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Mixed-type distribution plots

Christopher Weld1 and Lawrence Leemis2

Abstract
Plotting is among the most effective ways to quickly and accurately describe a probability distribution. It
makes often complex information accessible, enabling intuition for respective outcomes at a glance. Matters
complicate, however, for mixed-type distributions. Mixed-type distributions contain both continuous and dis-
crete components, and accurately portraying those on a single axis can prove difficult—misleading intuition
as a consequence of pulling two otherwise disjoint components into focus together. This article examines the
challenges of maintaining the simple, concise, and accurate format of traditional probability distribution plots
for mixed-type distributions. We illustrate issues arising within this plot classification paradigm, and why a
secondary axis is uniquely suited to improve its communication. An algorithm is devised to consistently scale
such plots so that they better coincide with intuition. National Football League football starting field position,
meteorological data, and financial instruments provide examples demonstrating effectiveness of this plot
technique.
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Introduction

Mixed-type distributions have both continuous and

discrete components and are important to applications

ranging from business and finance, to actuarial sci-

ence, meteorology, sports analytics, and queuing.

Their effective manipulation and communication is an

important component within these fields. Capturing

the shape of the probability of a mixed-type distribu-

tion in a single comprehensive plot, however, is

nontrivial.

Plots are often best to quickly convey the nature of a

dataset, but they can also deceive. Poor techniques—

inappropriate choices for axes, labels, scale, color, and

so on—are often to blame for deceptive illustrations,

but when it comes to modeling mixed-type probability

distributions, it is more so a matter of poor circumstance

combined with little existing precedence or guidance.

The marriage of otherwise disjoint continuous and dis-

crete probability components lies at the heart of this

graphic mischief.

Implications of a mixed-type distribution plot

Two examples will highlight challenges inherent in

plotting mixed-type distributions. Each confronts the

visual implications of pulling continuous and discrete

components into focus under a common set of axes.

The plot pairs in Figures 1 and 2 illustrate how at-a-

glance intuition suffers within this paradigm. Mixed-

type distribution plots can distort perception of the

relative contribution of their continuous and discrete

components.
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Figure 1 concerns mixed-type random variables X

and Y . The random variable X is deterministic(0.1)

with probability 0.9 and triangular(0, 0:3, 0:6) with

probability 0:1. The random variable Y is determinis-

tic(10) with probability 0.08 and triangular(0, 30, 60)

with probability 0:92. Ignoring axis scales, both plots

appear identical. This does not, however, imply their

relative contributions of continuous and discrete com-

ponents are proportional. In fact, this example illus-

trates the counterpoint.

Figure 2 defines random variable X as Bernoulli

(1=2) with probability 0:5 and uniform(0, 1) with

probability 0:5. The random variable Y is the transfor-

mation Y = g(X)=10X . This time, despite similar

composition and identical ratios of continuous and

discrete components, vastly different plots result.

Both of the preceding examples succeed in present-

ing information in a concise and accurate way; each

completely captures the probability distribution it rep-

resents. Where they fail, however, is in their ability to

communicate that information effectively. Mixed-type

distributions unearth a paradigm unfamiliar to many—

pulling continuous and discrete into focus together—

and can deceive without sufficient inspection.

Background

Tufte1 defines graphic excellence as communicating

complex ideas with clarity, precision, and efficiency.

He was among several prominent statistical graphics

researchers—including Tukey2 and Cleveland3—who

brought focus to the topic in the late twentieth

century, and the field of data visualization continues

to grow. Its current popularity is not surprising given

the recent rise of data-intensive scientific discovery,

and the need to visualize information often too com-

plex and/or cumbersome to make sense of numerically

or through formulas, as highlighted by Chen and

Zhang.4 Despite growing interest in the field, the

authors found no evidence of specific attention given

to the visualization of mixed-type random variables.

