization of sharp points and extreme points of S(A) and power inequality for
the radius.
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Title Methods for the Inverse Numerical Range Problem

Speaker Frank Uhlig, Department of Mathematics and Statistics, Auburn University, Auburn, AL
36849-5310, USA (uhligfd@auburn.edu)

Co-authors Christos Chorianopoulos and Panayiotis Psarrakos, Department of Mathematics, Na-
tional Technical University of Athens, Zografou Campus, 15780 Athens, Greece (horjoe@yahoo.gr
and ppsarr@math.ntua.gr).

Abstract
For a complex square matrix A and a given point µ ∈ C, the inverse field of values problem

consists of finding a unit generating vector x ∈ Cn with x∗Ax = µ if possible and deciding whether
the given µ lies inside or outside the fields of values of A.
The problem was introduced at WONRA8 in Bremen in 2006 and a randomized search algorithm
for finding such x explained by the presenter there. In 2009, a nearly deterministic algorithm was
introduced by R. Carden and the connection of our problem and that of iterative eigensolvers such
as Arnoldi’s method and the distribution of Ritz values and Ritz pairs inside the field of values of
A was made.
In the most recent work on this problem, we have developed a fast geometry based algorithm to
find a unit generating vector x ∈ Cn for a given point µ in the complex plane if this point lies inside
the numerical range of A, and if not, the method determines that the given point lies outside the
numerical range. It uses
(a) eigenanalyses of associated hermitian matrices

A(θ) = cos(θ)(A+A∗)/2 + i · sin(θ)(A−A∗)/2,
(b) the fact that the image of a great circle of the unit sphere in Cn under the map x ∈ Cn 7→
x∗Ax ∈ C is an ellipse inside A’s numerical range,
as well as
(c) a somewhat obscure result from Horn and Johnson’s Topics book for finding a unit generating
vector of 0 ∈ C from known generating vectors for field of values points on the real axis that lie on
both sides of 0.
The new geometric method gives very accurate results very quickly, even at close proximity of µ
to A’s numerical range boundary. This is independent of whether µ lies inside or out. And the
MATLAB code is very short (< 100 lines).
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Title On the Gauss-Lucas theorem and the numerical range of companion matrices

Speaker Iwona Wróbel, Warsaw University of Technology and Institute of Mathematics of the
Polish Academy of Sciences, (wrubelki@wp.pl).

Abstract
It is known that the convex hull of the roots of a given polynomial contains the roots of its

derivative. This result is known as the Gauss-Lucas theorem. We will investigate the possibility
of generalizing it to the numerical range of companion matrices and discuss the relation between
the numerical ranges of companion matrices of a polynomial and its derivative. Several types of
companion matrices will be considered.

Title Ky Fan: Beautiful Results and Beautiful Life

Speaker Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, Florida, USA,
zhang@nova.edu

Abstract
This presentation is dedicated to late mathematician Ky Fan. We will take a look at some of

Ky Fan’s elegant inequalities on matrix majorization and present new developments on the topic.

Title On Restricted Numerical Range

Speaker Karol Zyczkowski, Jagiellonian University, Cracow, Poland

Co-authors M.-D. Choi, P.Gawron, J.A. Miszczak, Z. Pucha la,  L. Skowronek

Abstract
Let Ω be the set of complex density matrices of size N , which contains hermitian and positive

operators, which are normalized by the trace condition, Trρ = 1. For any operator X acting on
a N -dimensional Hilbert space one defines its numerical range (field of values) as the set of all
possible expectation values among normalized density operators,

W (X) = {Tr(Xρ) : ρ ∈ Ω}.

In analogy with the standard definition, for any subset ΩR ∈ Ω one defines the restricted
numerical range of an operator, WR(X) = {Tr(Xρ) : ρ ∈ ΩR}. For instance one can consider
the subset of real density operators. If the dimension is a composite number, N = KM , one
defines the set of product states and the set of separable states. These sets lead to definitions of
product (separable) numerical range. We review basic properties of numerical range for normal
and non-normal operators and present a list of open problems.
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of the Polish Academy of Sciences. <i.wrobel@mini.pw.edu.pl>
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* Fuzhen Zhang, Nova Southeastern University. <zhang@nova.edu>
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