
Problem Set 11 (last one!)

Discussion: Nov. 22, Nov. 29 (on linear algebra) The name after the problem is the
designated writer of the solution of that problem. (Lei, Brett, and Richard are exempted
this week)

Discussion Problems

1. (VT 1981) Let A be non-zero square matrix with the property that A3 = 0, where 0
is the zero matrix, but with A being otherwise arbitrary. (a) Express (I − A)−1 as a
polynomial in A, where I is the identity matrix. (b) Find a 3 × 3 matrix satisfying
B2 6= 0, B3 = 0. (Nicholas)

2. (VT 1979) Let A be an n × n nonsingular matrix with complex elements, and let A
be its complex conjugate. Let B = AA + I, where I is the n× n identity matrix. (a)
Prove or disprove: A−1BA = B. (b) Prove or disprove: the determinant of AA + I is
real. (Tina)

Solution:

(a)

A−1BA = A−1(AA + I)A
= A−1AAA + A−1IA

= AA + I

So B must equal AA + I for the original equation to hold. We need to show that
(AB) = AB and that (A + B) = A+B. However, this simplifies down to showing that
the above equations hold simply for complex numbers A and B not whole matrices.
This is true because matrix multiplication simply involves the addition and multipli-
cation of complex numbers. So for complex numbers A = a+bi and B = c+di, we have

A + B = (a + bi) + (c + di)
= (a + b) + (c + d)i
= (a + b)− (c + d)i

A + B = (a + bi) + (c + di)
= (a− bi) + (c− di)
= (a + b)− (c + d)i

AB = (a + bi)(c + di)
= ac + (ad + bc)i− bd

= (ac− bd)− (ad + bc)i

A B = (a + bi) (c + di)
= (a− bi)(c− di)
= ac− (ad + bc)i− bd

= (ac− bd)− (ad + bc)i

So B = AA + I = AA + I.

(b) By a similar argument, the determinant of AA + I is real.
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det(B) = det(A−1BA)
= det(A−1)det(B)det(A)
= det(B)

Since the determinant of a matrix is just found using multiplication and addition of
its complex entries, det(B) = det(B). This implies that det(B) = det(B) and this
only way for this equality to hold is if det(B) is real.

3. (VT 2003) Determine all invertible 2 by 2 matrices A with complex numbers as entries
satisfying A = A−1 = A′, where A′ denotes the transpose of A. (Beth)

4. (VT 2002) Let S be a set of 2×2 matrices with complex numbers as entries, and let T
be the subset of S consisting of matrices whose eigenvalues are ±1 (so the eigenvalues
for each matrix in T are {1, 1} or {1,−1} or {−1,−1}). Suppose there are exactly
three matrices in T . Prove that there are matrices A,B in S such that AB is not a
matrix in S (A = B is allowed). (David Edmonson)

Solution. Let us label the three matrices in T as X, Y, and Z, and let I be the
identity matrix. Let us suppose, by way of contradiction, that there are no A, B in
S such that AB is not in S. If λ is an eigenvalue of X, then λr is an eigenvalue of
Xr. Thus, the eigenvalues of X2 are {1, 1}. So, the Jordan Canonical Form of X2 is(

1 x
0 1

)
, where x = 0 or 1. If x = 1, then the matrices X2n for n ≥ 1 are all different,

but they are all members of T (because of their eigenvalues), but this is not possible

because |T| = 3. So, x = 0, or in other words, X2 =
(

1 0
0 1

)
= I, and thus I ∈ T.

