The Ninth Workshop on
Numerical Ranges and Numerical Radii

Department of Mathematics, College of William and Mary,
July 19 (Saturday) - July 21 (Monday), 2008.

Endorsed by The International Linear Algebra Society, and

Sponsored by The College of William and Mary.

Coffee breaks will be at the first floor of Jones Hall.

Workshop dinner on July 20 will be Chinese buffet.

Workshop photo on July 21 will be taken outside Jones Hall.

IWOTA reception on July 21 will be at the University Center, Lodge 1.



Schedule

July 19 (Saturday)
1:30 - 2:00 Man-Duen Choi, University of Toronto.

The numerical ranges of powers of operators

2:00 - 2:30 Ilya Spitkovsky, The College of William & Mary.

Numerical ranges of certain quadratic operators

2:30 - 3:00 Boris Mirman, Suffolk University.

Matrices that generate separated Poncelet’s curves
3:00 - 3:30 Coffee break
3:30 - 4:00 Leiba Rodman, The College of William & Mary.

Preservers of spectral radius, numerical radius, or spectral norm

of the sum on nonnegative matrices

4:00 - 4:30 Tin-Yau Tam, Auburn University.

Generalized numerical ranges and complex semisimple Lie algebras

4:30 - 5:00 Ricardo E. Teixeira, CMUC/University of Azores.

Flat portions on the boundary of the indefinite numerical range of 3 x 3 matrices

July 20 (Sunday)

1:30 - 2:00 David Kribs, Department of Mathematics & Statistics, University of Guelph and
Institute for Quantum Computing, University of Waterloo

On numerical range techniques in quantum computing

2:00 - 2:30 Hwa-Long Gau, National Central University, Taiwan.

Higher-Rank Numerical Ranges and Unitary Equivalence

2:30 - 3:00 Yiu-Tung Poon, Iowa State University

Geometrical properties of joint higher rank numerical range
3:00 - 3:30 Coffee break

3:3- - 4:00 Nung-Sing Sze, University of Connecticut.

Higher rank numerical ranges and low rank perturbations of quantum channels

4:00 - 4:30 Sean Clark, The College of William & Mary.

Linear preservers of the higher rank numerical range and radius

4:30 - 5:00 Jennifer Mahle, The College of William & Mary.

Preservers of the joint higher rank numerical range

6:00 Workshop Dinner



July 21 (Monday)

9:30-10:00 Thomas Schulte-Herbriiggen, Technical University Munich, Garching, Germany.
Ranges in Quantum Dynamics: Foundations and
Applications of New Methods for Tensor SVD

10:00 - 10:30 Mao-Ting Chien,Soochow University, Taiwan.

Commutativity of C-numerical range
10:30 - 11:00 Coffee break

11:00 - 11:30 Panayiotis Psarrakos, National Technical Univ. of Athens.

A definition of numerical range based on the Birkhoff-James orthogonality

11:30 - noon Christiane Tretter, University of Bern.

Quadratic numerical range (QNR) of analytic block operator matrix functions

noon - 12:30 Jinchuan Hou, University of Technology, P. R. China,

Maps preserving numerical radius of operator products on S(H)
12:30 - 1:30 Pizza lunch and Workshop Photo
1:30 - 2:00 Pizza lunch continued.

2:00 - 2:30 Ana Nata, The Polytechnic Institute of Tomar, Portugal.

Krein Spaces Numerical Ranges and their computer generation

2:30 - 3:00 Paul Zachlin, Lakeland Community College.

Eigenvalue inclusion regions from inverses of shifted matrices
3:00 - 3:30 Coffee break

3:30 - 4:00 F.H. Szafraniec, Uniwersytet Jagielloniski, Krakéw, Poland.

Extending the class of C, operators

4:00 - 4:30 Hocine Guediri, King Saud University, Saudi Arabia.
The Numerical Range of a Dual Toeplitz Operator

4:30 - 5:00 Chi-Kwong Li, The College of William and Mary.

Elliptical range theorems for generalized numerical ranges of quadratic operators

7:00 - 10:00 IWOTA Reception



Titles and Abstracts

On Furata’s inequality of indefinite type
Speaker Natalia Bebiano, University of Coimbra, bebiano@mat.uc.pt

Abstract A selfadjoint involutive matrix J endows C™ with an indefinite inner product |-, -]
given by [z,y]| := (Jx,y), x,y € C™. Some exponential operator inequalities for J—selfadjoint
matrices are presented. The J—chaotic order is characterized in terms of operator functions
involving the a—power mean. Our main result is an indefinite complete form of Furuta in-
equality for J—contractions (or J—expansions). The parallelism between the definite versions
of the inequalities in Hilbert spaces and the corresponding indefinite versions in Krein spaces

is pointed out.

