
Problem Set 3

Discussion: Sept. 14, Sept. 16 (mostly on mathematical induction) The name after the
problem is the designated writer of the solution of that problem. (Erin, Ben and Tina are
exempted this week)

Discussion Problems

1. Prove that
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is an integer for n = 0, 1, · · · ,. (Shelley)

Solution: Step 1: Set n = 1.
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= 1. True.

Step 2: Assume for n = k,
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30
is an integer, which we assume to be

x ∈ N, where N = set of all natural numbers. We then multiply by 30 to obtain

6k5 + 15k4 + 10k3 − k = 30x

Step 3: Prove for

(k + 1)5

5
+

(k + 1)4

2
+

(k + 1)3

3
− (k + 1) is an integer.

Multiplying by 30, we obtain 6(k + 1)5 + 15(k + 1)4 + 10(k + 1)3 − (k + 1)
... 30. If we

expand the polynomials (thanks to Pascal’s handy triangle), then we obtain:

6(k5 + 5k4 + 10k3 + 10k2 + 5k + 1) +

15(k4 + 4k3 + 6k2 + 4k + 1) +

10(k3 + 3k2 + 3k + 1) −

(k + 1)

Conveniently, if we regard each term with coefficients, they can factor out a greatest
common denominator that when multiplied with the number outside the parenthesis
equals 30.

30(k4 + 2k3 + 2k2 + k) + 6(k5 + 1) +

30(2k3 + 3k2 + 2k) + 15(k4 + 1) +

30(k2 + k) + 10(k3 + 1) − (k + 1)

Because a term is divisible by a number if the parts of its sum is divisible by that
number as well, then we no longer have to worry about these terms. However, we are
left with

6(k5 + 1) + 15(k4 + 1) + 10(k3 + 1) − (k + 1) =

6k5 + 15k4 + 10k3 − k + 6 + 15 + 10 − 1 =

6k5 + 15k4 + 10k3 − k + 30
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Notice that the underlined portion is equivalent to our original conjecture (from Step
2), which we assumed to be divisible by 30. And, of course, 30 is divisible by 30.
Thus, all parts of our sum are divisible by 30. Done.

2. Show that, if n is odd, then 1n + 2n + · · · + nn is divisible by n2. (Lei)

Solution. First we’ll rearrange the series to:

1n + 2n . . . + nn = (1n + nn) + (2n + (n − 1)n) + . . . + (mn + (n − m)n)

Note that m exists because of the fact that n is odd. Then using binomial theorem we
can expand these terms out, and we see that every term besides the first two terms
will be multiples of n2. So the first two terms are:

(

n

1

)

1n ∗ n1 +

(

n

2

)

2n−1 ∗ n2

And we see they are obviously divisible by n2.

3. Let r be a number such that r+1/r is an integer. Prove that for every positive integer
n, rn + 1/rn is an integer. (Richard)

Solution: First note that r1 + (1/(r1)) = 2, which is an integer. Assume that
rn+(1/(rn)) is an integer for all n. Now consider the product (r+(1/r)) (rn+(1/(rn))
= (rn+1+(1/rn+1))+(rn−1+(1/rn−1)) which is an integer by our induction hypothesis.

4. We need to put n cents of stamps on an envelop, but we have only (an unlimited
supply of) 5 cents and 12 cents stamps. Prove that we can perform the task if n ≥ 44.
(Beth)

Solution: We solve using induction. For the basis step, n = 44, we can use four 5
cent stamps and two 12 cent stamps, giving us 5 ∗ 4 + 12 ∗ 2 = 44. We also need
n = 45, n = 46, n = 47, and n = 48.

For n = 45, we have 9 5-cent stamps

For n = 46, we have 2 5-cent stamps and 3 12-cent stamps

For n = 47, we have 7 5-cent stamps and 1 12-cent stamp

For n = 48, we have 4 12-cent stamps.

