
Problem Set 5

1. (a) Four-digit number S = aabb is a square. Find it; (hint: 11 is a factor of S)
(b) If n is a sum of two square, so is 2n. (Frank)

Solution: (a) Since (A+B)− (A+B) = 0, and 11|0, 11|AABB. Thus 11k = AABB
for some k ∈ Z. Since AABB is a four digit number and 11 is a two digit number, k
must be a three digit number. Let k = XY Z, where X, Y and Z are digits. Then:

AABB = 11k

= (10 + 1)k
= (10 + 1)XY Z

= XY Z0 + XY Z

So we have:

XYZ0
+ XYZ
AABB

Hence, Z = B, Y = 0, and X = A. Thus k = XY Z = A0B. Since AABB is a
square, we can write AABB = m2, for some m ∈ Z+. Since AABB = 11(A0B), we
have 11(A0B) = m2, so 11|A0B. In order for this to be true, we must have 11|A+B.
Since A and B are single digits, their sum must be one of the following:

1, 2, 3, ..., 11, 12, 13, 14, 15, 16, 17, 18

Since only one of these is divisible by 11, A + B = 11. Thus A0B must be one of the
following:

209, 308, 407, 506, 605, 704, 803, 902

Dividing each of these by 11, we have:

19, 28, 37, 46, 55, 64, 73, 82

Since AABB = 11(A0B) is a perfect square, A0B/11 must be a perfect square. Only
one of the above is a perfect square: 64. Hence, A0B=704. Therefore AABB=7744.

(b) If n is the sum of two squares, so is 2n

Proof: Consider the following lemma.

Lemma: The set S2, consisting of the sums of two squares, is closed under multi-
plication.
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Proof: Let s = a2
1 + b2

1 and t = a2
2 + b2

2 be elements of S2, where a1, b1, a2, b2 ∈ Z.
Then:

st = (a2
1 + b2

1)(a
2
2 + b2

2)
= a2

1a
2
2 + b2

1a
2
2 + a2

1b
2
2 + b2

1b
2
2

= (a2
1a

2
2 − 2a1a2b1b2 + b2

1b
2
2) + (a2

1b
2
2 + 2a1a2b1b2 + b2

1a
2
2)

= (a1a2 − b1b2)2 + (a1b2 + b1a2)2

Since n is a sum of squares, let n = k2 + m2. Since 2 = 12 + 12, we have 2n =
(12 + 12)(k2 + m2). Since 2n can be expressed as the product of two sums of squares,
by the above lemma, 2n is a sum of squares.

2. (a) If n is an even number, then 323|20n + 16n − 3n − 1; (hint: factorize 323)
(b) If n is an integer, then 9|4n + 15n− 1. (hint: consider cases when n modulus 3)
(Ben)

Solution. (a) The first thing to note on this problem is that 323 can be factored,
that is 323 = 17 · 19.

Now from number theory we know that if two numbers are relatively prime, and they
each individually divide a sum or difference, then their product divides the sum or
difference. And gcd(17, 19) = 1, that is, they are relatively prime. Thus it is enough
to show that 17 and 19 individually divide

(1) 20n + 16n − 3n − 1.

First we will show that 17 divides (1). Now

20n ≡ 3n (mod17) and 16n ≡ (−1)n (mod17)

And so
20n + 16n − 3n − 1 ≡ 3n + (−1)n − 3n − 1 = 0 (mod17),

since n is an even number. That is, 17 | 20n + 16n − 3n − 1.

Now, to show 19 divides (1), observe that

20n ≡ 1n (mod19) and 16n ≡ (−3)n (mod19)

And so
20n + 16n − 3n − 1 ≡ 1n + (−3)n − 3n − 1 = 0 (mod19),

since n is an even number. That is, 19 | 20n + 16n − 3n − 1.

(b) For this problem, it is easiest to proceed by induction. First, observe that

9 | 4n + 15n− 1

holds for the case n = 1, because 9 | 18.
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A fact that will be used later (which comes from Number Theory) is the following:
If a | b and a | c, then we can conclude that a | b ± c. Also, knowing any two of the
statements to be true is enough to conclude the third.

Now assume that 9 | 4n + 15n− 1. We will show that 9 | 4n+1 + 15(n + 1)− 1.

Using the fact from above, it is equivalent to show that

9 | [4n+1 + 15(n + 1)− 1]− [4n + 15n− 1].

Now, expanding, grouping and simplifying terms, we find

[4n+1 + 15(n + 1)− 1]− [4n + 15n− 1] = 4n+1 + 15n + 15− 1− 4n − 15n + 1
= [4n+1 + 4n] + [15n− 15n] + [1− 1] + 15
= 4n(4− 1) + 15
= 3 · 4n + 3 · 5
= 3(4n + 5)

Noting that 4n ≡ 1n = 1 (mod3) and that 5 ≡ 2 (mod3) yields

3(4n + 5) ≡ 3(1 + 2) (mod3)
= 3(3)
= 9

Thus 9 | [4n+1 + 15(n + 1) − 1] − [4n + 15n − 1] as wanted, and so we can conclude
that 9 | 4n+1 + 15(n + 1)− 1, and finally that 9 | 4n + 15n− 1.

