
A review of stability and dynamical behaviors of differential

equations:

scalar ODE: ut = f(u), system of ODEs:







ut = f(u, v),

vt = g(u, v),

reaction-diffusion equation:

ut = D∆u+ f(u), x ∈ Ω, with boundary condition

reaction-diffusion system:






ut = Du∆u+ f(u, v),

vt = Dv∆v+ g(u, v),
, x ∈ Ω, with boundary condition

All equation is in form of Ut = F (U), where u can be a scalar or

vector, spatial independent or dependent
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Abstract Equation Ut = F (U)

Equilibrium solution: U0 such that F (U0) = 0,

linearized operator: F ′(U0)

U0 is stable if the eigenvalues of equation F ′(U0)w = λw are all

with negative real parts.

(Linear behavior) Since the equation Ut = F (U) is approximately

the linearized equation Ut = F ′(U)(U − U0) near the equilibrium

solution U = U0, then U(t) ≈
∑

Ci exp(λit)φi near U = U0, where

(λi, φi) are the eigenvalue-eigenvector pairs of F ′(U0)w = λw.

If λ1 = maxλi, then U(t) ≈ C1 exp(λ1t)φ1 if U(0) ≈ U0.
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Turing bifurcations in reaction-diffusion system

ut = uxx + λf(u, v), vt = dvxx + λg(u, v),

ux(t,0) = ux(t, π) = 0, vx(t,0) = vx(t, π) = 0

If (u0, v0) is an equilibrium so that f(u0, v0) = g(u0, v0) = 0,

then (u0, v0) is also an equilibrium of ut = f(u, v), vt = g(u, v).

Linearized operator: ODE: Jacobian J =

(

fu fv
gu gv

)

PDE: diag(du∆, dv∆) + J =

(

∆ 0
0 d∆v

)

+

(

fu fv
gu gv

)

Eigenvalue problem:















∆φ+ λfu(u0, v0)φ+ λfv(u0, v0)ψ = µφ,

d∆ψ+ λgu(u0, v0)φ+ λgv(u0, v0)ψ = µψ,

φx(0) = φx(π) = 0, ψx(0) = ψx(π) = 0.
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If all eigenvalues of J are with negative real parts (so (u0, v0) is

a stable equilibrium solution for ODE), is (u0, v0) also a stable

equilibrium solution for PDE?

It seems so since the additional part is consist of diffusion oper-

ators only, and diffusion is supposed to stabilizing......

But, as Alan Turing pointed out, (u0, v0) could be an unstable

equilibrium solution for PDE even if it is stable for ODE! So

diffusion has an unstable effect for such system.

How is that possible? Let’s calculate now......
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Ideas: Eigenfunction could be in form of V cos(mx), where

cos(kx) is the eigenfunction of φ′′ = µφ, φ′(0) = φ′(π) = 0,

and V is a vector.

Substituting (φ, ψ) = V cos(kx) into the equation, we get

(λJ − k2D)V = µV,

where J =

(

fu fv
gu gv

)

, and D =

(

1 0
0 d

)

. Thus the eigenvalues

of the reaction-diffusion system are µ1,k, µ2,k, which are eigen-

values of J − k2D, with k = 1,2, · · · .

Question: Can some of µ1,k, µ2,k be positive? Which one is the

largest?
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Classification of linear system Y ′ =

(

fu fv
gu gv

)

Y :

Two real eigenvalues:

1. λ1 > λ2 > 0: source

2. λ1 > λ2 = 0: degenerate source

3. λ1 > 0 > λ2: saddle

4. λ1 = 0 > λ2: degenerate sink

5. 0 > λ1 > λ2: sink

Two complex eigenvalues: λ± = a± bi

1. a > 0: spiral source

2. a = 0: center

3. a < 0: spiral sink
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One real eigenvalue: λ1 = λ2 = λ

1. λ > 0: star source or “trying to spiral source”

2. λ = 0: parallel lines

3. λ < 0: star sink or “trying to spiral sink”

Generic Cases: (most likely, not fragile, and nonlinear system

behaves similar to linear system)

Source, Sink, Saddle, Spiral source, Spiral sink

Stable: sink or spiral sink (real part of eigenvalues is negative)

Unstable: source, spiral source, saddle (at least one of eigen-

value has positive real part)
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Trace-determinant criterion for stability:

λ2
−Aλ+B = 0

A2 − 4B > 0: two real eigenvalues

(1) A > 0, B > 0: source

(2) A < 0, B > 0: sink

(3) B < 0: saddle

A2 − 4B < 0: two complex eigenvalues

(1) A > 0: spiral source

(2) A < 0: spiral sink

Stable: A < 0 and B > 0

Unstable: A < 0 and B > 0, or B < 0
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Calculations:

λµI − [J − k2D] =

(

µ− (λfu − k2) −λfv
−λgu µ− (λgv − k2d)

)

Equation of eigenvalues:

