
site (24)]. Thus, d11Bsw is estimated at 40.6
per mil, and disregarding the d11B value for
M. crassata, pHbest 5 8.05.

Two of four key chemical variables
[pCO2, pH, the total alkalinity (Salkalinity),
and the total dissolved inorganic carbon
(SCO2)] are required to define the thermo-
dynamics of the CO2 system in the ocean
(31). As we only have an estimate of paleo-
pH from our Eocene sample, pCO2 can
only be calculated as a function of one of
the other two key variables (32) (Fig. 3).
Assuming that SCO2 values were the same
as the modern ocean, for pHmin of 7.91 we
calculate pCO2 as 530 to 570 ppm. To
achieve a value of five times modern pCO2

we would have to invoke SCO2 concentra-
tions of more than twice the modern value,
which is unreasonable because it would
imply a larger variation in calcium carbon-
ate saturation in the oceans than is compat-
ible with the geologic record (33). Assum-
ing pHmax for our sample of 8.33 and
modern SCO2 concentrations, we obtain a
minimum estimate of pCO2 of 170 to 190
ppm. Our pHbest estimate of 8.05 with
modern SCO2 gives a pCO2 of 370 to 400
ppm, only slightly higher than modern
concentrations.

Seasonal temperature cycles and biologi-
cal processes mean that the pCO2 of seawater
in the surface mixed layer is not in perfect
equilibrium with the atmosphere, but this de-
viation is generally ,10% in the absence of
upwelling of CO2-rich deep waters (31). As
our sample splits were not taken from an
upwelling area and represent the average pH
recorded by many individuals that lived at
different times, the calculated pCO2 values
give reasonable estimates of the mid-Eocene
atmosphere, provided SCO2 was not greatly
different from the modern value. If our esti-
mate of middle Eocene pCO2 is correct, then
it implies either that Earth’s climate is very
sensitive to small changes in pCO2, or that
the global cooling since the Eocene was not
driven primarily by changes in pCO2, but
rather reflects reorganization of ocean circu-
lation resulting from tectonic opening and
closing of oceanic gateways (2).
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Regular and Irregular Patterns
in Semiarid Vegetation

Christopher A. Klausmeier

Vegetation in many semiarid regions is strikingly patterned, forming regular
stripes on hillsides and irregular mosaics on flat ground. A simple model of plant
and water dynamics based on ecologically realistic assumptions and with
reasonable parameter values captures both of these types of patterns. The
regular patterns result from a Turing-like instability; the irregular patterns arise
when the ecological dynamics amplify slight small-scale topographic variability.
Because of the close agreement between observations and these theoretical
results, this system provides a clear example of how nonlinear mechanisms can
be important in determining the spatial structure of plant communities.

Pattern formation has long interested both the-
oretical biologists (1, 2) and plant ecologists (3,
4). Theoretical studies have shown that local
interactions coupled by dispersal can cause non-
uniform distributions of organisms to develop in
the absence of underlying heterogeneity. Re-
cently it has been shown that such an interaction

between a herbivorous insect and its parasitoid
localizes outbreaks of the herbivore, in ac-
cordance with mathematical models (5). How-
ever, in general, close agreement between the
mathematical theory and observation or experi-
ment has been rare (6). Furthermore, most of
these studies have focused on interactions be-
tween animal populations, not on the interaction
of plants and their abiotic resources.

Vegetation patterns are found in many
semiarid regions including parts of Africa (7–
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11), Australia (12, 13), and Mexico (14). On
hillsides, stripes of vegetation alternate with
patches of bare ground parallel to the hills’
contours (7–14) (Fig. 1); on flat ground, sta-
tionary irregular mosaics consisting of the
same species have been reported (8, 10).
Because of their distinct appearance, the reg-
ular stripes have been more extensively stud-
ied than the irregular patterns. Vegetation
stripes form under conditions of low rainfall,
gentle slope, and on soil on which plants
increase water infiltration (4, 9). The slight
differences between soil within and between
stripes are attributable to the vegetation itself
(4, 9). The plant community composition var-
ies, consisting of grasses in some locations
(7, 10) and shrubs and trees in others (11, 15).

The verbal explanation given for the main-
tenance of striped vegetation is as follows (4,
9): Water does not infiltrate in the bare areas
between vegetation stripes, but flows downhill
to the next stripe where it can soak in and
support plant growth. This water is exhausted
by the downhill side of the stripe, which causes
the next bare area. The stripes slowly move
uphill because colonization of bare areas can
occur only at the moister uphill side of the stripe
(14) and because plants on the downhill side of
the stripe die as a result of inadequate water.

