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ABSTRACT

We consider the problem of using either grouped observations of a counting process over a period or
prescribed constant mean counts to create an intensity function for a Non-Homogeneous Poisson Process
(NHPP) that estimates the observed process, and satisfies several constraints. First, we require that the
estimator’s mean value over an observation interval be equal to the mean number of observations in that
interval; second, we require that the intensity function be continuous; third, we require that the function
be piecewise linear. Optionally, we may also require that the intensity value at the end of the period be
identical to the intensity value at the beginning of the period, for application in contexts in which the period
of interest is inherently cyclic, e.g., a day, or a week. An objective of the estimator is that it should be
“smooth,” which will be defined subsequently.

Our approach is to define a class of continuous piecewise-linear intensity functions and formulate
the problem as a constrained quadratic programming problem, approachable through the solution of a
simultaneous set of linear equations. We describe the method, identify conditions under which feasible
solutions are assured to exist, and study the behavior of the solutions on an example problem.

1 INTRODUCTION

An NHPP model is useful in a variety of settings, most notably queueing and reliability. The arrival
stream to a queue often has “rush periods” that are inconsistent with a Poisson or renewal process. The
fluctuating arrival rate can be captured in an NHPP model. In reliability, the rate of occurrence of failures
of a repairable system typically increases with time. The NHPP model is often used to describe the
probabilistic mechanism associated with the failure times of such a deteriorating system, where repair
times are considered to be negligible and are not explicitly modeled. In general, we desire a stochastic
model for a series of event times that occur at random points in time. The probability distribution of these
event times are controlled by the non-negative intensity function λ (x) of the NHPP, which, for example,
is the arrival rate in a queueing setting and the rate of occurrence of failure in a reliability setting. NHPPs
are also defined by the cumulative intensity function Λ(x) =

∫ x
0 λ (y)dy, which is the expected number of

events that occur by time x; in Chen and Schmeiser (2013) one says that λ () is mean-constrained. Four
major aspects of NHPP models are determining probabilistic properties of NHPPs, estimating the intensity
function or cumulative intensity function from a data set, assessing the fit of the NHPP, and random process
generation. More details concerning these aspects of NHPPs are given, for example, in Law (2007).

This paper focuses on the problem of constructing an estimate of the intensity function from a data set
that consists of counts over time subintervals or prescribed target mean values over time subintervals. More
specifically, we address the question of how to smooth the piecewise-constant estimator of the intensity
function in a similar fashion to the I-SMOOTH estimator of Chen and Schmeiser (2013) and the piecewise-
linear estimator of Nicol and Leemis (2014). The intensity function estimator that we formulate breaks
each subinterval into equal-length pieces and determines a piecewise-linear intensity function estimate that
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satisfies non-negativity and is mean-constrained, while maximizing the smoothness of the estimator. The
development here is not statistical in nature, but is rather a constrained optimization problem that converts
target mean values, obtained from data or prescribed, to an intensity function that might more accurately
reflect the population intensity function. The words “intervals,” “subintervals,” and “cells” are synonyms.

The attraction of a piecewise-linear intensity function is that sampling arrivals from an NHPP is
computationally efficient using the inverse transform method. For an NHPP with any arbitrary cumulative
intensity function Λ(x), if E1, E2, . . . denote the event times from a unit homogeneous Poisson process,
then Λ−1(E1), Λ−1(E2), . . . are the associated event times for the NHPP. Since the intensity function in
the estimator that we are suggesting here is piecewise linear, the cumulative intensity function is piecewise
quadratic. So inverting the cumulative intensity function involves just solving a quadratic equation. The
inversion algorithm is synchronized in the sense that one random number produces one event time for
the NHPP. The inversion algorithm is monotone in the sense that a small random number will result
in a small time between events in the unit homogeneous Poisson process, which will result in a small
time between events in the nonhomogeneous Poisson process. The process generation algorithm for the
algorithm developed here will be given in a subsequent section.