This work is, however, an extension of the authors’

Winter Simulation Conference presentation, also

available in its proceedings.5

Mixed-type random variables in the literature span

back to Aitchison6 who identified a dichotomy in some

demand models, whereas a (potentially continuous)

parametric distribution represents the purchase

amount of a given commodity with exception of an

uncharacteristic spike for those abstaining from pur-

chase. Tweedie7 is later credited with a similar distri-

bution bearing his name, whereas a point mass

probability at zero may complement a positive contin-

uous component. Mullahy8 introduced hurdle models,

which use a sequenced Bernoulli trial and subsequent

(potentially continuous) distribution outcome for

those successfully completing the Bernoulli ‘‘hurdle.’’

Zero-inflated data models—a term adopted in the early

1990s largely in conjunction with Lambert’s9 introduc-

tion of zero-inflated Poisson (ZIP) distribution—differ

from hurdle models only in the their accounting of

structural versus sampling zeros. Mixed-type distribu-

tions are common in environmental models such as

measured rainfall as shown by Feuerverger10 and

Figure 1. Similar plots, despite vastly different continuous and discrete proportions.

Figure 2. Dissimilar plots, despite identical relative continuous and discrete proportions.
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contamination concentration levels as shown by Owen

and DeRouen.11 Rainfall is among the most frequently

cited mixed-type distribution due to its important

implications within the field of hydrology.

Football starting field position

Football starting field position after a kickoff is a

mixed-type distribution. Returns within the field of

play comprise its continuous outcomes, and discrete

outcomes result from National Football League

(NFL) rules as given by Goodell.12 A summary of

2016 NFL regular season kickoff results as assembled

by Horowitz13 is given in Table 1.

Continuous kickoff data are modeled with a kernel

density function having a Gaussian smoothing kernel

with a bandwidth of 1.84. Figure 3 illustrates the result-

ing mixed-type probability distribution. Isolating its

continuous component produces Figure 4. In total, two

distinct modes are evident in Figure 4. The first—at the

22 yard line—represents distances most often attained

before a returner is stopped. The second—just past

mid-field—is a result of the 54 onside kick attempts

during the season, as confirmed by the dotted line.

Plot analysis and alternatives

Figure 3 is accurate but ineffective. Its continuous

portion provides insufficient detail. The nuanced and

noteworthy peaks and troughs evident in Figure 4 are

indistinguishable within the low profile of Figure 3.

The relative influence of its continuous component—

representing 40% of all outcomes—also appears

understated in contrast to its discrete outcomes.

Finally, several infrequent discrete outcomes appear

indistinguishable.

Before looking at a mixed-type probability function

plot alternative, first consider its cumulative distribu-

tion plot, shown in Figure 5. Although it does well por-

traying relative discrete and continuous component

sizes, it does have flaws. Small discrete outcomes at 0,

40, and 100 yards are nearly imperceptible as a jump

in the cumulative distribution. Also, details regarding

the peaks and troughs of its continuous component

(see Figure 4) are difficult to extract from Figure 5.

These issues now motivate the pursuit of a new

Table 1. Summary data for 2016 NFL regular season kickoff starting field position outcomes—measured as the distance
from the return team’s end zone. End zone results (touchdowns or safeties) in either direction are assigned to those
respective goal lines.

Type Category Starting field position Frequency Probability

Continuous Returned in the field of play (0, 100) 1047 1047

2593
ffi 0:404

Discrete End zone (return team) 0 3 3

2593
ffi 0:001

Touchback 25 1518 1518

2593
ffi 0:585

Out of bounds 40 18 18

2593
ffi 0:007

End zone (kicking team) 100 7 7

2593
ffi 0:003

Total 2593 2593

2593
= 1:000

Figure 3. A mixed-type distribution representing 2016
NFL starting field position.

Figure 4. The continuous component of starting field
position isolated.
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probability function plot, a single plot capable of pro-

viding this valuable perspective and intuition.

The methodology producing Figure 6 incorporates

two major revisions to enhance readability: a second-

ary vertical axis and an alternate scale. Secondary axes

often draw criticism for their ability to mislead, but

mixed-type distributions appear uniquely apt to

accommodate them considering their unfavorable gra-

phic consequences under a single set of axes (Figures

1 and 2). The secondary vertical axis enables custom

scaling to match intuition. This axis also accommo-

dates relative comparison of small discrete spikes by

accentuating them with its square root scale. It is cho-

sen over a logarithmic scale to mitigate the risk of

exaggerating the influence of these infrequent discrete

events.