The model is a pair of partial differential
equations for water (W) and plant biomass (N),
defined on an infinite two-dimensional domain
indexed by X and Y. Water is supplied uniformly
at rate A and is lost due to evaporation at rate
LW. Plants take up water at rate RG(W)F(N)N,
where G(W) is the functional response of plants
to water and F(N) is an increasing function that
describes how plants increase water infiltration.
For simplicity I use the linear functions G(W) 5
W and F(N) 5 N, but the results are not sensi-
tive to the exact form of these functions. J is the
yield of plant biomass per unit water consumed.
Plant biomass is lost only through density-inde-
pendent mortality and maintenance at rate MN.
Water flows downhill (in the negative X direc-
tion) at speed V. Plant dispersal is modeled by a
diffusion term with diffusion coefficient D;

more realistic dispersal kernels can be approxi-
mated by a such a term (2). Taken together,
these assumptions result in

]W

]T
5 A 2 LW 2 RWN 2 1 V

]W

]X
(1)

]N

]T
5 RJWN 2 2 MN 1 DS ]2

]X 2 1
]2

]Y 2D N

Unlike previous phenomenological models of
semiarid vegetation (16), this model incorpo-
rates the water dynamics thought to be re-
sponsible for pattern formation. Thus, all re-
sults can be interpreted in terms of parame-
ters that have clear biological meanings, and
the validity of the proposed water-based
mechanism can be assessed. Equations 1 can
be nondimensionalized (17) to

]w

]t
5 a 2 w 2 wn 2 1 v

]w

] x

]n

]t
5 wn 2 2 mn 1 S ] 2

] x2 1
] 2

] y 2Dn

(2)

The nondimensionalized model (Eq. 2) has
only three parameters: a, which controls wa-
ter input; m, which measures plant losses; and
v, which controls the rate at which water
flows downhill.

The first step in analyzing the model is to
determine the behavior of the nonspatial
model obtained by setting space derivatives
equal to zero. The nonspatial model has either
one or three equilibria, which correspond to
spatially homogeneous equilibria of the full
model (Eq. 2). The equilibrium consisting of
no plants, ŵ 5 a and n̂ 5 0, always exists and
is linearly stable. When a . 2m, two non-
trivial equilibria exist. One of these is never
stable and can be ignored; the other is linearly
stable for ecologically relevant parameters
(18). Thus, the model exhibits multiple stable
states, one vegetated and the other bare (19).

Returning to the full model (Eq. 2), I exam-
ine two cases: hillsides and flat ground. On
hillsides, v .. 0. Linear stability analysis can

be used to determine whether regular patterns
can form (2). This analysis shows that for given
mortality rate m and water flow speed v, there is
a critical value of water input a below which
regular stripes form (Figs. 2 and 3, A and B).
This instability is similar to a Turing instability
(1, 2), but differs in that it results from the
interplay between reaction, diffusion, and ad-
vection (20). One consequence of this differ-
ence is that the eigenvalue that determines the
instability of the homogeneous equilibrium is
complex with a negative imaginary term. This
causes the pattern to oscillate in time and the
stripes to move uphill. Although the asymptotic
state is parallel, evenly spaced vegetation
stripes (Fig. 3B), defects in the pattern are
present during the transient dynamics. These
defects appear as forks between stripes (Fig.
3A) that can be seen in aerial photographs of
natural striped vegetation patterns (Fig. 1).
These patterns are robust against environmental
stochasticity in the form of year-to-year varia-
tion in rainfall.

The model is in order-of-magnitude agree-
ment with field observations. Plausible values
of the parameters for trees and grass are as
follows: atree 5 0.077 to 0.23, mtree 5 0.045,
a

grass
5 0.94 to 2.81, mgrass 5 0.45, and v 5

182.5 (21). Given these parameters, the model
predicts tree stripes to have wavelengths from
23 to 67 m and move from 0.4 to 0.6 m year21

and grass stripes to have wavelengths from 8.1
to 28 m and move from 1.4 to 1.9 m year21.
Field observations show that tree stripes vary in
wavelength from 70 to 190 m (8) and may
move from 0.15 to 0.3 m year21 (11); grass
stripes range in wavelength from 1 to 40 m (7,
10) and move from 0.3 to 1.5 m year21 (7).
Because some parameters were not available in

Fig. 1. Regular vegetation stripes near Niamey, Niger.

