
Problem set 2 solution

1. (Putnam, 1978-A1) Let A be any set of 20 distinct integers chosen from the arithmetic
progression 1, 4, 7, · · · , 100. Prove that there must be two distinct integers in A whose
sum is 104. [Actually, 20 can be replaced by 19.] (Junping)

Solution. Note that the numbers have the form 3n + 1 for n = 0, 1, ..., 33. We seek
3n+1, 3m+1 so that n+m = 34. Evidently n = 0 and n = 17 do not help. The other
32 numbers form 16 pairs with the required sum. Now we use Pigeon hole principle
for the 16 pairs. So if we take 19 numbers then we are sure to get two from the same
pair.

2. (Putnam, 2002-A2) Given any five points on a sphere, show that some four of them
must lie on a closed hemisphere. (Ben)

Solution: We need to split the sphere in two, and this can best be done using a plane.
To construct the plane, use the center of the sphere as a reference point, and any two
other points that lie on the sphere. Since the hemisphere is closed, the two points that
lie on the sphere belong to the hemisphere. Now, we have created two pigeonholes,
namely the two hemispheres, and we still have three points to place on the sphere.
Thus one hemisphere must contain two of those points, and thus four points must lie
in one closed hemisphere.

Since the hemisphere is closed, any of the remaining three points placed on the great
circle defined by the intersection of the plane and the sphere are assumed to belong
to whichever hemisphere is convenient.

3. 15 people sit around a table. When they sit down, they did not notice that a name
tag is in front of each seat, and they found that no any name tag and the person
sitting there match each other. Prove that after some rotation of the sitting order, at
least two people will match the name tag where they sit. (Brett)

Solution. Each of the fifteen people can be matched with their name simply by
rotating everyone until that person is seated correctly. However, since no person
starts in the correct seat, there are only fourteen rotations that can be used to match
people to their names. Therefore, at least one rotation must match at least two people
to their correct seat.

4. Given any n + 1 integers between 1 and 2n, show that one of them is divisible by
another. Is this best possible, i.e., is the conclusion still true for n integers between 1
and 2n? (Brett)

Solution. Let a1, a2, . . . , an+1 be any integers between 1 and 2n. Write ai = 2bi(2ci +
1) for each i between 1 and n + 1. Since the ai’s are between 1 and 2n, then 2ci + 1 ∈
{1, 3, ..., 2n − 1}. Hence, there exist 1 ≤ i 6= j ≤ n + 1 such that 2ci + 1 = 2cj + 1.
Then ai divides aj or aj divides ai.
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5. Six circles with radius 1 is randomly put inside of a circle with radius 6. Prove that at
least one more circle with radius 1 can be put inside the big circle without intersecting
the other six. (Beth)

Solution. The center of each of these circles (O1, 02,...,O6) have to be within a circle
of radius 5 inside the original circle P, call this new circle S. Since none of the circles
are intersecting, then the minimum distance between centers is 2. Thus we can draw
6 circles of radius 2 (O1’, O2’, O3’, O4’, O5’, O6’), all inside of S.

We then have to prove that (O1’, ..., O6’) does not cover the entire P. The area of
the 6 circles are π ∗ 22, and there are 6 of them, so we have 24 ∗ π. But the total area
of S is π ∗ 52 = 25 ∗ π. Thus there exists some point O7 in S, but not in the union of
O1’,...,O6’.

Figure 1: Problem 5

6. A city has 10000 different telephone lines numbered by 4-digit numbers. More than
half of the telephone lines are in the downtown. Prove that there are two telephone
numbers in the downtown whose sum is again the number of a downtown telephone
line. (Erin)

Solution: If 0000 is downtown then we are done. If not, let n1 be the smallest
telephone number downtown. Then define bj such that bj = ni − n1, where ni is
a downtown telephone number. Then there are at least 5000 possible bj and 5001
ni (since more than half of the telephone lines are downtown). This totals to 10001
which is more than 9999 thus there is at least 1 bj and ni such that bj = ni.

7. Suppose a musical group has 11 weeks to prepare for opening night, and they intend to
have at least one rehearsal each day. However, they decide not to schedule more than
12 rehearsals in any 7-day period, to keep from getting burned out. Prove that there
exists a sequence of successive days during which the band has exactly 21 rehearsals.
(Shelley)

Solution: We multiply the maximum number of games per week by the number of
weeks until opening night to get the maximum number of games during this period:
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11(12) = 132. We then use ai = total number of games in a given time period, so
1 ≤ a1 < ... < a77 ≤ 132. We then take some bi such that bi = ai + 21. This gives
us the equation: 22 ≤ b1 < ... < b77 ≤ 153. We take the 77 numbers in the set {ai}
and the 77 numbers in the set {bi} and combine then we have |{ai}| + |{bi}| = 154
elements. Yet we see that the total # of elements in the two sets are 1 through 153.
So one element in {ai} must overlap with one of {bi}, thus ai = bj +21 for some ai, bj .