Commutativity of C-numerical range
Speaker Mao-Ting Chien, Soochow University, Taiwan. mtchien@scu.edu.tw.
Co-author Hiroshi Nakazato, Hirosaki University, Japan

Abstract Let A and C be n-by-n complex matrices. The C-numerical range of A is defined
to be the set
We(A) = {tr(CU*AU) : U € M,,U*U = I,}.

We study classes of matrices that two matrices A, B in the respective class satisfy Wo(AB) =
We(BA) for certain complex matrix C'. The classes include some 2-by-2 and 3-by-3 matrices,

n-by-n symmetric matrices, Toeplitz matrices and continuant matrices.

The numerical ranges of powers of operators
Speaker Man-Duen Choi, University of Toronto, choi@math.wm.edu

Abstract The location of the numerical ranges of integer powers of an operator will be

discussed.

Linear Preservers of the higher rank numerical range and radius
Speaker Sean Clark, College of William and Mary, siclar@wm.edu
Co-authors Chi-Kwong Li, Jennifer Mahle and Leiba Rodman, College of William and Mary.

Abstract It is shown that linear maps preserving the higher rank numerical range on n x n
matrices have the form

A— UAU or A UAU

for some unitary matrix U. Moreover, it is shown that a linear map preserving the higher

rank numerical radius must be a unit multiple a preserver of the higher rank numerical range.




Higher-Rank Numerical Ranges and Unitary Equivalence

Speaker Hwa-Long Gau, National Central University, Taiwan, hlgau@math.ncu.edu.tw.
Co-authors Pei Yuan Wu, National Chiao Tung University.

Abstract Denote by Ai(A4) = {\ € C: X*AX = A} for some n-by-k X satisfies X*X = Ij;}

the rank-k numerical range of an n-by-n complex matrix A. We show that if A and B are
two normal (or companion) matrices, then A and B are unitarily equivalent if and only if
Ax(A) = Ag(B) for all k = 1,...,n. However, the more general assertion that an n-by-
n matrix is determined by its higher-rank numerical range turns out to be false. We also
show, for n-by-n matrices A and B, Ap(A) = Ax(B) for all &k = 1,...,n if and only if
pa(z,y,2) = pp(z,y,z), where p4 is the degree-n homogeneous polynomial in z,y and z
given by pa = det(x(A + A*)/2 4+ y(A — A*)/(2i) + z1,,).

The Numerical Range of a Dual Toeplitz Operator
Speaker Hocine Guediri, King Saud University, Saudi Arabia, hguediri@ksu.edu.sa

Abstract Let D be the unit disk in the complex plane and let dA(z) be the Lebesgue area
measure on D. The Bergman space L2 is the Hilbert subspace of L?(D,dA) consisting of
analytic functions. The orthogonal complement of L2 in L?(D,dA) is denoted by (LZ)L. A
dual Toeplitz operator is defined on (LZ)L to be a multiplication followed by a projection
onto (Lg)l.

We are concerned with qualitative properties of the numerical range of a dual Toeplitz op-
erator. We consider various classes of such operators, such as normal and quasinormal, as
well as more general ones. We completely characterize the numerical range of some of them
and establish main qualitative properties of others. As a byproduct, we establish more corre-
sponding spectral properties; further we shed some light on the analog of Halmos’ classification

problem of subnormal Toeplitz operators.

Maps preserving numerical radius of operator products on S(H)
Spearker Jinchuan Hou, University of Technology, P. R. China, jinchuanhou@yahoo.com.cn
Co-author Kan He, Shanxi Normal University, Linfen, Shanxi 041004, P. R. China.

Abstract Let H be a complex Hilbert space with dim H > 3, S(H) the (real) Jordan algebra
of all self adjoint operators on H. Every surjective map ® : S(H) — S(H) preserving
numerical radius of operator products (respectively, Jordan triple products) is characterized.
It is shown that w(®(A)®(B)) = w(AB) (respectively, w(®(B)®(A)®(B)) = w(BAB)) for
all A, B € S(H) if and only if there exist a unitary or a conjugate unitary operator U and a
functional h : S(H) — {—1, 1} such that ®(A) = h(A)UAU* for all A € S(H).




On numerical range techniques in quantum computing

Speaker David Kribs, Department of Mathematics & Statistics, University of Guelph and
Institute for Quantum Computing, University of Waterloo, dkribs@Quoguelph.ca

Abstract In this talk I will discuss some instances in quantum computing where numerical

range techniques arise. 1 will also try to formulate some open problems.