Fig. 2. Behavior of the model (Eq. 2) as deter-
mined by the water input rate a and plant loss
rate m when water velocity v 5 182.5. The
contours give the dimensional stripe wave-
length in meters as determined by the most
unstable mode found with linear stability anal-
ysis. As water input is decreased or plant loss is
increased, the model predicts a transition from
homogeneous vegetation, to stripes of increas-
ing wavelength, to no vegetation.
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the literature, these were set to plausible values.
Direct estimation of all the parameters from one
field site would allow a more rigorous test of
this model. The quantitative fit of the model to
data would also be improved by considering a
nonlinear facilitation function and functional
response, and by separating water into surface
and subsurface compartments.

On flat ground, linear stability analysis
shows that regular pattern formation is impossi-
ble when the spatially homogeneous equilibri-
um is stable in the nonspatial model. Numerical
solution of the model (Eq. 2) shows that irreg-
ular patterns due to spatial chaos and spiral
waves can arise for parameter values for which
the nonspatial model has a stable limit cycle or
is excitable (22), but these parameters are eco-
logically unrealistic (18). Although this system
exhibits multiple stable states, this cannot ac-
count for the irregular patterns because a patch
of vegetation expands as a traveling wave (2). A
potential explanation for the irregular mosaics is
that slight topographic variation can lead to
large variation in plant density (Fig. 3, C and D).
Higher ground is left bare whereas lower points
support dense vegetation. The ecological dy-
namics amplify the underlying heterogeneity
into a sharply differentiated mosaic. This hy-
pothesis is supported by Belsky’s observation
that water flows from sparsely to densely vege-
tated patches in a grassland mosaic (10). A sim-
ple experimental test of this mechanism would
be to level the bare phase of an irregular mosaic
and see whether the vegetated phase expands.

This model can be used to help understand

the influence of rainfall and grazing on semiarid
vegetation. Linear stability analysis shows that
the wavelength of the regular patterns increases
with decreasing water input, a (Fig. 2), as has
been reported along geographic gradients in
rainfall in natural striped vegetation (9) and
suggested as an indicator of ecosystem degra-
dation (13). Increased grazing can be consid-
ered an additional source of mortality, increas-
ing the nondimensional parameter m through
the dimensional parameter M. As with decreas-
ing a, increasing m causes a transition from
homogeneous vegetation to striped vegetation
of increasing wavelength, to no vegetation (Fig.
2). This explains the observations that intense
grazing can cause striped vegetation to be re-
placed by bare ground (12, 15) and that herbi-
vore exclosures can cause mosaics to be re-
placed by homogeneous vegetation (10).

Although it greatly simplifies the physics
and biology of these systems, this model is in
reasonable agreement with field observations of
regular and irregular patterns in semiarid eco-
systems. It supports the verbal argument that
water-plant dynamics can explain the formation
and maintenance of striped vegetation patterns
and suggests that irregular mosaics are most
likely due to slight topographic variation. These
results show that spatial pattern in ecological
systems can result from both self-organization
and amplification of underlying heterogeneity.
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Fig. 3. (A to C) Snap-
shots of plant densities
obtained by numerical
solution of the model
on a 100 by 100 do-
main (in dimensional
terms, 2500 m2) with
periodic boundary con-
ditions. Darker colors
indicate higher plant
densities. Water flows
from positive x to neg-
ative x. a 5 2, m 5
0.45. (A and B) On a
hillside, v 5 182.5. An
animation of this out-
put is available on Sci-
ence online at www.
sciencemag.org/feature/
data/990551.shlstripes.
qt. (A) During the
transient dynamics, de-
fects in the form of
forks and dead-ends
occur (t 5 100). (B)
Regular stripes on hill-
sides, after transient
dynamics (t 5 1000).
These stripes move uphill at a constant speed. (C) On flat ground with slight topographic variation. Plant
density varies 90-fold, from 0.08 to 7.2. (D) Elevation in the irregular landscape used in part (C), where
darker colors represent lower elevations. The topographic variation is 0.02 times the variation in the
evenly sloping landscapes used for (A) and (B). If the slopes used in (A) and (B) are 1:100, then the
variation in height in (C) is 1 cm.
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