Law (2007) gives the maximum likelihood estimator for a piecewise-constant intensity function from
count data as the ratio of the total number of events observed in an interval over all realizations to the
number of realizations times the length of the interval. In this paper, we denote this ratio for interval i as
simply ci, for i = 1,2, . . . ,n. The ci values will be calculated from data in most applications, but will be
treated as prescribed constants for the rest of the paper.

2 MODEL

We choose units so that x0 = 0,x1 = 1, . . . ,xn = n denote the interval endpoints, and use ci to denote the
average count of occurrences between xi−1 and xi, for i = 1,2, . . . ,n. We will refer to ci as the “cell area.”
The problem of interest is to find a continuous piecewise-linear intensity function λ (x) with the equal-area
property that for every i = 1,2, . . . ,n, ∫ xi

xi−1

λ (x) dx = ci.

We want λ (x) to be relatively smooth. We use the term “cyclic context” from Chen and Schmeiser
(2013) to describe an NHPP model which requires that λ (0) = λ (n). When this constraint is not present,
this will be referred to as the “finite-horizon” context. The cyclic context arises when the NHPP models
event times over some cyclic period such as a day, or a week. From the point of smoothness, it recognizes
that the function behavior near λ (n) is close to the function behavior near λ (0) because time “wraps
around,” and we want the same continuity of intensity between the last and first intervals as we do other
adjacent intervals. This would be the case, for example, for modeling patient arrival times to an emergency
room over a 24-hour cycle. It would be reasonable to require that the intensity-function values match at
the beginning and end of a cycle: λ (0) = λ (24).

Our approach will be to partition each cell into w equal-width sub-cells; define λ () at the boundary
of each sub-cell; and define λ () within sub-cell boundaries as the linear interpolation of intensities at its
boundaries. The solution vector y thus has n ·w+1 components, with yk = λ (xi + j/w), where i = bk/wc
and j = k mod w, for k = 0,1,2, . . . ,n ·w. This is illustrated in Figure 1 for w = 3. The continuity of λ ()
we require is achieved by construction; the non-negativity of λ () will be a constraint on the solution vector,
and, if desired, we can require yn·w = y0 to induce a “wrap-around” solution when the model is used in the
cyclic context.

2.1 Feasibility

We now turn to the feasibility of solutions, looking first at the feasibility of a solution over a single cell.
From cell-focused results we can develop a global result.
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Figure 1: Intensity Function Structure

Suppose we are given cell boundary intensities λ (xi−1) = yl and λ (xi) = yr. A solution is locally
feasible if we can find w−1 interior intensities such that the area under the linear segments so defined is
ci. It turns out that a locally feasible solution is possible if and only if ci is sufficiently large relative to yl
and yr.

Lemma 1 Given intensity function values λ (xi−1) = yl and λ (xi) = yr and cell area ci, a locally feasible
solution satisfying the equal-area property exists if and only if (yl + yr)/(2w)≤ ci.

Proof. The necessity of the condition can be seen by observing that the minimal area of a locally feasible
solution occurs when λ (x) drops as rapidly as it can from yl to value 0 over a span of of 1/w on the
x-axis, stays at 0 until distance 1/w before yr, and only then rises as it eventually must to intensity yr. This
minimal area is (yl + yr)/(2w).

To see that (yl + yr)/(2w)≤ ci is a sufficient condition as well, suppose that (yl + yr)/(2w)≤ ci, and
consider the solution in which all interior intensity function heights are h for some real-valued, non-negative
constant h. (2wci− (yl + yr))/(2(w−1)) is the solution for h in the equal-area equation

ci = (yl +h)/(2w)+(w−2)h/w+(h+ yr)/(2w),

which is non-negative and making this a locally feasible solution. �
Global feasibility is achieved when each cell has a locally feasible solution, subject to the continuity

constraint. Imagine a solution in which λ (xi−1) = (ci−1+ci)/2 for i= 2,3, . . . ,n; we specify the intensities at
the cell boundaries as the average of the adjacent cell areas. Lemma 1 indicates that a locally feasible solution
over xi−1 to xi exists if ((ci−1 + ci)/2+(ci + ci+1)/2)/(2w)≤ ci. This occurs if ci−1 + ci+1 ≤ (4w−2)ci,
leading to Lemma 2 below, which codifies this intuition that a global feasible solution exists if the cell
areas do not change “too fast.”

