Discussion Problem for [x]

- 1. $[x+y] \ge [x] + [y]$
- 2. The prime *p* divides *n*! with multiplicity $I = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots$
- 3. $\left[\frac{x}{n}\right] = \left[\frac{[x]}{n}\right].$

In the following problems, [x] is the greatest integer $\leq x$.

- 1. In how many zeros does 10000! end?
- 2. Prove that for any $n \in \mathbf{N}$,

$$[x] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \left[x + \frac{13}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] = [nx].$$

- 3. Let $a_n = [(1 + \sqrt{2})^n]$. Prove that a_n is even when n is even, and a_n is odd when n is odd. (Hint: Consider $(1 + \sqrt{2})^n + (\sqrt{2} 1)^n$)
- 4. (Beatty Theorem) Let a and b be irrational numbers such that $\frac{1}{a} + \frac{1}{b} = 1$. Then the sequences $a_n = [na]$ and $b_n = [nb]$, $n = 1, 2, 3, \cdots$ are disjoint and their union is the set of all natural numbers. (Hint: many websites have this proof.)
- 5. The range of function $f(n) = [n + \sqrt{n} + 1/2]$ $(n = 1, 2, 3, \dots)$ is all positive integers except the perfect square numbers. (Hint: if m is not in the range, it means that $n + \sqrt{n} + 1/2 < m < m + 1 < n + 1 + \sqrt{n + 1} + 1/2$.)
- 6. (Putnam 1986-A2) What is the units (*i.e.*, rightmost) digit of $\left[\frac{10^{20000}}{10^{100}+3}\right]$? Here [x] is the greatest integer $\leq x$. (Richard)