Notice that any integer greater than 48 can be expressed as n = k + 5 ∗ p where
k ∈ {44, 45, 46, 47, 48} and p ≥ 1. Hence we can use the stamp combination for k
given above and extra p 5-cent stamp to perform the required task.

5. Let n be a positive integer. Which one is larger: nn+1 or (n+1)n? (David Edmonson)

Solution. It will be shown that nn+1 > (n+1)n for all n≥3. Let us prove this by
induction. Consider the base case of n=3. Here we have: 33+1 = 34 = 81 > (3+1)3

= 43 = 64. Thus the base case is true, and we have shown that A(3) = 33+1

(3+1)3
> 1.

Now we proceed by induction. Suppose that for some k>3, A(k) = kk+1

(k+1)k > 1. We

want to prove: A(k+1) = (k+1)k+2

(k+2)k+1 > 1. Observe that we can write A(k+1) as A(k) ×

A(k+1)
A(k) . Write A(k+1)

A(k) as (k+1)k(k+1)k+2

kk+1(k+2)k+1 = ( (k+1)2

k(k+2))
k+1 = (k2+2k+1

k2+2k
)k+1. Since k2+2k+1

k2+2k
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> 1, then (k2+2k+1
k2+2k

)k+1 > 1, or equivalently, A(k+1)
A(k) > 1. Since we are operating under

the assumption that A(k) >1, then it follows that A(k+1) = A(k) × A(k+1)
A(k) > 1. This

concludes the proof by induction, and hence we have proven that nn+1 > (n+1)n for
all n≥3.

6. Show that for all n, 23n

+ 1 is divisible by 3n+1. (Brett)

Solution: This statement is true when n = 1 since 9 divides 9.
Assume the statement holds for n = k. Then,

23k

+ 1

3k+1
= m where m ∈ N ⇒ 23k

= 3k+1m − 1

Then write,

23k+1

+ 1

3k+1+1
=

23k

23k

23k

+ 1

3k+2

Using the inductive hypothesis you get,

(3k+1m − 1)3 + 1

3k+2
=

(3k3m)3 − 3(3k3m)2 + 3(3k3m)

3 · 3 · 3k

=3k+1m2(3km − 1) + m ∈ N

7. Given a (2m + 1) × (2n + 1) checkerboard where the four corner squares are black,
show that if one removes any one red and two black squares, the remaining board can
be covered with dominoes (1 × 2 rectangles). (Frank)

Solution: The proof proceeds by induction and exploits the many symmetries of
the checkerboard. The smallest possible checkerboard (3 × 3) appears in the figure
below:

There are
(

5
2

) (

4
1

)

= 40 ways to remove two black squares and one red square from
this board. However, only 5 of these are unique to a rotation or reflection. Those five
appear in the figure below:

Clearly each of these can be tiled with dominoes, so we have demonstrated S1, our
desired result for m = n = 1. Now suppose that Sk holds, i.e. a (2m + 1) × (2n + 1)
checkerboard can be tiled with dominoes. We must show that this implies we can tile
a checkerboard of dimensions (2k + 1) × (2l + 1), where k ≥ m and l ≥ n. Since the
checkerboard is symmetric under rotation, this is equivalent to showing that we can
tile a checkerboard extended arbitrarily in any one direction.
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We will introduce some notation to facilitate the remainder of the proof. Treat
the board as a (2m + 1) × (2n + 1) matrix, and denote individual squares as a(i, j)
where i = 1, 2, 3, . . . , 2m+1 and j = 1, 2, 3, . . . , 2n+1 Denote D[a(i, j), a(k, l)] as the
domino covering those two respective squares.

Without loss of generality, consider incrementing n. We have a new checkerboard
with dimensions (2m + 1) × (2n + 3), i.e. we have added two columns to the right
side of the board. Now consider the locations of the three removed squares. As long
as they fall in a sub-board of width (2n + 1) or smaller, we can tile the sub-board by
the inductive hypothesis, and the remaining (2m + 1) × 2 rectangular region by the
sequence

D[a(1, j), a(1, j + 1)]

D[a(2, j), a(2, j + 1)]

D[a(3, j), a(3, j + 1)]

...