Lemma 2 Suppose that ci−1 + ci+1 ≤ (4w− 2)ci for i = 2,3, . . . ,n− 1. Then there exists an intensity
function λ () which is continuous and piecewise linear with each cell having a locally feasible solution.
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Observing that w is a user-selected parameter, a corollary to Lemma 2 is that for any given problem
instance we can always find a large enough w to ensure the existence of a globally feasible solution.
Lemma 3 provides guidance concerning the value of w required to satisfy the non-negativity constraint.

Lemma 3 Define

w∗ = max
i

{⌈
ci−1 +2ci + ci+1

4ci

⌉}
.

Then constructing a solution using w∗ sub-intervals per cell ensures a globally feasible solution.
Proof. The argument to the maximum function is the integer solution for w to the inequality expressed in
Lemma 2. The maximum identifies the bottleneck limiting global feasibility; eliminate the bottleneck and
the conditions of Lemma 2 are met. �

2.2 Smoothness

Experience experimenting with estimators showed us the potential for the computed intensity function to
make sharp turns. Given the relative coarseness of the ci values, rapid changes beyond what is needed for
consistency with that data seems to us to be an overly strong statement about the underlying model’s behavior.
The motivation for the present paper is to consider function smoothness as a desirable characteristic and
find ways of computing smooth functions.

At each of our functions’ knot points an angle is formed between the line segments joined at the
knot. The larger the magnitude of that angle, the less smooth is the function at that knot point. In fact,
if we score the function smoothness at a knot point as the square of the angle’s magnitude and score the
overall function smoothness as the sum of the knots’ smoothness scores, we place the problem of finding
an optimally smooth function in a tractable mathematical setting. Thus we define β (y) to be the overall
function smoothness. In the cyclic context, we equate y0 = yn·w and include comparison of the first and
last segments:

β (y) = w2
n·w

∑
i=0

(
y(i+1) mod n·w−2yi + y(i−1) mod n·w

)2 ;

in the finite-horizon context, we take yn·w as a free variable:

β (y) = w2
n·w−1

∑
i=1

(yi+1−2yi + yi−1)
2 .

The important point is that β (y) is quadratic in y, which means that we’re able to formulate the problem of
finding a solution that minimizes β (y) as a constrained quadratic program. Before turning to formalization
of these constraints, we consider expression of β (y) in standard matrix form for quadratic equations.

There is a pleasing symmetry in β (y) in the cyclic context; every component of y has the same
dependency structure, on variables with indices within one and two values (modulo n ·w) of the variable’s
own. In the expansion of β (y), the quadratic coefficient of yi is 6w2, and the linear coefficient is
(2yi−2− 8yi−1− 8yi+1 + 2yi+2)w2, where we understand the indexing arithmetic to be modulo n ·w. We
transform these coefficients for expression in quadratic matrix form (1/2) yT Q y:

Qi, j =


12w2 if i = j
−8w2 if j = (i+1) mod (n ·w), or j = (i−1) mod (n ·w)
2w2 if j = (i+2) mod (n ·w), or j = (i−2) mod (n ·w).
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For example, when n = 4 and w = 2, the circulant 8×8 matrix Q in the cyclic context is

48 −32 8 0 0 0 8 −32
−32 48 −32 8 0 0 0 8

8 −32 48 −32 8 0 0 0
0 8 −32 48 −32 8 0 0
0 0 8 −32 48 −32 8 0
0 0 0 8 −32 48 −32 8
8 0 0 0 8 −32 48 −32
−32 8 0 0 0 8 −32 48


.

Matrix Q is slightly different in the finite-horizon context. To begin with, it has one more row and one
more column because it has one more variable. The pattern above is retained (without the wrap-around
effect) for all but the first two and last two rows. Here (and only here) the effect of y0 6= yn·w is reflected
in the equations, and we have different entries for the following elements:

Q0,0 = 2w2,Q0,1 =−4w2,

Q1,0 =−4w2,Q1,1 = 10w2,

Qn·w+1,n·w+1 = 2w2,Qn·w+1,n·w =−4w2,

Qn·w,n·w+1 =−4w2,Qn·w,n·w = 10w2.