Elliptical range theorems for generalized numerical ranges of quadratic operators

Speaker Chi-Kwong Li, William and Mary, ckli@math.wm.edu
Co-authors Yiu-Tung Poon, lowa State University, ytpoon@iastate.edu; Nung-Sing Sze,

University of Connecticut, sze@Qmath.uconn.edu

Abstract The classical numerical range of a quadratic operator is an elliptical disk. This
result is extended to different kinds of generalized numerical ranges. In particular, it is shown
that for a given quadratic operator, the rank-k numerical range, the essential numerical range,
and the g-numerical range are elliptical disks; the c-numerical range is a sum of elliptical disks,

and the Davis-Wielandt shell is an ellipsoid with or without interior.

Preservers of the joint higher rank numerical range

Speaker Jennifer Mahle, College of William and Mary, jrmahle@wm.edu
Co-authors Sean Clark and Chi-Kwong Li, College of William and Mary.

Abstract It is shown that linear preservers of the joint higher rank numerical range of m-

tuples of square matrices have the form
(Ar, .., Ap) = (U*AWU,... . U*ALU)  or  (Ay,...,Ap) — (U*ALU,... . U*ALU)

for some unitary matrix U. Moreover, it is shown that that the linearity assumption can be
replaced by additivity and surjectivity. To achieve this, we show that additive maps mapping

the cone of positive semi-definite matrices onto itself must be linear.




Matrices that generate separated Poncelet’s curves
Speaker Boris Mirman, Suffolk University, bmirman@rcn.com

Abstract The author continues exploring Poncelet curves, leveraging their connection to the
numerical ranges of special matrices. This connection was recently found by Gau and Wu
(1998) and Mirman (1998). Here, Poncelets porism is considered in the real plane. Besides
the nested and intersected Poncelets curves, there may be separated curves. Namely: a
polygon inscribed in a conic may be such that the continuations of all its sides are tangent
to a curve which is separated from the conic. For this case, an alternating in sign function
and the corresponding matrix that generate the Poncelets curves are presented. That is
instead of a measure density function and the corresponding UB-matrix for the nested case.
Examples demonstrate the possible shape and location of Poncelets curves and Poncelets
polygons. The general equations are applied to the case of Poncelets conics. A recursive
procedure for foci of a Poncelets package and the corresponding matrices of the focis numbers
are presented. These integer- valued matrices are invariants: they depend only on the number
of polygon sides. Even not knowing this number one can sometimes conclude whether a closed
Poncelets polygon does not exist for a given pair of conics. Based on the properties of the
integer-valued matrices, it is easier to get some formulas usually derived from elliptic addition
rule. Considerations started by Steiner (1827), Richelot (1848), Cayley (1853-1861), Clifford
(1867-1868), Wolstenholme (1876), Titchmarsh (1922), Chaundy (1923-1926) are continued
and partially simplified.




Krein Spaces Numerical Ranges and their computer generation

Speaker Ana Nata, Department of Mathematics of the Polytechnic Institute of Tomar, Por-
tugal, anata@ipt.pt

Co-author 1 Natdlia Bebiano, University of Coimbra, bebiano@Qmat.uc.pt

Co-author 2 Joao da Providéncia, University of Coimbra, providencia@teor.fis.uc.pt

Co-author 3 Graga Soares Trés-os-Montes e Alto Douro, gsoaresQutad.pt

Abstract Let J be an involutive Hermitian matrix with signature (t,n —t¢), 0 < t < n,
that is, with ¢ positive and n — t negative eigenvalues. The Krein space numerical range of a
complex matrix A of size n is denoted by W;(A) and is the collection of complex numbers of
the form £A% with £ € C™ and z*Jx # 0.

x*Jx

Since Wj;(A) is, in general, neither bounded nor closed, the description of this set may
be complicated and so it is of interest to have a code to produce its graphical representation.
An algorithm and respective Matlab program to generate Krein spaces numerical ranges of
arbitrary complex matrices that treats the degenerate cases and represents the boundary
generating curves is given. We emphasize that it also works for Hilbert spaces numerical
ranges. The routines of our program are available at: http://www.mat.uc.pt/~bebiano

Moreover, a class of tridiagonal matrices, that is, matrices A = (a;;) such that a;; = 0
whenever |i — j| > 1, are considered. Interesting papers have been published on the classical
numerical range of tridiagonal matrices. Likewise, there is interest in studding Krein space
numerical ranges of this class of matrices. Namely, we characterize the J—numerical range of
tridiagonal matrices A = (a;5) with biperiodic main diagonal, that is, a;; = a1 if j is odd and
aj; = ag if j is even, and with b’s on the first superdiagonal and ¢’s on the first subdiagonal

such that either c¢; = k:Ej or bj = k¢j forsome k€ Cand j=1,...,n—1.