µ2−[λ(fu+gv)−k2(1+d)]µ+[λ2(fugv−fvgu)−k2(dfu+gv)λ+k4d] =

0

or µ2 −Aµ+B = 0

where A = λfu + λgv − k2 − k2d

B = λ2(fugv − fvgu) − k2(dfu + gv)λ+ k4d

We want it to be unstable, thus either A < 0 and B > 0, or B < 0,

but we also want it is stable w.r.t. ODE, thus A′ = fu + gv < 0

and B′ = fugv − fvgu > 0, and it implies A > 0. So we must have

B < 0 (saddle type, and only one of µ1,k or µ2,k is positive.)
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So we hope B = λ2(fugv−fvgu)−k2(dfu+gv)+k4d < 0 for some

integer k. Since fugv − fvgu > 0, then dfu + gv > 0 otherwise

B > 0 for all λ, k.

So we get necessary conditions of Turing instability:

fugv − fvgu > 0, fu + gv < 0, dfu + gv > 0

fu and gv must be of different sign, here we assume that fu < 0

and gv > 0. (so 0 < d < 1)

Now from λ2(fugv − fvgu) − k2(dfu + gv) + k4d < 0, we solve d.



d <
λ(gvk2 − λDetJ)

k2(k2 − λfu)
where detJ = fugv − fvgu.

So Turing instability will occur if

fugv − fvgu > 0, fu + gv < 0, dfu + gv > 0, fu < 0, gv > 0,

0 < λ <
gvk2

DetJ
, and 0 < d <

λ(gvk2 − λDetJ)

k2(k2 − λfu)
.

When these conditions are met, then k-th mode is unstable

(cos(kx) is an eigenfunction). The band of unstable modes is

given by k2 ∈ (a1, a2), where a1 and a2 are the roots of equation

λ2(fugv − fvgu) − a(dfu + gv)λ+ da2 = 0,

a =
λ

2d

[

(dfu + gv) ±
√

(dfu + gv)
2
− 4dDetJ

]

.
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An artificial example:

J =

(

fu fv
gu gv

)

=

(

−3 2
−4 2

)

For ODE, it is stable, since A′ = fu + gv = −1 < 0 and B′ =

fugv − fvgu = 2 > 0.

We also have fu = −3 < 0 and gv = 2 > 0

Hence the k-th mode is unstable if

0 < λ < k2, 0 < d < dk(λ) ≡
2λ(k2 − λ)

k2(k2 + 3λ)

d1(λ) =
2λ(1 − λ)

1 + 3λ
, d2(λ) =

2λ(4 − λ)

4(4 + 3λ)
, d3(λ) =

2λ(9 − λ)

9(9 + 3λ)
.

11



Parameter (λ, d) regions for Turing instability
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Horizontal axis is λ, vertical one is d, and the graphs are d1(λ),

d2(λ) and d3(λ).

12



For example, if (λ, d) = (2,0.1), then the band of unstable mode

is (2.54,31.457), so k-mode (k = 2,3,4,5) are unstable. From

calculation of Maple, we find that the reaction-diffusion system

has 4 positive eigenvalues. The largest eigenvalue is µ1,3 = 1.114

with eigenvector V = (0.316,1.273).

Hence near the equilibrium point, if we perturb the system, we

have
(

u(t)
v(t)

)

≈

(

u0
v0

)

+ e1.114t cos(3x)

(

0.316
1.273

)

A spatial pattern with period 2π/3 is generated by Turing in-

stability. The characteristic wave number is k = 3, and the

characteristic wave length is 2π/3.
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Turing bifurcations:

When the parameters (λ, d) change, then k-mode can turn from

stable to unstable. For example, in our example, when λ = 2 and

d decreases from 0.3 to 0, it cuts through d2(λ), d3(λ), d4(λ),

and d5(λ). Each time it cuts a dk(λ), k-mode becomes unstable.

Similar phenomenon occurs if we changes λ. Each time a k-mode

becomes unstable, a curve of equilibrium solutions emerges from

the constant equilibrium solution.

The properties of these curves are still unclear for most reaction-

diffusion systems. People assume that the system will generate

a spatial pattern with the most unstable mode of the constant

solution, but this is not verified mathematically. However the

Turing instability helps us when we do numerical simulation of

the system.
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Generalizations:

What we consider here is a problem in 1-d domain (0, π), and

without cross diffusion (ut = d1uxx + d2vxx + f(u, v)) and con-

vection ux.

In 2-D square domain S = (0, π) × (0, π), the eigenfunction will

be cos(mx) cos(ny) for m = 0,1, · · · and n = 0,1, · · · . Similar

but more complicated calculations lead to Turing instability. If

the eigenfunction is in form of cos(mx) or cos(ny) (without the

other variable), the spatial pattern is striped; If the eigenfunction

is in form of cos(mx) cos(ny) (with both variables), the spatial

pattern is spotted.
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