3. (a) If 2n + 1 and 3n + 1 are squares, then 5n + 3 is not a prime; (hint: express 5n + 3
by 2n + 1 and 3n + 1)
(b) If 3n + 1 and 4n + 1 are squares, then 56|n. (hint: follow the idea in presentation
problem) (Beth)

Since both 2n + 1 and 3n + 1 are squares, let 2n+1 = a2, and let 3n+1 = b2.

5n + 3 = 4(2n + 1)− (3n + 1)

so 5n+3 = 4(a2) - (b2)

5n + 1 = (2a)2 − (b2)

notice this is a difference of squares, so 5n + 3 = (2a− b)(2a + b).

Thus 5n + 3 is NOT prime.

B. Prove: If 3n+1 and 4n+1 are squares, then 56—n.

If we can prove that 8 divides n, and 7 divides n, then we know that 56 divides n.

Let 4n+1 = b2, and let 3n+1 = a2.

Then n = b2 − a2.

We know that 4n+1 is odd ⇒ so b2 is odd.
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Let’s assume that n is odd. Therefore, n=2m+1. Then we have that b2 = 8m + 5.

If we make a table of b, and b2 mod 8, then we get:

b 0 1 2 3 4 5 6 7
b2 0 1 4 1 0 1 4 1

and we don’t ever get 5 mod 8. Therefore n is even.

Thus we have that a2 is odd, and a is odd. From there we get that (b-a)(b+a) are
both even, and then n is divisible by 4.

So b and a are either equivalent to 1 or 3 mod 4. There are four cases:

a 1 1 3 3
b 1 3 1 3

(b− a)(b + a) 0 ∗ 2 2 ∗ 0 −2 ∗ 0 0 ∗ 2

Thus 8—n.

The case for 7 is much more difficult. It involves using Pell’s equation to find a
solution.

Theorem: (x1, y1) is the smallest solution for x2 − Dy2 = 1, then xk +
√

Dyk =
(x1 +

√
Dy1)k = (x−

√
Dy)k(x +

√
Dy)k is also a solution.

So, in our problem, if you set 4n + 1 = b2, and 3n + 1 = a2 and multiply the first
equation by 4, and the second by 3, you get:

4a2 - 3b2 = 1

x=2a, y=b so x2 -3y2 = 1.

Solving this equation with Pell’s equation, then the first two answers you get are (2,1)
and (7,4) and this second one shows that n is divisible by 7.

4. (a) If p is a prime, then p2 ≡ 1(mod24); (hint: prove 24|p2 − 1)
(b) Show that if n divides a single Fibonacci number, then it will divide infinitely
many Fibonacci numbers. (hint: think Problem Set 2 number 10.) (Tina)

Solution:
This is only true for primes ≥ 5, and from this point all primes are odd.

p2 ≡ 1(mod 24) =⇒ 24|(p2 − 1)
24|(p− 1)(p + 1)

Since p is odd, both (p − 1) and (p + 1) are even and therefore divisible by two.
Furthermore, since p ≡ ±1 (mod 4), either (p− 1) or (p + 1) is divisible by 4. Finally,
as is true for all prime numbers, p ≡ ±1 (mod 3), and therefore, either (p − 1) or
(p + 1) is divisible by 3. So combining all of these facts, (p− 1) or (p + 1) is divisible
by 4, the other is divisibly by 2, and one is divisible by 3. (4)(2)(3) = 24 and therefore
p2 ≡ 1 (mod 24).
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4b) Show that if n divides a single Fibonacci number, then it will divide infinitely
many Fibonacci numbers.

Solution:
Write the Fibonacci numbers F1, F2, F3, ... in the following form:

(a1, a2), (a3, a4), (a5, a6)...

where ak = Fk(mod n). Obviously, the series will begin (1,1). At some point in this
series, (ai, ai+1) will equal (aj , aj+1). Since the Fibonacci numbers are cyclical, every
ai is completely determined by ai−2 and ai1 . Therefore, the only way to get (1,1) is if
the second number in the pair immediately before it is zero (in other words, divisible
by n). So once we find a pair that repeats, it will repeat an infinite number of times,
and during each cycle there will be at least one number that is divisible by n.

5. (a) (VT 1979) Show that for all positive integers n, that 14 divides 34n+2 + 52n+1;
(b) (VT 1981) 248 − 1 is exactly divisible by what two numbers between 60 and 70?
(hint: (a) 14 = 2 · 7, (b) factorizing) (Lei)

Solution. (a) We can rewrite

34n+2 + 52n+1 ≡ 32 ∗ 34n
+ 5 ∗ 52n ≡ 9 ∗ 81n + 5 ∗ 25n ≡ 9 ∗ (−3)n + 5 ∗ (−3)n

mod(14)

Which is obviously divisble by 14.