Two final touches complete Figure 6. First, mid-

plot labels state respective continuous and discrete

portion contributions. This is an effective convention

applicable to any mixed-type distribution plot. Next,

two silhouettes—a football kicker and a returner cour-

tesy of Freepik14—are added; a subjective addition

with adequate payoff for this particular example con-

sidering a kickoff can occur in either direction. They

provide perspective and context by orienting to the

underlying scenario responsible for the distribution.

Methodology

Scaling relative continuous and discrete component

heights to align with intuition using a secondary axis—

as seen in Figure 6—requires user calibration. One

heuristic to facilitate this subjective scaling is to adjust

the maximum height of the continuous component,

relative to its discrete counterpart(s), according to the

total probability it represents. Using this methodology,

if the integrated probability under the continuous

component equals that of a discrete spike in the

mixed-type random variable, then those two compo-

nents also share maximum plot heights. This equiva-

lence arguably aligns with intuition and will, therefore,

anchor our calibration of continuous and discrete plot

heights. It implies that a discrete spike height exceed-

ing the maximum height of its continuous counterpart

also exceeds its probability and vice versa. For exam-

ple, in Figure 6, the maximum height of the continu-

ous component is roughly two-thirds the height of the

maximum discrete spike, since their respective prob-

ability ratio is 0.404:0.585.

Figure 5. Cumulative distribution function of mixed-type
distribution, X.

Figure 6. Secondary axes with discrete square root scale for mixed-type distribution, X.

314 Information Visualization 18(3)



Algorithm 1 scales the primary and secondary axes

to attain the aforementioned results. It identifies verti-

cal limits for each respective axis, which, in turn, dic-

tate relative plot heights. Vertical limits are the

minimum and maximum values visible in the pictured

plot area and may differ from the range. For example,

in Figure 6, the probability density function (PDF)

axis maximum vertical limit is 0:031, whereas its PDF

maximum range value is 0:021.

A descriptive summary of Algorithm 1 follows. Its

conditional expression from lines 1–7 sets PDF and

probability mass function (PMF) vertical limits based

on its dominant component—the continuous compo-

nent or discrete spike accounting for the greatest prob-

ability and, therefore, determining the highest point on

its corresponding plot. In lines 1–3, its maximum PDF

height dictates those limits. Lines 4–6 address when a

discrete spike is the dominant plot value. In that case,

line 4 scales its PDF vertical limit by the relative prob-

ability of that maximum discrete spike to its continu-

ous component probability, max
i
fdig=

Ð ‘

�‘
f (x)dx. Lines

8–12 then compare PDF and PMF vertical limits. The

closer these limits are to each other, the lesser the

impact of the secondary axis. At some point—if the

scales are close enough—simplification to a single ver-

tical axis may benefit plot clarity more than a nuanced

adjustment in scale via a secondary axis. This thresh-

old for close enough is subjective.

Algorithm 1 often improves mixed-type distribution

illustrations; however, matching plot proportions to

intuition remains a subjective endeavor. Pulling con-

tinuous and discrete components into focus together is

an unfamiliar paradigm, so the at-a-glance impression

of these plots will vary from individual to individual.

Influential to its audience’s plot perception is also the

continuous distribution shape, whose countless possi-

ble permutations are not taken into account under this

simple scaling algorithm. Nonetheless, Algorithm 1

holds up well for many circumstances and is a recom-

mended starting point when plotting mixed-type dis-

tributions. Examples of its performance are given in

the next section.

Additional examples

This section applies Algorithm 1 to three examples.

The latter two are real-world systems, but first, we will

revisit Figure 1. Figure 7 applies Algorithm 1 to the

Figure 7. Plots from Figure 1 rescaled with Algorithm 1 scaling methodology.

