Problem Set 11 (last one!)

Discussion: Nov. 22, Nov. 29 (on linear algebra) The name after the problem is the designated writer of the solution of that problem. (Lei, Brett, and Richard are exempted this week)

Discussion Problems

- (VT 1981) Let A be non-zero square matrix with the property that A³ = 0, where 0 is the zero matrix, but with A being otherwise arbitrary. (a) Express (I − A)⁻¹ as a polynomial in A, where I is the identity matrix. (b) Find a 3 × 3 matrix satisfying B² ≠ 0, B³ = 0. (Nicholas)
- (VT 1979) Let A be an n×n nonsingular matrix with complex elements, and let A be its complex conjugate. Let B = AA + I, where I is the n×n identity matrix. (a) Prove or disprove: A⁻¹BA = B. (b) Prove or disprove: the determinant of AA + I is real. (Tina)
- 3. (VT 2003) Determine all invertible 2 by 2 matrices A with complex numbers as entries satisfying $A = A^{-1} = A'$, where A' denotes the transpose of A. (Beth)
- 4. (VT 2002) Let S be a set of 2×2 matrices with complex numbers as entries, and let T be the subset of S consisting of matrices whose eigenvalues are ± 1 (so the eigenvalues for each matrix in T are $\{1, 1\}$ or $\{1, -1\}$ or $\{-1, -1\}$). Suppose there are exactly three matrices in T. Prove that there are matrices A, B in S such that AB is not a matrix in S (A = B is allowed). (David Edmonson)
- 5. (Putnam 1990-A5) If A and B are square matrices of the same size such that ABAB = 0, does it follow that BABA = 0? (Shelley)
- 6. (Putnam 1969-B6) Let A and B be matrices of size 3×2 and 2×3 respectively. Suppose that the their product in the order AB is given by

$$AB = \begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix}.$$

Show that the product BA is given by

$$BA = \left(\begin{array}{cc} 9 & 0\\ 0 & 9 \end{array}\right)$$

(Erin)

- 7. (Putnam 1994-A4) Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B, A+3B, and A+4B are all invertible matrices whose inverses have integer entries. Show that A+5B is invertible and that its inverse has integer entries. (Ben)
- 8. (Putnam 1996-B4) For any square matrix A, we can define $\sin A$ by the usual power series:

$$\sin A = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} A^{2n+1}.$$

Prove or disprove: there exists a 2×2 matrix A with real entries such that

$$\sin A = \left(\begin{array}{cc} 1 & 1996\\ 0 & 1 \end{array}\right).$$

(David Rose)

9. (Putnam 1992-B5) Let D_n denote the value of the $(n-1) \times (n-1)$ determinant

3	1	1	1	•••	1	
1	4	1	1	•••	1	
1	1	5	1	•••	1	
1	1	1	6	• • •	1	
:	÷	÷	÷	۰.	÷	
1	1	1	1	• • •	n+1	

Is the set $\left\{\frac{D_n}{n!}\right\}_{n\geq 2}$ bounded? (Derek)

10. (Putnam 1981-B4) A is a set of 5×7 real matrices closed under scalar multiplication and addition. It contains matrices of ranks 0, 1, 2, 4 and 5. Does it necessarily contain a matrix of rank 3? (Frank)