(b) Since
(±1)k − 1 ≡ 0

if k is even. We can start by rewriting

248− 1 = 26∗8 − 1

Since 26 = 64 and 64 ≡ ±1 mod 65 and 63. So 248 − 1 is divisible by 65 and 63.

6. (a) (VT 1982) What is the remainder when X1982 + 1 is divided by X − 1? Verify
your answer (hint: too simple);
(b) (MIT training 2 star) Let n be an integer greater than one. Show that n4 + 4n

is not prime. (hint: there is a magic identity due to Sophie Germain: a4 + 4b4 =
(a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab)) (Erin)

a) It is pretty easy to see that the answer is 2. Simply do direct long division to
obtain the answer. b) We are trying to show that n4 + 4n is not prime. The first
thing to do is note that if n is even we are done. Secondly, since we have the ’magic
identity’ which says that a4 + 4bn = (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab) we simply need
to match up the two equations. Let a = n, this takes care of the first term. Let
4n = 4b4 =⇒ 4n−1 = b4 =⇒ 2n−1 = b2 =⇒ 22m = b2 (since n is odd) =⇒ 2m = b and
we are done.

5



7. (VT 1988) Let a be a positive integer. Find all positive integers n such that b = an

satisfying the condition that a2+b2 is divisible by ab+1. (hint: prove that am+1|an+1,
then m|n.) (Brett)

Solution. We need to find all positive integers n such that (a2 +a2n)/(an+1 +1) ∈ N.
Rewrite this to get,

a2(1 + a2n−2)
an+1 + 1

∈ N ⇒ (an+1 + 1)|(a2n−2 + 1)

⇒ (n + 1)|(2n− 2)
⇒ n = (m + 2)/(2−m) for some m ∈ Z

This gives possible n values of 0, 1, or 3.
0 and 1 both fail for a = 2. However, n = 3 gives a result of a2 ∈ N for all values of
a. So n must be equal to 3.

8. (Putnam 1972-A5) Show that if n is an integer greater than 1, then n does not divide
2n − 1. (Shelley)

Solution:

Assume the opposite: 2n−1
...1 (mod p), n = odd because 2n is even . Take p such

that it is the smallest prime dividing n, and m is the smallest divisor of p-1. Then

2n−1
...1 (mod p) is equivalent to 2m ≡ 1 (modp), for m < p.

m must be co-prime to n, because p is the smallest prime divisor. So, n = xm+r, 0 <
r < m. It follows that 2r ≡ 1(modp). However, m is the smallest divisor of p − 1.
Contradiction.

9. (Putnam 1986-A2) What is the units (i.e., rightmost) digit of
[

1020000

10100 + 3

]
? Here [x]

is the greatest integer ≤ x. (Richard)

Solution. First note 20000/100 = 200, which is the ratio of the numerator to the
dominator. Now consider the factorization x200 − y200 = (x − y) ∗ (x199 + x198 ∗ y +
... + y199)

Taking x = 10100 and y = −3 in the above factorization shows that the number
A = (1020000−3200)/(10100 +3) is an integer. Moreover, (1020000−3200)/(10100 +3) =
[1020000/(10100 + 3)] , since 3200/(10100 + 3) = 9100/(10100 + 3) < 1 So A is congruent
to −3199 which is congruent to 3 mod 10. Hence, the units digit is 3.

10. (Putnam 1998-A4) Let A1 = 0 and A2 = 1. For n > 2, the number An is defined
by concatenating the decimal expansions of An−1 and An−2 from left to right. For
example A3 = A2A1 = 10, A4 = A3A2 = 101, A5 = A4A3 = 10110, and so forth.
Determine all n such that 11 divides An. (David Rose)

Solution We first define φ(n) as the number of digits in An. Simple induction shows
that φ(n) is odd if n ≡ 1, 2(mod3) and even if n ≡ 0(mod3). Now note that the
definition of An is equivalent to An = 10φ(n−1)An−1 + An−2. Now, noting that 10 ≡
−1(mod11) we see that An ≡ (−1)φ(n−1)An−1 + An−2(mod11). Now, we claim that
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n ≡ 1(mod6) ⇒ An ≡ 0(mod11)
n ≡ 2(mod6) ⇒ An ≡ 1(mod11)
n ≡ 3(mod6) ⇒ An ≡ −1(mod11)
n ≡ 4(mod6) ⇒ An ≡ 2(mod11)
n ≡ 5(mod6) ⇒ An ≡ 1(mod11)
n ≡ 0(mod6) ⇒ An ≡ 1(mod11)

We will verify using induction. We can check that these hold for n = 1, 2, 3, 4, 5, 6
using our formula above. With this base, we can use circular induction to show that
these statements hold for all n. For example, assume the above holds for n ≡ 1(mod6)
and n + 1 ≡ 2(mod6). Then An+2 ≡ (−1)odd(1) + 0 = −1. The rest of the induction
follows similarly.
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