For the n = 4 and w = 2 case, the symmetric, pentadiagonal 9×9 matrix Q in the finite-horizon context is

8 −16 8 0 0 0 0 0 0
−16 40 −32 8 0 0 0 0 0

8 −32 48 −32 8 0 0 0 0
0 8 −32 48 −32 8 0 0 0
0 0 8 −32 48 −32 8 0 0
0 0 0 8 −32 48 −32 8 0
0 0 0 0 8 −32 48 −32 8
0 0 0 0 0 8 −32 40 −16
0 0 0 0 0 0 8 −16 8


.

The general quadratic form requires us to include terms that are constants times a single variable, and
ordinary constants:

β (y) = (1/2) yT Q y+ sT y+K. (1)

For our specific function there are no non-zero terms other than what is captured by Q, so that K is 0 and
s is a zero-vector with as many elements as there are solution variables. We will refer to s again when we
solve the optimization problem.

2.3 Constraints

When λ () is used to sample NHPPs, we want the expected number of counts that occur between time
xi−1 and xi to be the cell area, ci. The expected number of counts induced by λ () is the area under the
curve, which by our construction is the area under w linear segments. It is not difficult to see that the
area under a linear segment passing from height u to height v over a span of length 1/w in the x-axis
is (1/w)(1/2)(u+ v) = (u+ v)/(2w). Applying this observation to each of w segments, the equal-area
constraint for cell i gives us

ci =
∑

w−1
j=0 (yi·w+ j + yi·w+ j+1)

2w
, or equivalently, yi·w +2

w−1

∑
j=1

yi·w+ j + y(i+1)·w = 2wci,
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and we have one such constraint for each cell. We express this in matrix form as E y = d, where y is the
solution vector, d is a vector with n elements: di = 2 ·w ·ci, and E is a n× (n ·w) sparse matrix in the cyclic
context and a n× (n ·w+1) sparse matrix in the finite-horizon context. For all i, row i of E is zero from
column 0 to column i ·w−1, has a ’1’ in column i ·w, has a ’2’ in columns i ·w+1 through i ·w+w−1,
a ‘1’ in column (i+ 1) ·w, with the remaining columns being 0. When there are n = 3 cells and w = 3
sub-intervals within a cell, the 3×9 matrix E in the cyclic case is

E =

1 2 2 1 0 0 0 0 0
0 0 0 1 2 2 1 0 0
1 0 0 0 0 0 1 2 2


and the 3×10 matrix E in the finite-horizon case is

E =

1 2 2 1 0 0 0 0 0 0
0 0 0 1 2 2 1 0 0 0
0 0 0 0 0 0 1 2 2 1

 .
We have also the non-negativity constraint, which in vector form is y≥ 0, where 0 is a vector of 0’s, and
the inequality comparison is done on a component-by-component basis.

3 OPTIMAL SMOOTHNESS

We have now all the machinery in place to express the problem and solve it. We seek y that minimizes
the quadratic form expressed as Equation (1), subject to the equality constraint E y = d and the inequality
constraint y≥ 0.

There is a large literature on the general solution to this problem, e.g., Wolfe (1959), Boyd and
Vandenberghe (2004), Dostal (2009), and Fletcher (2013). For the purposes of conceptual demonstration,
our solution approach will be to ignore (temporarily) the inequality constraint and proceed with only
the linear equality constraint. When Q is well-behaved (and our Q is) a standard technique (Boyd and
Vandenberghe 2004) in such a situation is apply to Karush–Kuhn–Tucker conditions that use Lagrange
multipliers to develop an equivalent system[

Q ET

E 0

][
y
g

]
=

[
0
d

]
,

where g is a vector of Lagrangian multipliers to be solved for as well. Solution of this system of linear
equations yields the vector y that minimizes Equation (1), subject to the equal-area constraint.