8. Prove that there exists a multiple of 2005 whose decimal expansion contains only
digits 1 and 0. (Richard)

Solution: Let A = 11111....111 where there are 2005 1’s. Now consider all numbers of
the form 1111...1111 where the number of digits is less than 2005. By the pigeonhole
principle, at least 2 (and many more in fact) of these numbers must have the same
congruence class modulo 2005. Now take A − B, where B is in the same congruence
class as A and B < A, and this is our multiple of 2005 as indicated.

9. (UIUC 2000) Suppose that a1, a2, · · · , an are n given integers. Prove that there exist
integers r and s with 0 ≤ r < s ≤ n such that ar+1 + ar+2 + · · ·+ as is divisible by n.
(Richard)

Solution: Let B0 = 0, and for k = 1, 2, ..., n let Bn = a1 + a2 + ... + an. If any
Bk is divisible by n, then we are done, so assume that none does. By the pigeonhole
principle, two of these n + 1 integers Br and Bs must leave the same remainder upon
division by n. Hence Br − Bs = ar+1 + ar+2 + ... + as is a multiple of n as required.

10. The Fibonacci sequence is defined by a1 = 1, a2 = 1, and an+2 = an+1 + an for
n ≥ 1. Prove that for any integer m, there exists ak such that ak ends with m zeros.
(David Edmonson)

Solution. This problem is essentially saying that ak≡0 (mod 10m). Let us consider
taking the last m digits of each of the Fibonacci numbers and arranging them in
pairs. For example, let us consider m = 1. Thus, we would have: (1,1),(1,2),(2,3),...
Since there are a finite number of possible pairs, and this sequence of pairs goes on
infinitely (since there are infinitely many Fibonacci numbers) then a pair must repeat
itself (by the pigeon hole principle). However, remember that the Fibonacci numbers
are defined recursively, such that each number is defined by the sum of the previous
two numbers. This indicates that the sequence of pairs is cyclical. So once a repeated
pair is found, the sequence can be traced eventually to a repetition of the pair (1,1),
which is also the first pair of the sequence. However, the way that the Fibonacci
numbers are defined would mean that the number preceding the first 1 in this pair
must be a 0, such that: (...,0),(1,1), since 0 + 1 = 1. Thus, it has been shown that
for m = 1, there exists a Fibonacci number ak that ends with 1 zero. However, it
follows from this logic that for any finite m (and thus any positive integer) a Fibonacci
number can be found that ends with m zeros.

11. (a) A small party has six people. Each two people either know or don’t know each
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other. Prove there are 3 people in the party such that either they all know each other,
or nobody knows each other. (b) (VA Tech 2004-6) An enormous party has an infinite
number of people. Each two people either know or dont know each other. Given a
positive integer n, prove there are n people in the party such that either they all know
each other, or nobody knows each other (so the first possibility means that if A and
B are any two of the n people, then A knows B, whereas the second possibility means
that if A and B are any two of the n people, then A does not know B). (Lei)

Solution. (a) Take a random person A1. A1 must at least know either three people
or doesn’t know three people. WLOG we assume he does know three people and put
these three people in a set named S1. Of course everyone in this set knows S1. Then
we can choose A2 from this set. If A2 knows anyone else in S1 then we’re done. If A2

doesn’t know anyone then we have three people who don’t know each other since A2

is arbitrary.

(b)Suppose first that there is an infinite subset S such that each person only knows a
finite number of people in S. Then pick a person A1 in S. Then there is an infinite
subset S1 of S containing A1 such that A1 knows nobody in S1. Now choose a person
A2 other than A1 in S1. Then there is an infinite subset S2 of S1 containing A1,A2

such that nobody in S2 knows A2. Of course nobody in S2 will know A1 either. Now
choose a person A3 in S2 other than A1 and A2. Then nobody from A1,A2,A3 knows
each other. Clearly we can continue this process indefinitely to obtain an arbitrarily
large number of people who dont know each other.

WLOG we can use the same process to prove that there are arbitrarily large number
of people who all know each other.

12. (Larson page 29 1.5.7) (David Rose)

Solution. It is easy to verify the geometry in Figure ??. From there, considering the

triangle with L as its hypotenuse we have: sin θ =
x

L
. Considering the triangle with

x as its hypotenuse we have:

(1) cos 2θ =
8 − x

x
=

8

x
− 1

Rearranging (??) gives:

(2) x =
8

cos 2θ + 1

and plugging (??) into sin θ =
x

L
and rearranging gives the solution:

(3) L =
8

sin θ(cos 2θ + 1)
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Figure 2: Problem 12
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