
Problem Set 8

1. (a) Factor the polynomial x8 + 98x4 + 1 into two factors with integer (not necessarily
real) coefficients.
(b) Find the remainder on dividing x100 − 2x51 + 1 by x2 − 1. (Shelley)

Solution:

(a) x8 + 98x4 + 1 ⇒ x8 − 2x4 + 1 + 2x4 + 98x4 ⇒ x8 − 2x4 + 1 + 100x4 ⇒ (x4 − 1)2 −
(−100x4) ⇒ (x4 − 1)2 − (10x2i)2 = [(x4 − 1) + (10x2i)][(x4 − 1)− (10x2i)]. Done.

(b) (x100 − 2x51 + 1)/(x2 − 1) What is the remainder?

x2 − 1 = (x + 1)(x − 1). So two solutions are x = ±1. Using Bezout’s theorem, we
substitute these into the original function (the solution must be of the form bx + c
because it must be of a lesser degree than the divisor):

f(1) = 0 = bx + c = b + c

f(−1) = 4 = −bx + c = −b + c

Solving the system of equations, b=-2, c=2. The remainder is -2x + 2.

2. If x1 and x2 are the zeros of the polynomial x2 − 6x + 1, then for every nonnegative
integer n, xn

1 + xn
2 is an integer and not divisible by 5. (Derek) (Hint: how about

induction?)

3. (VA 1982) Let p(x) be a polynomial of the form p(x) = ax2 + bx + c, where a, b and
c are integers, with the property that 1 < p(1) < p(p(1)) < p(p(p(1))). Show that
a ≥ 0. (Brett)

We don’t know how to do this one yet!

4. (VA 1987) A sequence of polynomials is given by pn(x) = an+2x
2 + an+1x − an, for

n ≥ 0, where a0 = a1 = 1 and, for n ≥ 0, an+2 = an+1 + an. Denote by rn and sn the
roots of pn(x) = 0, with rn ≤ sn. Find limn→∞ rn and limn→∞ sn. (Ben)

Solution: Since this is a quadratic equation, we can make use of the quadratic formula
to come up with equations for the two roots as follows:

x =
−an+1 ±

√
a2

n+1 − 4(an+2)(−an)

2an+2

=
−an+1 ±

√
a2

n+1 + 4(an+2)(an)

2an+2

=
−an+1 ±

√
a2

n+1 + 4(an + an+1)(an)

2an+2

=
−an+1 ±

√
a2

n+1 + 4anan+1 + 4a2
n

2an+2

=
−an+1 ±

√
(2an + an+1)2

2an+2

=
−an+1 ± (2an + an+1)

2an+2
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where we have used the fact that an+2 = an + an+1.

Thus we have,

rn =
−an+1 − 2an − an+1

2an+2

=
−2(an + an+1)
2(an + an+1)

= −1

and
lim

n→+∞
rn = lim

n→+∞
−1 = −1.

And for the other root we have

sn =
−an+1 + 2an + an+1

2an+2

=
2an

2(an + an+1)

=
an

an + an+1

Now, we need a formula for an, and we know that

(0.1) an+2 = 1 · an + 1 · an+1

The solution to equation (1) is given by an = c1λ
n
1 + c2λ

n
2 , where λ1 and λ2 are roots

of the characteristic equation λ2 − Aλ − B = 0, and c1 and c2 are to be determined
by initial conditions (although we will not need them for this problem). So solving
the characteristic for its roots via the quadratic formula, we find that:

λ =
1±

√
5

2

Thus,

(0.2) an = c1

[
1 +

√
5

2

]n

+ c2

[
1−

√
5

2

]n

Notice that in equation (2) it is the case that −1 < λ2 < 0, and since we are evaluating
limn→+∞, we can neglect the c2λ

n
2 term.
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Thus we have

lim
n→+∞

sn = lim
n→+∞

an

an + an+1

= lim
n→+∞

c1

[
1+
√

5
2

]n

c1

[
1+
√

5
2

]n
+ c1

[
1+
√

5
2

]n+1

= lim
n→+∞

[
1+
√

5
2

]n[
1+
√

5
2

]n [
1 +

[
1+
√

5
2

]]
= lim

n→+∞

1

1 +
[

1+
√

5
2

]
= lim

n→+∞

2
3 +

√
5

=
6− 2

√
5

4
.

