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1. The Kolmogorov–Smirnov Test Statistic

The Kolmogorov–Smirnov (K–S) goodness-of-fit test compares a hypothetical or
fitted cumulative distribution function (cdf) F̂ �x� with an empirical cdf Fn�x� in
order to assess fit. The empirical cdf Fn�x� is the proportion of the observations
X1� X2� � � � � Xn that are less than or equal to x and is defined as:

Fn�x� =
I�x�

n
�

where n is the size of the random sample and I�x� is the number of Xi’s less than
or equal to x.
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The K–S test statistic Dn is the largest vertical distance between Fn�x� and F̂ �x�
for all values of x, i.e.,

Dn = sup
x

��Fn�x�− F̂ �x����

The statistic Dn can be computed by calculating (Law and Kelton, 2000, p. 364)

D+
n = max

i=1�2�����n

{
i

n
− F̂ �X�i��

}
� D−

n = max
i=1�2�����n

{
F̂ �X�i��−

i− 1
n

}
�

where X�i� is the ith order statistic, and letting

Dn = max�D+
n � D

−
n ��

Although the test statistic Dn is easy to calculate, its distribution is
mathematically intractable. Drew et al. (2000) provided an algorithm for calculating
the cdf of Dn when all the parameters of the hypothetical cdf F̂ �x� are known
(referred to as the all-parameters-known case). Assuming that F̂ �x� is continuous,
the distribution of Dn, where X1� X2� � � � � Xn are independent and identically
distributed (iid) observations from a population with cdf F�x�, is a function of n, but
does not depend on F�x�. Marsaglia et al. (2003) provided a numerical algorithm
for computing Pr�Dn ≤ d�.

The more common and practical situation occurs when the parameters are
unknown and are estimated from sample data, using an estimation technique such
as maximum likelihood. In this case, the distribution of Dn depends upon both n
and the particular distribution that is being fit to the data. Lilliefors (1969) provides
a table (obtained via Monte Carlo simulation) of selected percentiles of the K–S
test statistic Dn for testing whether a set of observations is from an exponential
population with unknown mean. Durbin (1975) also provides a table (obtained
by series expansions) of selected percentiles of the distribution of Dn. This article
presents the derivation of the distribution of Dn in the case of exponential sampling
for n = 1, n = 2, and n = 3. Additionally, the distribution of the Cramer–von Mises
and Anderson–Darling test statistics for n = 1 and n = 2 are derived in Sec. 2.
Two case studies that analyze real-world data sets (Space shuttle accidents and
commercial nuclear power accidents), where n = 2 and the fit to an exponential
distribution is important, are given in Sec. 3. Future work involves extending the
formulas established for the exponential distribution with samples of size n = 1� 2,
and 3 to additional distributions and larger samples. For a summary of the literature
available on these test statistics and goodness-of-fit techniques (including tabled
values, comparative merits, and examples), see D’Agostino and Stephens (1986).

We now define notation that will be used throughout the article. Let X
be an exponential random variable with probability distribution function (pdf)
f�x� = 1

�
e−x/� and cdf F�x� = 1− e−x/� for x > 0 and fixed, unknown parameter

� > 0. If x1� x2� � � � � xn are the sample data values, then the maximum likelihood
estimator (MLE) �̂ is:

�̂ = 1
n

n∑
i=1

xi�
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We test the null hypothesis H0 that X1� X2� � � � � Xn are iid exponential(�) random
variables.

1.1. Distribution of D1 for Exponential Sampling

If there is only n = 1 sample data value, which we will call x1, then �̂ = x1.
Therefore, the fitted cdf is:

F̂ �x� = 1− e−x/�̂ = 1− e−x/x1 x > 0�

As shown in Fig. 1, the largest vertical distance between the empirical cdf F1�x� and
F̂ �x� occurs at x1 and has the value 1− 1/e, regardless of the value of x1. Thus, the
distribution of D1 is degenerate at 1− 1/e with cdf:

FD1
�d� =

{
0 d ≤ 1− 1/e

1 d > 1− 1/e�

1.2. Distribution of D2 for Exponential Sampling

If there are n = 2 sample data values, then the maximum likelihood estimate (mle)
is �̂ = �x1 + x2�/2, and thus the fitted cdf is:

