Solutions for Problem Set 6

1. (VT 1983) Let f(x) = 1/x and g(x) = 1 - x for $x \in (0, 1)$. List all distinct functions that can be written in the form $f \circ g \circ f \circ g \circ \cdots \circ f \circ g \circ f$ where \circ represents composition. Write each function in the form (ax+b)/(cx+d), and prove that your list is exhaustive. (Tina)

Solution: By Linear Fractional Transformation, if $F(x) = \frac{ax+b}{cx+d}$ and $G(x) = \frac{ex+f}{gx+h}$ then $F \circ G(x) = \frac{Ax+B}{Cx+D}$ where $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is the multiplication of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\begin{pmatrix} e & f \\ g & h \end{pmatrix}$.

So here we have $f(x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $g(x) = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$. Let $F_0 = f(x) = \frac{1}{x}$, $F_1 = (f \circ g)F_0$, $F_n = (f \circ g)F_{n-1}$. By LFT,

$$(f \circ g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

So using LFT, we find that

$$F_{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{x} \qquad F_{4} = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} = \frac{x}{x-1}$$

$$F_{1} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = \frac{x}{x-1} \qquad F_{5} = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = (x-1)$$

$$F_{2} = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} = (x-1) \qquad F_{6} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{x}$$

$$F_{3} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \frac{1}{x}$$

Since $F_6 = F_0$ and $F_n = (f \circ g)F_{n-1}$, the series is cyclical; and therefore the only distinct functions that $f \circ g \circ f \circ g \circ \ldots \circ f \circ g \circ f$ can take are $\{\frac{1}{x}, \frac{x}{x-1}, (x-1)\}$.

- 2. (a) (UIUC 2003 Mock) Let f(x) = 1/(1-x). Let f₁(x) = f(x) and for each n = 2, 3, ..., let f_n(x) = f(f_{n-1}(x)). What is the value of f₂₀₀₃(2003)?
 (b) (UIUC 1997) Let x₁ = x₂ = 1, and x_{n+1} = 1996x_n + 1997x_{n-1} for n ≥ 2. Find (with proof) the reminder of x₁₉₉₇ upon division by 3. (Nicholas) (Hint: (a) find the pattern; (b) find the periodic pattern modulo 3)
- 3. (UIUC 1997) Let x₀ = 0, x₁ = 1, and x_{n+1} = x_n + nx_{n-1}/n + 1 for n ≥ 1. Show that the sequence {x_n} converges and finds its limit. (Beth)
 We begin by setting b_n = -n/n+1 * b_{n-1}, for n ≥ 1. Iterating this, we get:

$$b_n = (-1)^n \frac{n}{n+1} \frac{n-1}{n} * * * \frac{2}{3} \frac{1}{2} d_0$$

Hence,

$$x_n = x_0 + \sum_{k=0}^{n-1} d_k = \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1}$$

Since we are given that $x_0 = 0$ and $x_1 = 1$, we get that $d_0 = x_1 - x_0 = 1$. This leads to an alternating series with decreasing terms,

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$$

and is convergent to ln(1+1) = ln2 because of the Taylor expansion for ln(1+x). Therefore the sequence $\{x_n\}$ converges with the limit ln2.

4. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers such that $a_0 \neq 0$ and $a_{n+3} = 2a_{n+2} + 5a_{n+1} - 6a_n$. Find all possible values for $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$. (David Edmonson)

Solution. This is a third order linear recurrence relation. We are given that $a_{n+3} = 2a_{n+2} + 5a_{n+1} - 6a_n$. Thus, $a_{n+3} = Aa_n + Ba_{n+1} + Ca_{n+2}$, where A = -6, B = 5, and C = 2. Thus, the characteristic equation is $\lambda^3 = 2\lambda^2 + 5\lambda - 6$. Solving $\lambda^3 - 2\lambda^2 - 5\lambda + 6 = 0$ we arrive at solutions: $\lambda_1 = 1$, $\lambda_2 = 3$, and $\lambda_3 = -2$. Finding a general solution, we know that $a_n = c_1\lambda_1^n + c_2\lambda_2^n + c_3\lambda_3^n$. Thus, $a_n = c_11^n + c_23^n + c_3(-2)^n$. Since we are given no initial conditions, we are unable to determine the values of c_1 , c_2 , and c_3 . However, we have not been asked to solve the general solution; we have been asked to find all possible values for $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$. Observe that $\frac{a_{n+1}}{a_n} = \frac{c_11^{n+1}+c_23^{n+1}+c_3(-2)^{n+1}}{c_11^{n}+c_23^{n}+c_3(-2)^n}$. Taking the limit as $n \to \infty$, we determine that the limit will be the λ with the largest magnitude, which in this case is $\lambda_2 = 3$. However, if the coefficient paired with this value (in this case, c_2) is equal to zero, then the limit is also equal to zero, in which case the limit will be last λ , which would be $\lambda_1 = 1$. Thus, all possible values for $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ are 3, -2, and 1.

