Problem Set 8

Discussion: Oct. 25, Oct. 27 (on polynomials and floor functions) The name after the problem is the designated writer of the solution of that problem. (Beth, Nicholas, and Frank are exempted this week)

Discussion Problems

- (a) Factor the polynomial x⁸ + 98x⁴ + 1 into two factors with integer (not necessarily real) coefficients.
 (b) Find the remainder on dividing x¹⁰⁰ 2x⁵¹ + 1 by x² 1. (Shelley)
 - (Hint: (a) 98 = 100 2; (b) Bezout's theorem)
- 2. If x_1 and x_2 are the zeros of the polynomial $x^2 6x + 1$, then for every nonnegative integer n, $x_1^n + x_2^n$ is an integer and not divisible by 5. (Derek) (Hint: how about induction?)
- 3. (VA 1982) Let p(x) be a polynomial of the form $p(x) = ax^2 + bx + c$, where a, b and c are integers, with the property that 1 < p(1) < p(p(1)) < p(p(p(1))). Show that $a \ge 0$. (Brett) (Hint: by contradiction)
- 4. (VA 1987) A sequence of polynomials is given by $p_n(x) = a_{n+2}x^2 + a_{n+1}x a_n$, for $n \ge 0$, where $a_0 = a_1 = 1$ and, for $n \ge 0$, $a_{n+2} = a_{n+1} + a_n$. Denote by r_n and s_n the roots of $p_n(x) = 0$, with $r_n \le s_n$. Find $\lim_{n\to\infty} r_n$ and $\lim_{n\to\infty} s_n$. (Ben) (Hint: think about $r_n + s_n$ and $r_n s_n$.)
- 5. (VA 1991) Prove that if α is a real root of $(1-x^2)(1+x+x^2+\cdots+x^n)-x=0$ which lies in (0,1), with $n = 1, 2, \cdots$, then α is also a root of $(1-x^2)(1+x+x^2+\cdots+x^{n+1})-1=0$. (Lei) (Hint: use $1 + x + x^2 + \cdots + x^n = (1 x^{n+1})/(1 x)$.)
- 6. (VA 1996) Let a_i , i = 1, 2, 3, 4, be real numbers such that $a_1 + a_2 + a_3 + a_4 = 0$. Show that for arbitrary real numbers b_i , i = 1, 2, 3, the equation $a_1 + b_1 x + 3a_2 x^2 + b_2 x^3 + 5a_3 x^4 + b_3 x^5 + 7a_4 x^6 = 0$ has at least one real root which is on the interval $-1 \le x \le 1$. (Tina) (Hint: think integral)
- 7. (VA 1995) Let $\tau = (1 + \sqrt{5})/2$. Show that $[\tau^2 n] = [\tau[\tau n] + 1]$ for every positive integer n. Here [r] denotes the largest integer that is not larger than r. (David Rose) (Hint: prove \geq and \leq both hold.)
- 8. Solve the equation $z^8 + 4z^6 10z^4 + 4z^2 + 1 = 0$. (Lei) (Hint: divide it by z^4 , and observe the symmetry)
- 9. (Putnam 2004-B1) Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$ be a polynomial with integer coefficients. Suppose that r is a rational number such that P(r) = 0. Show that the n numbers

$$c_n r, c_n r^2 + c_{n-1} r, c_n r^3 + c_{n-1} r^2 + c_{n-2} r,$$

..., $c_n r^n + c_{n-1} r^{n-1} + \dots + c_1 r$

are integers. (Davis Edmonson)

10. (Putnam 2003-B1) Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)$$

holds identically? (Richard)

More Problems:

- 1. If a and b are two solutions of $x^4 x^3 1 = 0$, then ab is a solution of $x^6 + x^4 + x^3 x^2 1 = 0$.
- 2. Suppose that a, b, c are distinctive integers. Prove

$$\frac{a^2(x-b)(x-c)}{(a-b)(a-c)} + \frac{b^2(x-a)(x-c)}{(b-a)(b-c)} + \frac{c^2(x-b)(x-a)}{(c-b)(c-a)} = x^2$$

for any $x \in \mathbf{R}$.

- 3. (VA 1997) Suppose that $r1 \neq r2$ and $r1 \cdot r2 = 2$. If r1 and r2 are roots of $x^4 x^3 + ax^2 8x 8 = 0$, find r1, r2 and a. (Do not assume that they are real numbers.)
- 4. (VA 1991) Let $f(x) = x^5 5x^3 + 4x$. In each part (i)–(iv), prove or disprove that there exists a real number c for which f(x) c = 0 has a root of multiplicity (i) one, (ii) two, (iii) three, (iv) four.
- 5. (VA 1985) Let $p(x) = a_0 + a_1 x + \dots + a_n x^n$, where the coefficients a_i are real. Prove that p(x) = 0 has at least one root in the interval $0 \le x \le 1$ if $a_0 + a_1/2 + \dots + a_n/(n+1) = 0$.
- 6. (VA 1989) Let a,b, c,d be distinct integers such that the equation (x a)(x b)(x c)(x d) 9 = 0 has an integer root r. Show that 4r = a + b + c + d. (This is essentially a problem from the 1947 Putnam examination.)
- 7. (VA 1988) Find positive real numbers a and b such that $f(x) = ax bx^3$ has four extrema on [-1, 1], at each of which |f(x)| = 1.
- 8. (VA 1987) Let p(x) be given by $p(x) = a_0 + a_1 x + a_2 x^2 + a_n x^n$ and let $|p(x)| \le |x|$ on [-1, 1]. (a) Evaluate a_0 . (b) Prove that $|a_1| \le 1$.
- 9. (VA 1990) Suppose that P(x) is a polynomial of degree 3 with integer coefficients and that P(1) = 0, P(2) = 0. Prove that at least one of its four coefficients is equal to or less than -2.
- 10. (Putnam 2004-A4) Show that for any positive integer n, there is an integer N such that the product $x_1x_2\cdots x_n$ can be expressed identically in the form

$$x_1 x_2 \cdots x_n = \sum_{i=1}^N c_i (a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n)^n$$

where the c_i are rational numbers and each a_{ij} is one of the numbers -1, 0, 1.

11. (Putnam 2003-A4) Suppose that a,b,c,A,B,C are real numbers, $a\neq 0$ and $A\neq 0,$ such that

$$|ax^2 + bx + c| \le |Ax^2 + Bx + C|$$

for all real numbers x. Show that

$$|b^2 - 4ac| \le |B^2 - 4AC|.$$

12. (Putnam 2003-B1) Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^{2}y^{2} = a(x)c(y) + b(x)d(y)$$

holds identically?

13. (Putnam 2003-B4) Let

$$f(z) = az^4 + bz^3 + cz^2 + dz + e$$

= $a(z - r_1)(z - r_2)(z - r_3)(z - r_4)$

where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number and $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.