
Problem Set 7

1. (a) Prove that for a, b, c > 0 satisfying (1 + a)(1 + b)(1 + c) = 8, then abc ≤ 1.
(b) Prove that for a, b, c > 0, then (a2b+b2c+c2a)(a2c+b2a+c2b) ≥ 9a2b2c2. (Derek)

2. Given that a, b, c, d, e are real numbers such that a + b + c + d + e = 8 and a2 + b2 +
c2 + d2 + e2 = 16. Find the maximum value of e. (Shelley)

Solution

(8− e)2 = (a + b + c + d)2

= a2 + b2 + c2 + d2 + 2(ab + ac + ad + bc + bd + cd)
≤ 4(a2 + b2 + c2 + d2)

(16− e2) = a2 + b2 + c2 + d2

4(a2 + b2 + c2 + d2) ≥ (a + b + c + d)2

4(16− e2) ≥ (8− e)2

64− 4e2 ≥ 64− 16e2 + e2

5e2 − 16e ≤ 0
e(5e− 16) ≤ 0, e ≤ 16
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3. (a) Prove that if a and b are positive numbers such that a = b = 1,

then
(

a +
1
a

)2

+
(

b +
1
b

)2

≥ 25
2

.

(b) Prove that if ai > 0 (i = 1, 2, · · · , n), and a1 + a2 + · · · + an = 1. Prove that
n∑

i=1

(
ai +

1
ai

)2

≥ (n2 + 1)2

n
. (Beth)

(a) We notice that a=1-b. This means that

f(b) = (1− b +
1

1− b
)2 + (b +

1
b
)2 ≥ 25

2

Using calculus, we can take the derivative, and we find that

f ′(b) =
−2

(b− 1)3
+ 4b− 2

b3
− 2 = 0.

We can graph this, or solve the derivative set to zero, and we get b = a = 1
2 .

So, plugging this back into the original equation,

(
1
2

+
1
1
2

)2 + (
1
2

+
1
1
2

)2 ≥ 25
2

.

and we get that 12.5=12.5, which satisfies the equation.

(b)
n∑

i=1

(a2
i + 2 +

1
a2

i

)

=
n∑

i=1

a2
i + 2n +

n∑
i=1

1
a2

i

≥ (n2 + 1)2

n
= n3 + 2n +

1
n

.
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We can eliminate 2n from both sides, and then we get

=
n∑

i=1

a2
i +

n∑
i=1

1
a2

i

≥ n3 +
1
n

.

Using the Cauchy inequality, we know that

(
∑

a2
i )(

∑
b2
i ) ≥ (

∑
aibi)2.

Here b is just 1. So we see that∑
a2

i ∗
∑

12 ≥ (
∑

ai)2 = 12

So, ∑
a2

i n ≥ 1

This leads to the conclusion that ∑
a2

i ≥
1
n

.

Now we just need to prove that
1
a2

i

≥ n3.

Say that
∑

a−2
i = S, then using the Power Mean inequality with α 6= 0, we have

α = −2.
M−2 ≤ M1 =

a1 + a2 + ... + an

n
=

1
n

M−2 = (
∑

a−2
i

n
)
−1
2

= (
S

n
)
−1
2 ≤ 1

n

= (
n

S
)

1
2 ≤ 1

n

If we square both sides,
n

S
≤ 1

n2

n3 ≤ S

So we have the original inequality because each individual piece on the left has a lesser
or equal counterpart on the right hand side.

4. Let a, b, c denote the lengths of the sides of a triangle.

Show that
3
2
≤ a

b + c
+

b

c + a
+

c

a + b
≤ 2. (Nicholas)
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5. (Putnam 1998-B1) Find the minimum value of

(x + 1/x)6 − (x6 + 1/x6)− 2
(x + 1/x)3 + (x3 + 1/x3)

for x > 0. (Ben)

Solution. For this problem we will need the following facts:

(0.1) (a2 − b2) = (a + b)(a− b)

and

(0.2)
(

x +
1
x

)3

= x3 +
1
x3

+ 3
(

x +
1
x

)
Now we are given

(0.3)