D[a(2m + 1, j), a(2m + 1, j + 1)]

where j is either 1 or 2n+2 depending on the locations of the squares we have removed.

There are only two cases in which we will be unable to use the inductive hypothesis
directly as above:

• Exactly one square has been removed from the first two columns, and the re-
maining squares have been removed from the last two columns

• Exactly one square has been removed from the last two columns, and the re-
maining squares have been removed from the first two columns

Since the checkerboard is symmetric under reflection about the y-axis, we may
consider without loss of generality the first case only. We will proceed by showing
that the square removed from the first two columns can be transferred by tiling into
the sub-board containing columns 3 through 2n+3. This sub-board can be tiled using
the inductive hypothesis.

We consider a board from which exactly one square has been removed from the first
two columns, and exactly two squares have been removed from the last two columns.

Case I: Exactly one square was removed from the first column

In this case, we need not consider whether the square is black or white. Denote
the removed square by a(k, 1). Tile the first two columns with the following
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sequence of dominos, recalling that there is a missing square at a(k, 1):

D[a(1, 1), a(1, 2)]

D[a(2, 1), a(2, 2)]

...

D[a(k − 1, 1), a(k − 1, 2)]

D[a(k, 2), a(k, 3)]

D[a(k + 1, 1), a(k + 1, 2)]

...

D[a(2m + 1, 1), a(2m + 1, 2)]

This arrangement completely covers the first two columns of the board, and also
covers exactly one square of the third column. This square is of the same color as
the one removed from the first column, so we may treat it as a ’missing’ square
from the sub-board containing columns 3 through 2n + 3. This sub-board is
hence tileable under the inductive hypothesis, so the entire board is tileable.

Case II: Exactly one square was removed from the second column

In this case, we must distinguish whether the removed square is black or white.
In each intstance, we will tile the removed square into the sub-board containing
columns 3 through 2n + 3 so that the ’missing’ square from column 3 is of the
same color as the one removed from the first column. By the same logic as
above, this shows that the entire board is tileable. Denote the removed square
by a(k, 2). When a black square has been removed, tile as follows:

D[a(1, 1), a(1, 2)]

D[a(2, 1), a(2, 2)]

...

D[a(k − 2, 1), a(k − 2, 2)]

D[a(k − 1, 2), a(k − 1, 3)]

D[a(k − 1, 1), a(k, 1)]

D[a(k + 1, 1), a(k + 1, 2)]

...

D[a(2m + 1, 1), a(2m + 1, 2)]
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When a white square has been removed, if it is a(1, 2) tile as follows:

D[a(1, 1), a(2, 1)]

D[a(2, 2), a(2, 3)]

D[a(3, 1), a(3, 2)]

D[a(4, 1), a(4, 2)]

...

D[a(2m + 1, 1), a(2m + 1, 2)]

Otherwise, tile with the same sequence as when a black square has been removed.

Since the (3 × 3) checkerboard can be tiled by dominoes, and that fact that a
(2m + 1) × (2n + 1) checkerboard can be tiled implies that a (2m + 1) × (2n + 3)
checkerboard can be tiled, by the principle of mathematical induction, any checker-
board of dimensions (2m + 1)× (2n + 1) from which two black squares and one white
square have been removed can be tiled with dominoes.

Q.E.D.