5. (VA 1991) Prove that if α is a real root of (1−x2)(1+x+x2+· · ·+xn)−x = 0 which lies
in (0, 1), with n = 1, 2, · · · , then α is also a root of (1−x2)(1+x+x2+· · ·+xn+1)−1 = 0.
(Lei) (Hint: use 1 + x + x2 + · · ·+ xn = (1− xn+1)/(1− x).)

6. (VA 1996) Let ai, i = 1, 2, 3, 4, be real numbers such that a1 + a2 + a3 + a4 = 0.
Show that for arbitrary real numbers bi, i = 1, 2, 3, the equation a1 + b1x + 3a2x

2 +
b2x

3 + 5a3x
4 + b3x

5 + 7a4x
6 = 0 has at least one real root which is on the interval

−1 ≤ x ≤ 1. (Tina)

Solution:

Taking the integral of the given equation over the interval −1 ≤ x ≤ 1 gives:

∫ 1
−1(a1 + b1x +3a2x

2 + b2x
3 + 5a3x

4 + b3x
5 + 7a4x

6)dx
=a1x + b1

2 x2 + a2x
3 + b2

4 x4 + a3x
5 + b3

6 x6 + a4x
7|1−1

=
(
a1 + b1

2 + a2 + b2
4 + a3 + b3

6 + a4

)
−

(
−a1 + b1

2 − a2 + b2
4 − a3 + b3

6 − a4

)
= 2 (a1 + a2 + a3 + a4) +

(
b1
2 + b2

4 + b3
6

)
−

(
b1
2 + b2

4 + b3
6

)
= 0

And by the Mean Value Theorem, since the integral of the equation is zero, the
function must take on the value of zero somewhere on the interval −1 ≤ x ≤ 1.

7. (VA 1995) Let τ = (1+
√

5)/2. Show that [τ2n] = [τ [τn]+1] for every positive integer
n. Here [r] denotes the largest integer that is not larger than r. (David Rose)
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Solution

[τ [τn] + 1] = [τ(τn− {τn}) + 1]
= [τ2n− τ{τn}+ 1]
= [(τ + 1)n− τ{τn}+ 1]
= [τn− τ{τn}+ 1] + n

= n + [[τn] + {τn} − τ{τn}+ 1]
= n + [τn] + [1− (τ − 1){τn}]
= n + [τn]
= [(τ + 1)n]
= [τ2n]

8. Solve the equation z8 + 4z6 − 10z4 + 4z2 + 1 = 0. (Lei)

9. (Putnam 2004-B1) Let P (x) = cnxn+cn−1x
n−1+ · · ·+c0 be a polynomial with integer

coefficients. Suppose that r is a rational number such that P (r) = 0. Show that the
n numbers

cnr, cnr2 + cn−1r, cnr3 + cn−1r
2 + cn−2r,

. . . , cnrn + cn−1r
n−1 + · · ·+ c1r

are integers. (David Edmonson)

Solution. Set i ∈ {0, 1, . . . , n - 1}. Now write r as u
v , where u and v are coprime.

Then cn(u
v )n + cn−1(u

v )n−1 + . . . + c0 = 0, so cnun + cn−1un−1v + · · · + c0vn =
0, so cnun + cn−1un−1v + . . . + ci+1ui+1vn−i−1 = -ciuivn−i - ci−1ui−1vn−i+1 - . . .
- c0vn is a multiple of vn−i, so cnun−i + cn−1un−i−1v + . . . + ci+1uvn−i−1 is also a
multiple of vn−i, since ui and vn−i are coprime. Thus, cn(u

v )n−i + cn−1(u
v )n−1−i +

. . . + ci+1(u
v ) is an integer, which is the claim that we were asked to show.

10. (Putnam 2003-B1) Do there exist polynomials a(x), b(x), c(y), d(y) such that

1 + xy + x2y2 = a(x)c(y) + b(x)d(y)

holds identically? (Richard)
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