Geometrical properties of joint higher rank numerical range
Speaker Yiu-Tung Poon, lowa State University, ytpoon@iastate.edu
Co-authors Chi-Kwong Li, William and Mary, ckli@math.wm.edu; Nung-Sing Sze, Univer-

sity of Connecticut, sze@math.uconn.edu

Abstract Geometrical properties of the joint higher rank numerical ranges of Hermitian
operators are studied. It is shown that if the dimension of the operators is large enough, their
joint rank k-numerical range is always star-shaped. For infinite dimensional operators, the
connection between the joint higher rank numerical ranges and the essential joint numerical

range of the operators is also discussed.

A definition of numerical range based on the Birkhoff-James orthogonality
Speaker Panayiotis Psarrakos, National Technical Univ. of Athens, (ppsarr@math.ntua.gr)
Co-authors Ch. Chorianopoulos and S. Karanasios

Abstract The numerical range of an operator can be written as an (infinite) intersection of
closed circular discs. This interesting property was observed by Bonsall and Duncan (1973),
but it does not seem to be very popular to people working on numerical ranges. In this paper,
we propose a new simple proof that is based on the properties of norms and the Birkhoff-
James orthogonality. Furthermore, our approach leads to the introduction of a definition of
numerical range of rectangular complex matrices. This new range is always compact and

convex, and satisfies basic properties of the standard numerical range.

Preservers of spectral radius, numerical radius, or spectral norm of the sum on

nonnegative matrices
Speaker Leiba Rodman, The College of William and Mary, Ixrodm@math.wm.edu.
Co-author Chi-Kwong Li, The College of William and Mary, ckli@math.wm.edu

Abstract We characterize maps f on the set of real square size matrices with nonnegative
entries such that r((f(A) + f(B)) = r(A 4+ B) for all such matrices A and B. Here r(X)
is the spectral radius of X. No a priori hypotheses, such as linearity of the map etc., are
assumed. It turns out that all such maps are given by either similarity or similarity followed by
transposition, where the similarity matrix and its inverse have nonnegative entries. Moreover,
the same conclusion holds if the spectral radius is replaced by the spectrum or the peripheral
spectrum. Similar results are obtained for maps on the set of nonnegative symmetric matrices.
Furthermore, we obtain descriptions of all maps f with the property that w((f(A)+ f(B)) =
w(A + B) for all nonnegative matrices A and B, or with the property that ||f(A) + f(B)| =
||A + BJ| for all such matrices A and B. Here w(X) is the numerical radius and || X|| is the
spectral norm of X, respectively. In the case of the numerical radius, it turns out that the

standard expected forms do not describe all such maps f.




Numerical ranges of certain quadratic operators
Speaker Ilya Spitkovsky, The College of William & Mary, ilya@math.wm.edu
Coauthor Leiba Rodman, The College of William & Mary, Ixrodm@math.wm.edu

Abstract According to Tso-Wu 1999 result, the numerical range of a quadratic operator is
an ellipse. We show that this is also true for the essential numerical range, and find sufficient
conditions when the c-numerical range is also an ellipse. These abstract results are illustrated
by several examples of singular integral operators and composition operators on Lebesgue
spaces (weighted or not) and Dirichlet spaces. For these examples, explicit formulas for the

parameters of the ellipses in question are given.

C-Numerical Ranges in Quantum Dynamics: Foundations and Applications of
New Methods for Tensor SVD

Speaker Thomas Schulte-Herbriiggen, Technical University Munich (TUM), Garching, Ger-
many, tosh@ch.tum.de

Co-author Gunther Dirr & Uwe Helmke, University of Wiirzburg, Germany

Abstract In the 2006 WONRA we introduced the relative C-numerical range as the new
entity Wi (C, A) := {tr(CTKAKT)|K € K}, where K is a compact connected subgroup to
the unitary group [LAMA 56, 3 and 27 (2008)].— We now focus on new applications.