8. A group of n people play a round-robin tournament. Each game ends in either a win
or a loss. Show that it is possible to label the players P1, P2, P3, ..., Pn in such a way
that P1 defeated P2, P2 defeated P3, ... , Pn−1 defeated Pn. (Nicholas)

Solution: It is clear that it is possible to rank the players when n=1, 2, 3. Now let us
assume that it is possible to rank the players when n=k. We consider n=k+1. If we
take k of the k+1 players, then by the inductive hypothesis we can rank them. This
leaves us with one unranked player, call him x. If x loses to player k, then x takes
on the ranking k+1, and we are done. If x defeats player k and defeats player 1, he
takes on the ranking of 1, player 1 becomes number 2, and so on. If neither of the
previous two cases occur, then we know that x has defeated at least one player, player
k. So working backward, we look at each match-up. Once we find x’s first loss, we
know where to insert him. Assume x defeated player l+1, but lost to player l. Then
we know to give x the ranking of l+1. Then l+1 becomes l+2, and so on till k, who
becomes k+1.

9. (Putnam 2004 A3) Define a sequence {un}
∞

n=0 by u0 = u1 = u2 = 1, and thereafter
by the condition that

det

(

un un+1

un+2 un+3

)

= n!

for all n ≥ 0. Show that un is an integer for all n. (By convention, 0! = 1.)
(David Rose)

Solution. We claim that un = (n − 1)(n − 3) · · · (2or1) for all n ≥ 3, where the
product ends in 2 if n is odd, and 1 if n is even. We will show this by induction. Note
that the equation defining un is equivalent to

un+3un − un+1un+2 = n!
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We first check the case n = 3. By the recurrence relation we have, u3u0 − u1u2 = 0!
or equivalently u3 − 1 = 1, so u3 = 2 = (3− 1). We now assume that un = (n− 1)(n−
3) · · · (2or1). We then have

un+1un−2 − unun−1 = (n − 2)!

which gives by the induction hypothesis

un+1(n − 3)(n − 5) · · · (2 or 1) − (n − 1)! = (n − 2)!

Rearranging and factoring then gives

un+1 = n(n − 2)(n − 4) · · · (2 or 1),

completing our induction. Noting that (n − 1)(n − 3) · · · (2or1) is an integer for all n
completes the proof.

10. If each person, in a group of n people, is a friend of at least half the people in the
group, then it is possible to seat the n people in a circle so that everyone sits next to
friends only. (Derek)

Solution.

Note: The definition of friendship in this problem should be made a bit clearer.

(a) Friendship is a commutative property (theoretically).

(b) A person is not friends with themselves, for the purposes of this problem.

(c) For each person, ax, and out of the remaining people in the group, N −1, that person is
friends with MORE than half of those people, where half is (N − 1)/2, (The question’s
wording of ”at least half” is not exactly correct.)

We shall define each person in the group by: a1, a2, . . . ak−1, ak where k is the
integer index, given by N. We now look at the smallest case where a circle exists, N =
3, where N is the number of people in the group. Since each person has to sit next to
both of the other two people, they must be friends with them for this to work. This
is because if they were only friends with one of the other two people, they would be
friends with only half of the remaining group, and we are told that they are friends
with strictly more than that. So they must all be friends.

We can now construct a grouping system that represents the act of two people sitting
next to each other; where, if two people are in the same parentheses, they are sitting
next to each other. (a1, a2), (a2, a3), (a3, a1)

We now wish to prove that for any N, a circle can be constructed where only friends
sit together given that each person is friends with more than half of the remaining
people. Let us assume we have such a circle constructed for N − 1 people. Now we
ask, if we want to add one more person, where can they sit? Looking at the con-
struction of the circle: (a1, a2), (a2, a3), . . . (ak−1, ak), (ak, a1) Since there are exactly
(N − 1) parentheses pairs, and the next person, call him/her ax, must be friends
with more than (N − 1)/2 people, than there must be a parentheses pair (ai, aj)
with which ax is friends with both members. Now, simple make a new construction:
(a1, a2), (a2, a3), . . . (ai, ax), (ax, aj), . . . (ak−1, ak), (ak, a1) And you have success-
fully added ax. Thus, (N − 1) ⇒ N , and since we have N = 3 is true, By induction,
it is proven that it is possible to seat any N people in a circle when each member is
friends with more than half of the other members.
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