Algorithm 1: Mixed-Type Distribution Plots Algorithm

input: f(x) continuous component
fd1, d2, . . .g  discrete PMF component(s) corresponding to the support values fx1, x2, . . .g

output: PDF and PMF vertical limits such that the maximum height of the continuous component scales, relative to its
discrete counterpart(s), according to the total probability it represents

1 if
Ð ‘

�‘
f(x)dx . max

i
fdig then

2 set PDF vertical limits to ½0, max
x
ff(x)g�;

3 set PMF vertical limits to ½0,
Ð ‘

�‘
f(x)dx�;

4 else
5 set PDF vertical limits to ½0, max

x
ff(x)g � ( max

i
fdig=

Ð ‘

�‘
f(x)dx)�;

6 set PMF vertical limits to ½0, max
i
fdig�;

7 end
8 if PDF vertical limits ’ PMF vertical limits then
9 use single vertical axis with limits ½0, maxf

Ð ‘

�‘
f(x)dx, max

i
fdigg�

10 else
11 use respective PDF and PMF vertical axes limits for primary and secondary axes;
12 end
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distributions given in Figure 1, yielding results more

in line with intuition.

Percentage sunshine is important to solar power

generation and serves as the next example. Percentage

sunshine is the fraction of possible daylight hours—

regardless of length of-day—with direct sunlight (no

cloud cover) as recorded at the regional airports of the

respective cities illustrated in Figures 8 and 9 as

reported by National Oceanic and Atmospheric

Administration (NOAA).15 It has discrete components

at 0% and 100% and is one of many meteorological

systems exhibiting mixed-type distribution behavior.

Striking contrast between the continuous portion

shape in Figures 8 and 9 gives insight into the perfor-

mance of Algorithm 1 under various circumstances,

and some inconsistencies are noteworthy. Both feature

roughly 60% continuous probability which accord-

ingly dictates their respective highest plot points; how-

ever, the continuous portion of Figure 9 visually

garners additional emphasis by maintaining relatively

high values throughout its support, whereas the con-

tinuous profile for Figure 9 drops substantially at any

distance from its mode. A similar circumstance

hypothetically arises if the support range must extend

to account for a discrete outlier or due to a broader—

possibly piecewise—continuous support. Extending its

support to include those values implicitly reduces the

allotted graphic real estate (and perceived influence)

of its continuous component. Despite the need to

remain mindful of unique circumstance, results using

Algorithm 1 remain a generally effective starting point

for visualization.

Financial instruments provide a final example. These

monetary contracts dictate terms agreed to by all parties

and come in many varieties. Some offer investors an

opportunity to mitigate risk of loss at the expense of

unrealized gains should the market outperform expecta-

tions. A structured note is one type of financial instru-

ment and will illustrate this hypothetical example: An

investor agrees to a structured note terms, whereas their

money is indexed against the S&P 500. Their profits for

the upcoming year are capped according to its terms—

say, at 12%—however, they are compensated with

downside protection, meaning their original investment

is protected from loss. In other words, if the S&P 500

has net losses for the year, they would get a return of

their original investment. Assuming the S&P 500 his-

toric geometric mean of 9:5% with standard deviation

of 19:7%—as assembled by Damodaran16—yields the

mixed-type distribution in Figure 10.

Figure 9. Daily Sunshine for Phoenix, Arizona, for calendar years 1966–1978.

Figure 8. Daily Sunshine for Juneau, Alska, for calendar years 1966–1978.
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Summary

Statistical graphics are a tremendous vehicle to quickly

communicate the nuanced landscape of a stochastic

variable, but plotting mixed-type distributions is a

nontrivial endeavor. Pulling components of continu-

ous and discrete probability into focus together often

occurs at the expense of equitable presentation of

each. To counter these implications, it is necessary to

balance the complexities inherent with changing the

standard paradigm view of a probability distribution

with its associated benefits. The relative portrayed

sizes of its continuous and discrete components are at

the center of this deliberation, with the goal of avoid-

ing reader misinterpretation. The fickle nature of

mixed-type distribution plots justifies consideration of

a secondary axis, capable of adjusting relative continu-

ous and discrete component plot heights to better

align with intuition. An algorithm to customize the

two components tunes the maximum height of the

continuous component, relative to its discrete counter-

part(s), according to the total probability it represents.
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