Problem Set 5

1. (a) Four-digit number S = aabb is a square. Find it; (hint: 11 is a factor of S)
(b) If n is a sum of two square, so is 2n. (Frank)

Solution: (a) Since (A+B)—(A+B) =0, and 11/0, 11|AABB. Thus 11k = AABB
for some k € Z. Since AABB is a four digit number and 11 is a two digit number, k
must be a three digit number. Let £k = XY Z, where X, Y and Z are digits. Then:

AABB = 11k

(10+ 1)k
(10+1)XYZ
= XYZ0+XYZ

So we have:

XYZ0
+ XYZ
AABB

Hence, Z = B, Y =0, and X = A. Thus k = XYZ = A0B. Since AABB is a
square, we can write AABB = m?, for some m € ZT. Since AABB = 11(A0B), we
have 11(A0B) = m?, so 11| A0B. In order for this to be true, we must have 11|A + B.
Since A and B are single digits, their sum must be one of the following:

1,2,3,...,11,12,13,14, 15, 16,17, 18

Since only one of these is divisible by 11, A+ B = 11. Thus A0B must be one of the
following:

209, 308, 407, 506, 605, 704, 803, 902

Dividing each of these by 11, we have:

19,28, 37, 46, 55, 64, 73, 82

Since AABB = 11(A0B) is a perfect square, AOB/11 must be a perfect square. Only
one of the above is a perfect square: 64. Hence, AOB=704. Therefore AABB=7744.

(b) If n is the sum of two squares, so is 2n

Proof: Consider the following lemma.

Lemma: The set S5, consisting of the sums of two squares, is closed under multi-
plication.



Proof: Let s = a% + b% and t = a% + b% be elements of Sy, where a1, b1, as,bs € Z.
Then:

st = (a2 +0?)(a3 +b3)
= a%a% + b%a% + a%b% + b%b%
= (aa} — 2a1a2biby + b33) + (aibs + 2a1a2b1by + bia3)
= (ajag — blb2)2 + (a1by + b1a2)2

Since n is a sum of squares, let n = k% + m?. Since 2 = 12 + 12, we have 2n =
(12 +12)(k? + m?). Since 2n can be expressed as the product of two sums of squares,
by the above lemma, 2n is a sum of squares.

. (a) If n is an even number, then 323|20™ + 16™ — 3™ — 1; (hint: factorize 323)
(b) If n is an integer, then 9|4 + 15n — 1. (hint: consider cases when n modulus 3)
(Ben)

Solution. (a) The first thing to note on this problem is that 323 can be factored,
that is 323 = 17 - 19.

Now from number theory we know that if two numbers are relatively prime, and they
each individually divide a sum or difference, then their product divides the sum or
difference. And ged(17,19) = 1, that is, they are relatively prime. Thus it is enough
to show that 17 and 19 individually divide

(1) 20" 4 16" — 3" — 1.

First we will show that 17 divides (1). Now

20" = 3" (mod17) and 16" = (—1)" (mod17)

And so
20" 416" —3"—1=3"+(—-1)" — 3" — 1 = 0 (modl7),

since n is an even number. That is, 17 | 20" + 16™ — 3™ — 1.

Now, to show 19 divides (1), observe that

20" = 1" (modl19) and 16" = (—3)" (mod19)

And so
20"+ 16" —-3"—1=1"+(=3)" — 3" — 1 = 0 (modl9),

since n is an even number. That is, 19 | 20" 4+ 16" — 3" — 1.

(b) For this problem, it is easiest to proceed by induction. First, observe that
914" +15n—1

holds for the case n = 1, because 9 | 18.



A fact that will be used later (which comes from Number Theory) is the following:
If a | band a | ¢, then we can conclude that a | b+ ¢. Also, knowing any two of the
statements to be true is enough to conclude the third.

Now assume that 9 | 4" + 15n — 1. We will show that 9 | 4" + 15(n + 1) — 1.

Using the fact from above, it is equivalent to show that

9| 4" 4 15(n 4 1) — 1] — 4™ + 150 — 1].

Now, expanding, grouping and simplifying terms, we find

A £ 15(n+1) — 1] —[4"+15n—1] = 4" 4+ 15n4+15—1—4" —15n+1
= [4" 44" 4150 — 15n] +[1 — 1] + 15
= 4"4-1)+15
= 3-4"43-5

3(4™ +5)

Noting that 4" = 1™ = 1 (mod3) and that 5 = 2 (mod3) yields

34" +5) = 3(1+2)(mod3)

Thus 9 | [4"H1 4+ 15(n + 1) — 1] — [4" + 15n — 1] as wanted, and so we can conclude
that 9 | 47T +15(n + 1) — 1, and finally that 9 | 4" + 15n — 1.