This is an ordinary numerical problem that can be handled by any linear algebra software package.
Existence of a solution using this technique can be an issue owing to potential numerical issues, but we can
be confident that the quadratic programming problem has a unique solution to be found, and if the method
of Lagrange multipliers does not work out, there are a host of other options available. An R function for
calculating y in the case when the non-negativity constraint is not violated is given in the appendix.

If all components of y are non-negative then we’ve found the optimal solution subject to all our
constraints. Intuition suggests that if all the cell areas have values well away from 0 then there can be
no advantage with respect to smoothness to have a negative intensity value, and the solution found will
be non-negative. In our experience we have yet to encounter a problem derived from real data where
the unconstrained solution has negative componenet. Still, if one or more components of the y so found
are negative, we can either use more sophisticated solution techniques that explicitly account for the
non-negativity constraint, or find a potentially suboptimal solution by forcing the negative intensity values
to be zero, reformulate Q and E to reflect this assignment, and solve again using the same technique.
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4 EXAMPLE

We now illustrate the results of this algorithm on an example. Call center counts over a 13-hour period were
collected over five realizations in Leemis (2004). A preliminary analysis suggests that the five realizations
can be considered to be independent observations from a single target NHPP. There are n = 13 cells with
areas c1,c2, . . . ,c13 given below.

68.6 126 140.2 139.4 125.4 115 126.8 140.2 140 119.4 100.6 70.6 70.2

The areas of the first and last cell are close enough to be consistent with a circular model (even though
13 hours does not span a circular epoch) and so we will compute the circular solution for the purposes of
illustration.

Figure 2 plots the input cell areas as constants over their respective domains and four solutions, two
when the model is non-cyclic, two when it is considered to be cyclic. For both model types we used w = 2
and w = 4. The key gives the average absolute value of the difference in slopes of adjacent segments
for each case. One interesting (and surprising result) for this set is that while there is a very noticeable
drop in average slope change going from 2 subintervals per cell to 4, the magnitude of those averages is
quite small, with little impact on the visual perception of the curve. This could be important if such an
observation holds true more widely, since the time and memory costs of a linear system solution grow
more than linearly in the number of variables. There is a visual impact of using a non-cyclic model versus
a cyclic one. If the underlying model is cyclic but the non-cyclic solution is used, there is a large gap
between the first and last intensity (35 vs. 80), showing that the cyclic formulation can have an important
effect on model behavior.

Examining the finite-horizon case more closely, a potentially problematic situation occurs in the final
cell. There is an increase in the arrival rate of phone calls between 8 PM and 9 PM that might not be
warranted for the traffic at the call center. The final two ci values, c12 = 70.6 and c13 = 70.2, indicate
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Figure 2: Example Solutions
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a trailing off of call volume, rather than a surge, at the end of the day. Both I-SMOOTH and the first
algorithm from Nicol and Leemis (2014) also reflect this surge at the end of the day. The second algorithm
in Nicol and Leemis (2014) provides a way to avoid this problem.

5 PROCESS GENERATION

We now return to the problem of generating a process from the estimated NHPP that was briefly mentioned
in the Introduction. Klein and Roberts (1984) consider process generation from an NHPP with a piecewise-
linear intensity function via inversion; the derivation here parallels their work.

Inversion will be used to generate the event times for the NHPP as Λ−1(E1), Λ−1(E2), . . . , where E1,
E2, . . . are the event times of a unit homogeneous Poisson process. The algorithm for generating event
times associated with the estimated NHPP is identical in the cyclic and finite horizon contexts, so that
distinction can be dropped in this section. The x-coordinates of the knot points for the piecewise-linear
intensity function estimator are

0,
1
w
,

2
w
, . . . ,

nw
w

.