5. The sequence x_n is defined by

$$x_1 = 2, \ x_{n+1} = \frac{2+x_n}{1-2x_n}.$$

Prove that (a) $x_n \neq 0$ for all n; (b) x_n is not periodic. (Richard) (Hint: use matrix) 6. $a_1 = 0, a_{n+1} = 5a_n + \sqrt{24a_n^2 + 1}$. Prove that a_n is an integer for all n. (David Rose) Solution: Computing the first few terms of the sequence we see that:

 $a_1 = 0$ $a_2 = 1$ $a_3 = 10$ $a_4 = 99$ $a_5 = 980.$

We then guess that the recursion satisfies the equation

1

$$a_n = 10a_{n-1} - a_{n-2}.$$

Note now that the sequence is defined by

$$a_{n+1}^2 - 10a_{n+1}a_n + a_n^2 - 1 = 0.$$

We also have

$$a_n^2 - 10a_n a_{n-1} + a_{n-1}^2 - 1 = 0.$$

We thus see that a_{n+1} and a_{n-1} are both roots to the polynomial equation

$$c^2 - 10a_nx + (a_n^2 - 1) = 0.$$

We thus have that

$$(x - a_{n+1})(x - a_{n-1}) = x^2 - 10a_nx + (a_n^2 - 1).$$

Expanding we see that $a_{n+1} + a_{n-1} = 10a_n$, or simply that $a_{n+1} = 10a_n - a_{n-1}$, as we wished to show. Since the integers are closed under addition and multiplication, we see that a_n is an integer for all n.

7.
$$a_0 = 1, a_1 = 5, a_n = \frac{2a_{n-1}^2 - 3a_{n-1} - 9}{2a_{n-2}}$$
. Prove that a_n is an integer for all n . (Ben)

- 8. (Putnam 1980-B3) For which real numbers a does the sequence defined by the initial condition $u_0 = a$ and the recursion $u_{n+1} = 2u_n n^2$ have $u_n > 0$ for all $n \ge 0$? (express the answer in the simplest form) (Derek) (Hint: solve the recurrence)
- 9. (Putnam 1956-B6) $a_1 = 2$, $a_{n+1} = a_n^2 a_n + 1$. (a) Prove that any two terms in $\{a_n\}$ are relatively prime; (b) Prove that $\sum_{n=1}^{\infty} 1/a_n = 1$. (Lei) (Hint: $b_n = a_n 1$)
- 10. (Putnam 1993-A2) Let $(x_n)_{n\geq 0}$ be a sequence of nonzero real numbers such that $x_n^2 x_{n-1}x_{n+1} = 1$ for $n = 1, 2, 3, \ldots$ Prove there exists a real number a such that $x_{n+1} = ax_n x_{n-1}$ for all $n \geq 1$. (Erin)

Solution: Taking the hint, when we divide by z^4 we get, $z^8 + 4z^6 - 10z^4 + 4z^2 + 1 = z^4(z^4 + 4z^2 - 10 + \frac{4}{z^2} + \frac{1}{z^4}) = 0.//$ The factored version implies that either 0 is a root of the original equation (obviously not true) or $z^4 + 4z^2 - 10 + \frac{4}{z^2} + \frac{1}{z^4} = 0$. Since this looks roughly like a binomial expansion, we use one of the formulas on the handout and check to see what $(z + \frac{1}{z})^4$ looks like. $(z + \frac{1}{z})^4 = z^4 + 4z^2 - 10 + \frac{4}{z^2} + \frac{1}{z^4}$ which is remarkably close to what we are looking for. In fact, $//z^4 + 4z^2 - 10 + \frac{4}{z^2} + \frac{1}{z^4} = (z + \frac{1}{z})^4 - 16 = 0$. Thus, this problem simplifies to finding out when $(z + \frac{1}{z})^4 = 16$. This, in turn, simplifies to showing when $(z + \frac{1}{z}) = \pm 2$ and when $(z + \frac{1}{z}) = \pm 2i$. A lot of messy algebra eventually yields the roots ± 1 (each with a multiplicty of two), $i \pm i\sqrt{2}$, and $-i \pm i\sqrt{2}$ for the other four roots.