Least-squares approximations ming ||[K AKT — C||3 are determined by the maximum real
part obtainable within Wi (C, A). In view of applications in quantum dynamics, here we show
new gradient flows on the unitary orbit Oy (A) := {UAUT|U € U} as well as the relative
unitary orbit Ok (A) := {KAK!|K € K C U} that can be taken to approximate a given
operator C by points on the (relative) unitary orbit of A, where A takes the form of a rank-p
projector. Even the simplest case of A,C both being rank” 1 projectors is non-trivial as
soon as the relative orbit is restricted to a proper subgroup of the full unitary group. For
illustration, we focus on the case K = SU(2)®"™ C SU(2"), n > 2. For rank-1 approximations,
the new gradient flows on the relative unitary orbit provide powerful alternatives with higher
speed and reliability compared to established algorithms of finding the tensor SVDs via higher-
order power methods (HOPM) or higher-order iteration (HOOI).
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Extending the class of C, operators
Speaker F.H. Szafraniec, Uniwersytet Jagielloniski, Krakéw, Poland; umszafraQcyf-kr.edu.pl

Abstract The operators having unitary p dilation are known to be well situated in the
numerical range environment. Taking this as an excuse I intend to breathe new life into the
substance of my old paper

F.H. Szafraniec, Orthogonal decompositions of non-contractive operator valued represen-
tations of Banach algebras, Bull. Acad. Polon. Sci., Sér. sci. math. astr. et phys., 19(1971),
937-940.

Higher rank numerical ranges and low rank perturbations of quantum channels
Speaker Nung-Sing Sze, University of Connecticut, sze@math.uconn.edu

Co-authors Chi-Kwong Li, William and Mary, ckli@math.wm.edu; Yiu-Tung Poon, Iowa
State University, ytpoon@iastate.edu

Abstract For a positive integer k, the rank-k numerical range A;(A) of an operator A acting
on a Hilbert space H of dimension at least k is the set of scalars A such that PAP = AP for
some rank k orthogonal projection P.

In this talk, the connection between Ag(A) and Ax_,.(A + F), the rank-(k — ) numerical
range of A with a perturbation of a rank r operator F', will be discussed. In particular, it can
be shown that if A is normal or if the dimension of A is finite, then Ax(A) can be obtained
as the intersection of Ax_,(A + F') for a collection of rank r operators F.

Furthermore, results for the rank-co numerical range Ay (A) will also be studied, where
Ao (A) is defined as the set of scalars A such that PAP = AP for an infinite rank orthogonal

projection P.

Generalized numerical ranges and complex semisimple Lie algebras
Speaker Tin-Yau Tam, Auburn University timtiny@auburn.edu.

Abstract We discuss how the complex semisimple Lie algebras/groups come into the scene
of the study of generalized numerical ranges. Convexity and star-shapedness results will be

discussed.
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Flat portions on the boundary of the indefinite numerical range of 3 x 3 matrices
Author Ricardo E. Teixeira, CMUC/University of Azores, Portugal, rteixeira@uac.pt

Co-authors N. Bebiano, CMUC/University of Coimbra, Portugal, bebiano@mat.uc.pt and

J. da Providéncia, Physics, University of Coimbra, Portugal, providencia@teor.fis.uc.pt

Abstract For J =1, ® —1,_, (0 < r < n), where I, denotes the identity matrix of order
m, consider C™ endowed with the Krein structure defined by the indefinite inner product
(€1,&)5 = &J&1, &1,&% € C™. Let M, be the algebra of n x n complex matrices. The

J-numerical range of A € M, is defined as

£ JAg
S

Wi(A) = { £ eCn T JE# 0}.

We derive canonical forms for 3 x 3 irreducible matrices with a flat portion on the boundary of
the indefinite numerical range. We investigate W ;(A) for upper triangular matrices A € M3.
The particularly simple case of triangular matrices with one-point spectrum is discussed. The
results here obtained are parallel to those of Keeler, Rodman and Spitkovsky for the classical

numerical range.

Quadratic numerical range (QNR) of analytic block operator matrix functions
Speaker Christiane Tretter, University of Bern, tretter@math.unibe.ch

Abstract We extend the recently introduced concept of quadratic numerical range of block
operator matrices to analytic block operator matrix functions. The main results include the

spectral inclusion property and resolvent estimates.

Eigenvalue inclusion regions from inverses of shifted matrices
Speaker Paul Zachlin, Lakeland Community College, pzachlin@lakelandcc.edu

Co-authors Michiel Hochstenbach, TU Eindhoven, and David Singer, Case Western Reserve

University

Abstract We consider eigenvalue inclusion regions based on the field of values of the inverse of
a shifted matrix. A family of these inclusion regions is derived by varying the shift. We study
several properties, one of which is that the intersection of a family is exactly the spectrum.
We also obtain results by using eigenvalue inclusion regions other than the field of values,

such as Gershgorin regions, Brauer regions, and pseudospectra.
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