The y-coordinates (e.g., the heights) of the knot points for the piecewise-linear intensity function estimator
are

y0,y1,y2, . . . ,ynw,

which have been calculated by the constrained optimization problem. (In the cyclic context, y0 = ynw.) The
slope of the jth linear segment of the piecewise-linear intensity function is (y j−y j−1)/(1/w) =w(y j−y j−1).
Since the point ( j/w,y j) is the right-hand endpoint of the jth linear segment, the intensity function is

λ (x) = y j +w(y j− y j−1)x− j(y j− y j−1)
j−1

w
< x≤ j

w
,

for j = 1,2, . . . ,nw. The cumulative intensity function Λ(x), on the other hand, is piecewise quadratic with
the same x-coordinates for the knot points as the intensity function. The heights of the knot points for the
cumulative intensity function are

0,
y0 + y1

2w
,
y0 + y1

2w
+

y1 + y2

2w
, . . . ,

y0 +2(y1 + y2 + · · ·+ ynw−1)+ ynw

2w
.

The height of the last knot point must equal ∑
n
i=1 ci because of the equal-area constraint. For notational

compactness, the heights of the cumulative intensity function at the knot points will be referred to as Λ0,
Λ1, Λ2, . . . , Λnw.

Generation of samples of the NHPP are driven by samples from a unit homogeneous Poisson process,
each simulated event time of which is transformed as follows. The ith sample event time of the NHPP is
the solution x in the equation Ei =

∫ x
0 λ (t) dt, where Ei is the time of the ith event in the unit homogeneous

Poisson process. We know and can pre-compute the values Λk =
∫ yk

0 λ (t) dt for k = 1,2, . . . ,nw, so that
given Ei we can use an efficient search algorithm to find the smallest j such that Ei ≤ Λ j. For j−1

w < x≤ j
w

and j = 1,2, . . . ,nw, the cumulative intensity function is

Λ(x) = Λ j−1 +
∫ x

( j−1)/w

(
y j +w(y j− y j−1)t− j(y j− y j−1)

)
dt

= Λ j−1 +
[w

2
(y j− y j−1)t2 + y jt− jt(y j− y j−1)

]x

( j−1)/w

= Λ j−1 +
w
2
(y j− y j−1)x2 +

(
y j− j(y j− y j−1)

)
x− j−1

w

(
( j−1)(y j− y j−1)

2
+ y j− j(y j− y j−1)

)
.
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When this expression is equated to Ei, the resulting equation

Ei = Λ j−1 +
w
2
(y j− y j−1)x2 +

(
y j− j(y j− y j−1)

)
x− j−1

w

(
( j−1)(y j− y j−1)

2
+ y j− j(y j− y j−1)

)
is a quadratic equation that can be solved by the quadratic formula with

a =
w
2
(y j− y j−1),b = y j− j(y j− y j−1),

and

c = Λ j−1−Ei−
j−1

w

(
( j−1)(y j− y j−1)

2
+ y j− j(y j− y j−1)

)
.

The sign choice in the ± part of the quadratic formula should be made based on the sign of y j−y j−1 (use
+ when this quantity is positive and − when this quantity is negative). If y j−y j−1 = 0, then the quadratic
portion of Λ(t) happens to be linear on this subinterval, so the event time generated associated with Ei is

x =
j−1

w
+

Ei−Λ j−1

y j
.

6 RELATED WORK

Our original interest in this problem was motivated by I-SMOOTH, described first in a 2011 WSC paper
by Chen and Schmeiser (2011) and later in Chen and Schmeiser (2013). The foundational idea of the
SMOOTH algorithm is to refine a piecewise-constant intensity function with k segments into one with 2k
segments, as follows. For segment i with constant intensity λi, the segment is transformed into two, one
with rate ci− γi, the other with rate ci + γi. The problem considered is choice of γi for all i. For any given
choice of γ’s one can compute the difference in intensity levels of adjacent intervals. The measure of
smoothness is the sum of the squares of these differences; the γ sought minimize this sum. The problem
is that of minimizing a quadratic objective function, subject to constraints that keep the intensity levels
non-negative. This problem is solved repeatedly, doubling the number of segments with each step, until
the user is satisfied with the result.