(
x + 1

x

)6 −
(
x6 + 1

x6

)
− 2(

x + 1
x

)3 +
(
x3 + 1

x3

)
Note that(

x +
1
x

)6

−
(

x6 +
1
x6

)
− 2 =

[(
x +

1
x

)3
]2

−
(

x6 + 2 +
1
x6

)

=

[(
x +

1
x

)3
]2

−
(

x3 +
1
x3

)2

=

[(
x +

1
x

)3

+
(

x3 +
1
x3

)] [(
x +

1
x

)3

−
(

x3 +
1
x3

)]

where we used fact (1).
Thus we have(

x + 1
x

)6 −
(
x6 + 1

x6

)
− 2(

x + 1
x

)3 +
(
x3 + 1

x3

) =

[(
x + 1

x

)3 +
(
x3 + 1

x3

)] [(
x + 1

x

)3 −
(
x3 + 1

x3

)][(
x + 1

x

)3 +
(
x3 + 1

x3

)]
=

[(
x +

1
x

)3

−
(

x3 +
1
x3

)]

= x3 +
1
x3

+ 3
(

x +
1
x

)
− x3 − 1

x3

= 3
(

x +
1
x

)
where we used fact (2).

Now to find the minimum of f(x) = x+ 1
x , we need to take the derivative of f(x) and

find it’s zeroes.
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And
f ′(x) = 1− 1

x2
= 0

so
1− 1

x2
= 0 ⇒ x2 = 1 ⇒ x = ±1

But x > 0, so x = 1. This is indeed a minimum since f ′(x) < 0 for x < 1 and
f ′(x) > 0 for x > 1. Thus the minimum value of (3) for x > 0 is

3
(

1 +
1
1

)
= 6.

6. (Putnam 1973) On [0, 1], let f have a continuous derivative satisfying 0 < f ′(t) ≤ 1.

Also suppose that f(0) = 0. Prove that
[∫ 1

0
f(t)dt

]2

≥
∫ 1

0
[f(t)]3dt. (Frank)

7. (Putnam 1962-B5) Show that for n > 1,
3n + 1
2n + 2

<
n∑

r=1

rn

nn
< 2. (David Rose)

Solution We first show that
n∑

r=1

rn

nn
< 2.

Note this is equivalent to showing that

1n + 2n + · · ·+ (n− 1)n < nn.

Now, for any a ≤ n, we have by the binomial expansion

an = ((a− 1) + 1)n = (a− 1)n + n(a− 1)n−1 + · · · > (a− 1)n + (a− 1)n.

Thus we have

nn > (n− 1)n + (n− 1)n > (n− 1)n + (n− 2)n + (n− 2)n > · · · > (n− 1)n + · · ·+ 1n

as desired. We will now show that

3n + 1
2n + 2

<

n∑
r=1

rn

nn
.

Consider the function f(x) = xn on the interval [0, 1]. We approximate this integral
using Riemann sums, and we will subtract the area of the upper triangles, noting that
this will still overestimate the integral, since xn is concave-up on this interval. We
thus have the inequality:

1
n

n∑
r=1

( r

n

)n
− 1

2n

n∑
r=1

[( r

n

)n
−

(
r − 1

n

)n]
>

∫ 1

0
xndx.

Simplifying, we see that
1
n

n∑
r=1

( r

n

)n
− 1

2n
>

1
n + 1

or simply
n∑

r=1

( r

n

)n
>

3n + 1
2n + 2
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8. (Putnam 2003-A3) Find the minimum value of

| sinx + cos x + tanx + cot x + sec x + csc x|

for real numbers x. (Richard)

9. (Putnam 2004-A2) For i = 1, 2 let Ti be a triangle with side lengths ai, bi, ci, and area
Ai. Suppose that a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, and that T2 is an acute triangle. Does it
follow that A1 ≤ A2? (Hint: Use Heron’s formula, and other solution can be found
online.) (Lei)

10. (Putnam 2004-B2) Let m and n be positive integers. Show that

(m + n)!
(m + n)m+n

<
m!
mm

n!
nn

.

(Brett)

5