. (a) If 2n 4+ 1 and 3n + 1 are squares, then 5n + 3 is not a prime; (hint: express 5n+3
by 2n+ 1 and 3n + 1)

(b) If 3n + 1 and 4n + 1 are squares, then 56|n. (hint: follow the idea in presentation
problem) (Beth)

Since both 2n + 1 and 3n + 1 are squares, let 2n+1 = a2, and let 3n+1 = b°.
bn+3=42n+1)—(3Bn+1)

so 5n+3 = 4(a?) - (b?)

5n + 1= (2a)% — (b?)

notice this is a difference of squares, so 5n + 3 = (2a — b)(2a + b).

Thus 5n + 3 is NOT prime.

B. Prove: If 3n+1 and 4n+1 are squares, then 56—mn.

If we can prove that 8 divides n, and 7 divides n, then we know that 56 divides n.
Let 4n+1 = b?, and let 3n+1 = a?.

Then n = b — a?.

We know that 4n+1 is odd = so b2 is odd.



Let’s assume that n is odd. Therefore, n=2m+1. Then we have that b*> = 8m + 5.

If we make a table of b, and b?> mod 8, then we get:

b 01 2 3 45

6 7
2 01 4101 41

and we don’t ever get 5 mod 8. Therefore n is even.

Thus we have that a? is odd, and a is odd. From there we get that (b-a)(b+a) are
both even, and then n is divisible by 4.

So b and a are either equivalent to 1 or 3 mod 4. There are four cases:

a 1 1 3 3
b 1 3 1 3
(b—a)(b+a) 0%x2 2x0 —2%0 0x2

Thus 8 —n.

The case for 7 is much more difficult. It involves using Pell’s equation to find a
solution.

Theorem: (z1,;) is the smallest solution for 22 — Dy? = 1, then z;, + vV Dy =
(z1 +VDy1)¥ = (x — VDy)*(x + v/ Dy)* is also a solution.

So, in our problem, if you set 4n + 1 = b, and 3n + 1 = a? and multiply the first
equation by 4, and the second by 3, you get:

4a% - 30 = 1

x=2a, y=b so 22 -3y% = 1.

Solving this equation with Pell’s equation, then the first two answers you get are (2,1)
and (7,4) and this second one shows that n is divisible by 7.

. (a) If p is a prime, then p? = 1(mod24); (hint: prove 24|p? — 1)
(b) Show that if n divides a single Fibonacci number, then it will divide infinitely
many Fibonacci numbers. (hint: think Problem Set 2 number 10.) (Tina)

Solution:
This is only true for primes > 5, and from this point all primes are odd.

p? =1(mod 24) = 24[(p* — 1)
24|(p-1D+1)

Since p is odd, both (p — 1) and (p 4+ 1) are even and therefore divisible by two.
Furthermore, since p = 1 (mod 4), either (p —1) or (p+ 1) is divisible by 4. Finally,
as is true for all prime numbers, p = +1 (mod 3), and therefore, either (p — 1) or
(p+ 1) is divisible by 3. So combining all of these facts, (p — 1) or (p+ 1) is divisible
by 4, the other is divisibly by 2, and one is divisible by 3. (4)(2)(3) = 24 and therefore
p? =1 (mod 24).



4b) Show that if n divides a single Fibonacci number, then it will divide infinitely
many Fibonacci numbers.

Solution:
Write the Fibonacci numbers Fi, Fy, F'3, ... in the following form:

(a1,a2), (as,as), (as, ag)...

where aj, = Fj(mod n). Obviously, the series will begin (1,1). At some point in this
series, (aj, a; 1) will equal (aj,a;41). Since the Fibonacci numbers are cyclical, every
a; is completely determined by a;_9 and a;,. Therefore, the only way to get (1,1) is if
the second number in the pair immediately before it is zero (in other words, divisible
by n). So once we find a pair that repeats, it will repeat an infinite number of times,
and during each cycle there will be at least one number that is divisible by n.

. (a) (VT 1979) Show that for all positive integers n, that 14 divides 34"+2 4 52n+1,
(b) (VT 1981) 2*8 — 1 is exactly divisible by what two numbers between 60 and 70?7
(hint: (a) 14 =2-7, (b) factorizing) (Lei)

Solution. (a) We can rewrite
3in+2 L 52t — 324 31" L 5452 = 9% 81" +5%25" = 9% (—3)" + 5% (—3)"
mod(14)

Which is obviously divisble by 14.