Thus we label the 3 elements of T as X, Y, and I, where I is the identity matrix and
X2 = Y2 = I. Now consider XYX. We have (XYX)(XYX) = XYX2YX = XY2X =
X2 = I, and so the eigenvalues of XYX are ±1, which means that XYX ∈ T, and so
XYX must be either X, Y, or I. We now show this is impossible: If XYX = X, then
XYXXY = XXY = Y, which would yield X = Y. If XYX = I, then XXYXX = XX
= I, which would yield Y = I. However, neither of these options is possible because
X, Y, and I are distinct. Finally, if XYX = Y, then (XY)(XY) = I, which means that
XY ∈ T, which means that XY = X, Y, or I, and this can easily be shown to not be
the case: If XY = X , then XYX = XX = I, but since we are working in the case
where XYX = Y, then this would yield that Y = I, which is a contradiction. If XY
= I, then XYX = IX = X, but since we are working in the case where XYX = Y,
then this would yield that Y = X, which is a contradiction. Finally, if XY = Y, then
XYY = XY2 = X, but XYY = YY = Y2 = I. This would yield that X = I, which is a
contradiction. Thus, a contradiction is shown in all three cases, and hence the proof
is completed. �

5. (Putnam 1990-A5) If A and B are square matrices of the same size such that ABAB =
0, does it follow that BABA = 0? (Shelley)

Solution

No, in cases n ≥ 3 for an n x n matrix. We need only to find a counterexample.
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A =

 0 0 0
0 1 0
0 0 1

 , B =

 0 1 0
0 0 1
0 0 0



AB =

 0 0 0
0 1 0
0 0 1

, so (AB)2 = 0

BA =

 0 1 0
0 0 1
0 0 0

 so (BA)2 =

 0 0 1
0 0 0
0 0 0


There are other matrices that exist that may serve as counterexamples. A useful (and
necessary) tool is to see that for the first matrix (A) with entries i1j1 and the second
matrix (B) with entries i2j2, if you have some entry such that j1 = i2 for matrix A
times matrix B, and that this holds true when (AB) is squared as well.

6. (Putnam 1969-B6) Let A and B be matrices of size 3 × 2 and 2 × 3 respectively.
Suppose that the their product in the order AB is given by

AB =

 8 2 −2
2 5 4
−2 4 5

 .

Show that the product BA is given by

BA =
(

9 0
0 9

)
(Erin)

Solution: It is easy to show that AB has rank 2. Since the rank of BA must be at

least as big as A(BA)B = (AB)2 =

 72 18 −18
18 45 36
−18 36 45

 = 9AB, which has rank 2,

this implies that BA has rank 2 which means that BA is invertible. Then we have
that:
(BA)3 = BABABA = B(AB)2A = B(9AB)A = 9BABA = 9(BA)2

(BA)3 = 9(BA)2 and since BA is invertible, (BA)3(BA)−2 = 9(BA)2(BA)−2

BA = 9I which is what we were trying to show.

7. (Putnam 1994-A4) Let A and B be 2 × 2 matrices with integer entries such that
A,A + B,A + 2B,A + 3B, and A + 4B are all invertible matrices whose inverses have
integer entries. Show that A+5B is invertible and that its inverse has integer entries.
(Ben)

8. (Putnam 1996-B4) For any square matrix A, we can define sin A by the usual power
series:

sinA =
∞∑

n=0

(−1)n

(2n + 1)!
A2n+1.
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Prove or disprove: there exists a 2× 2 matrix A with real entries such that

sinA =
(

1 1996
0 1

)
.

(David Rose)

9. (Putnam 1992-B5) Let Dn denote the value of the (n− 1)× (n− 1) determinant

3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · n + 1


.

Is the set
{

Dn
n!

}
n≥2

bounded? (Derek)

10. (Putnam 1981-B4) A is a set of 5× 7 real matrices closed under scalar multiplication
and addition. It contains matrices of ranks 0, 1, 2, 4 and 5. Does it necessarily contain
a matrix of rank 3? (Frank)

Solution: No by counterexample. Consider the set of all matrices of the following
form, where a, b, c ∈ R:


a 0 0 0 0 0 0
0 a 0 0 0 0 0
0 0 a 0 0 0 0
0 0 0 a b 0 0
0 0 0 b c 0 0


Clearly this set is closed under matrix addition and scalar multiplication. Setting
(a, b, c) = (1, 0, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0) yields matrices of rank 5, 4, 3, 2,
and 1 respectively. Now suppose a = 0. Then the rank of the matrix is at most 2.
When a 6= 0, the rank of the matrix is at least 4. Therefore, no matrix in this set has
rank 3.
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