Our initial work (Nicol and Leemis 2014) considered two adaptations of the problem. First we sought
solutions that are piecewise linear rather than piecewise constant, and second we sought solutions that
use fewer segments than I-SMOOTH needs to achieve (visually) smooth curves. Our insight was that
with piecewise-linear intensity functions, the equal-area constraint can sometimes (with judiciously chosen
intensities at the cell boundaries) be met with one line segment over a cell, can usually be met using only
two segments, and can always be met using three segments. While efficient with respect to numbers of
segments, our solutions sometimes exhibited non-intuitive rapid changes in segment slope. That observation
lead to the present paper, where we focus on smoothness rather than minimization of function segments.
There are parallels between the smoothness definition of I-SMOOTH, and that which we employ. While our
formulation is closer to the definitions of differential geometry (because our intensity function is continuous
and so explicitly has slopes) the conceptual approach of the present paper is very much in line with
Chen and Schmeiser (2013). Chen and Schmeiser (2014) use a continuous, piecewise quadratic function
to approximate the intensity function. In addition to the equal-area and non-negativity constraints, they
match the first derivatives at the knot points. For every interval that results in a negative intensity function,
non-negativity is enforced by taking the maximum of zero and the quadratic-function value, modifying the
quadratic to maintain the equal-area constraint.

7 SUMMARY

Estimation of NHPP intensity functions is a practical problem. An over-riding constraint on estimators is
that the mean value of the number of occurrences over a period of observation be equal to mean number of
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actual observations in that period. An obvious estimator computes a constant intensity over each period,
but this leads to sometimes large step function changes in the intensity passing between periods. Past
work has looked at smoothing this: Chen and Schmeiser (2013) refines the number of periods, computing
a piecewise-constant intensity function with smaller steps; Nicol and Leemis (2014) propose piecewise-
linear intensity functions, aiming to minimize the number of function segments. Closed-form solutions are
available in the case when non-negativity is irrelevant. This paper formulates the problem of maximizing
smoothness using piecewise-linear intensity functions. We show that the problem can be approached using
easily accessible mathematical tools, and observe empirically that visually smooth intensity functions might
be discovered using as few as two line segments per period.
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APPENDIX: R Code

The R function named nhpp given below requires three arguments: cc, a vector of length n containing
c1,c2, . . . ,cn; w, the number of equal-width subintervals per cell; and cyclic, a Boolean argument which
is TRUE in the cyclic context and FALSE in the finite-horizon context.

nhpp = function(cc, w, cyclic = TRUE) {
n = length(cc)
if (cyclic == TRUE) {

m = n * w
Q = diag(rep(12, m))
Q[cbind(2:m, 1:(m - 1))] = Q[cbind(1:(m - 1), 2:m)]

= Q[m, 1] = Q[1, m] = -8
Q[cbind(3:m, 1:(m - 2))] = Q[cbind(1:(m - 2), 3:m)] = Q[m - 1, 1]

= Q[m, 2] = Q[1, m - 1] = Q[2, m] = 2
} else {

m = n * w + 1
Q = diag(rep(12, m))
Q[cbind(2:m, 1:(m - 1))] = Q[cbind(1:(m - 1), 2:m)] = -8
Q[cbind(3:m, 1:(m - 2))] = Q[cbind(1:(m - 2), 3:m)] = 2
Q[1, 1] = Q[m, m] = 2
Q[2, 2] = Q[m - 1, m - 1] = 10
Q[1, 2] = Q[2, 1] = Q[m, m - 1] = Q[m - 1, m] = -4

}
Q = Q * w ˆ 2
if (cyclic == TRUE) {
E = matrix(0, n, m + 1)
rowpat = c(1, rep(2, w - 1), 1)
for (i in 1:n) {

j = (i - 1) * w + 1
E[i, j:(j + w)] = rowpat

}
E = E[ , -(m + 1)]
E[n, 1] = 1

} else {
E = matrix(0, n, m)
rowpat = c(1, rep(2, w - 1), 1)
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for (i in 1:n) {
j = (i - 1) * w + 1
E[i, j:(j + w)] = rowpat

}
}
A = cbind(Q, t(E))
B = cbind(E, matrix(0, n, n))
C = rbind(A, B)
rhs = c(rep(0, m), 2 * w * cc)
yg = solve(C, rhs)
return(yg[1:m])

}
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