(b) Since
(1) —1=0

if k is even. We can start by rewriting
218 —1 =208 _1
Since 2% = 64 and 64 = +1 mod 65 and 63. So 2*® — 1 is divisible by 65 and 63.

. (a) (VT 1982) What is the remainder when X'%82 + 1 is divided by X — 1? Verify
your answer (hint: too simple);

(b) (MIT training 2 star) Let n be an integer greater than one. Show that n* + 4"
is not prime. (hint: there is a magic identity due to Sophie Germain: a* + 4b* =
(a? + 202 4 2ab)(a® + 2b> — 2ab)) (Erin)

a) It is pretty easy to see that the answer is 2. Simply do direct long division to
obtain the answer. b) We are trying to show that n* + 4" is not prime. The first
thing to do is note that if n is even we are done. Secondly, since we have the 'magic
identity’ which says that a* + 4b™ = (a? + 2b% + 2ab)(a? + 2b*> — 2ab) we simply need
to match up the two equations. Let a = n, this takes care of the first term. Let
4 = 4pt = 4771 = vt = 2771 = p? = 22 = p? (since n is odd) = 2™ = b and
we are done.



7.

10.

(VT 1988) Let a be a positive integer. Find all positive integers n such that b = a™
satisfying the condition that a®+b? is divisible by ab+1. (hint: prove that a™+1|a™+1,
then m|n.) (Brett)

Solution. We need to find all positive integers n such that (a?+a?")/(a"*1+1) € N.
Rewrite this to get,

2 2n—2
a®(1+a*""%) _
i €N = @Dl )

= (n+1)(2n —2)

= n=(m+2)/(2—m) for some m € Z

This gives possible n values of 0, 1, or 3.
0 and 1 both fail for a = 2. However, n = 3 gives a result of a®> € N for all values of
a. So n must be equal to 3.

(Putnam 1972-A5) Show that if n is an integer greater than 1, then n does not divide
2" — 1. (Shelley)

Solution:

Assume the opposite: 2771 :1 (mod p), n = odd because 2" is even . Take p such
that it is the smallest prime dividing n, and m is the smallest divisor of p-1. Then
27=1:1 (mod p) is equivalent to 2™ = 1 (modp), for m < p.

m must be co-prime to n, because p is the smallest prime divisor. So, n = xm+7r,0 <
r < m. It follows that 2" = 1(modp). However, m is the smallest divisor of p — 1.
Contradiction.

(20000

(Putnam 1986-A2) What is the units (i.e., rightmost) digit of {10100+3

]? Here |[z]
is the greatest integer < z. (Richard)

Solution. First note 20000/100 = 200, which is the ratio of the numerator to the

dominator. Now consider the factorization 2200 — 200 = (2 — y) * (219 + 2198 % y +
199

oy

Taking x = 10'%° and y = —3 in the above factorization shows that the number

A = (1020000 _3200) /(10100 4 3) is an integer. Moreover, (1020000 —3200) /(10100 1. 3) —
[1020000 /(10190 + 3)] | since 3290/(101%0 + 3) = 9100 /(10%% + 3) < 1 So A is congruent
to —3'% which is congruent to 3 mod 10. Hence, the units digit is 3.

(Putnam 1998-A4) Let A; = 0 and Ay = 1. For n > 2, the number A,, is defined
by concatenating the decimal expansions of A, 1 and A, _o from left to right. For
example A3 = AsA; = 10, Ay = A3As = 101, A5 = A4A3 = 10110, and so forth.
Determine all n such that 11 divides A,. (David Rose)

Solution We first define ¢(n) as the number of digits in A,. Simple induction shows
that ¢(n) is odd if n = 1,2(mod3) and even if n = 0(mod3). Now note that the
definition of A,, is equivalent to A,, = 10?1V A, ;| + A,,_5. Now, noting that 10 =
—1(mod11) we see that A, = (—1)?™"DA, | + A, o(modll). Now, we claim that



n = 1(mod6) = A, = 0(modll)
n = 2(mod6) = A, = 1(modll)
n = 3(mod6) = A, = —1(modll)
n = 4(mod6) = A, = 2(modll)
n = 5(mod6) = A, = 1(modll)
n = 0(mod6) = A, = 1(modll)

We will verify using induction. We can check that these hold for n = 1,2,3,4,5,6
using our formula above. With this base, we can use circular induction to show that
these statements hold for all n. For example, assume the above holds for n = 1(mod6)
and n 4 1 = 2(mod6). Then A, o = (—1)°(1) + 0 = —1. The rest of the induction
follows similarly.