F̂ �x� = 1− e−x/�̂ = 1− e−2x/�x1+x2� x > 0�

A maximal scale invariant statistic (Lehmann, 1959, p. 215) is:

x1
x1 + x2

�

Figure 1. The empirical and fitted exponential distribution for one data value x1, where
D−

1 = 1− 1/e and D+
1 = 1/e. (Note: The riser of the empirical cdf in this and other figures

has been included to aid in comparing the lengths of D−
1 and D+

1 ).
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The associated statistic which is invariant to re-ordering is:

y = x�1�

x�1� + x�2�
�

where x�1� = min�x1� x2�, x�2� = max�x1� x2�, and 0 < y ≤ 1/2 since 0 < x�1� ≤ x�2�.
The fitted cdf F̂ �x� at the values x�1� and x�2� is:

F̂ �x�1�� = 1− e−2x�1�/�x�1�+x�2�� = 1− e−2y�

and

F̂ �x�2�� = 1− e−2x�2�/�x�1�+x�2�� = 1− e−2�1−y��

It is worth noting that the fitted cdf F̂ �x� always intersects the second riser of
the empirical cdf F2�x�. This is due to the fact that F̂ �x�2�� can range from 1− 1/e �
0�6321 (when y = 1/2) to 1− 1/e2 � 0�8647 (when y = 0), which are both included
in the second riser’s extension from 0.5 to 1. Conversely, the fitted cdf F̂ �x� may
intersect the first riser of the empirical cdf F2�x�, depending on the value of y. When
0 < y ≤ ln�2�

2 � 0�3466, the first riser is intersected by F̂ �x� (as displayed in Fig. 2),
but when ln�2�

2 < y ≤ 1/2, F̂ �x� lies entirely above the first riser (as subsequently
displayed in Fig. 6).

Define the random lengths A, B, C, and D according to the diagram in Fig. 2.
With y = x�1�/�x�1� + x�2��, the lengths A, B, C, and D (as functions of y) are:

A = �1− e−2y�− 0 = 1− e−2y 0 < y ≤ 1/2�

Figure 2. The empirical and fitted exponential distribution for two data values x�1� and x�2�.
In this particular plot, 0 < y ≤ ln�2�

2 , so the first riser of the empirical cdf F2�x� is intersected
by the fitted cdf F̂ �x�.
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B =
∣∣∣∣12 − �1− e−2y�

∣∣∣∣ =

e−2y − 1

2
0 < y ≤ ln�2�

2
�

1
2
− e−2y ln�2�

2
< y ≤ 1/2�

C = �1− e−2�1−y��− 1
2
= 1

2
− e−2�1−y� 0 < y ≤ 1/2�

D = 1− �1− e−2�1−y�� = e−2�1−y� 0 < y ≤ 1/2�

where absolute value signs are used in the definition of B to cover the case in which
F̂ �x� does not intersect the first riser.

Figure 3 is a graph of the lengths A, B, C, and D plotted as functions of y,
for 0 < y ≤ 1/2. For any y ∈ �0� 1/2�, the K–S test statistic is D2 = max�A� B�C�D�.
Since the length D is less than max{A, B, C} for all y ∈ �0� 1/2�, only A, B, and C

are needed to define D2.
Two particular y values of interest (indicated in Fig. 3) are y∗ and y∗∗ since:

1. for 0 < y < y∗, B = max�A� B�C�D�;
2. for y∗ < y < y∗∗, C = max�A� B�C�D�;
3. for y∗∗ < y ≤ 1/2, A = max�A� B�C�D�;
4. B�y∗� = C�y∗� and C�y∗∗� = A�y∗∗�.

The values of y∗, y∗∗, C�y∗�, and C�y∗∗� are given below:

• The smallest value y∗ in �0� 1/2� such that B�y∗� = C�y∗� is:

y∗ = 1+ 1
2
ln
(
1
2
− 1

2

√
1− 4

e2

)
� 0�0880�

Figure 3. Lengths A, B, C, and D from Fig. 2 for n = 2 and 0 < y ≤ 1/2.
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which results in

C�y∗� = 1
2

√
1− 4

e2
� 0�3386�

• The only value y∗∗ in �0� 1/2� such that A�y∗∗� = C�y∗∗� is:

y∗∗ = 1+ 1
2
ln
(
1
4

√
1+ 16

e2
− 1

4

)
� 0�1821�

which results in

C�y∗∗� = 3
4
− 1

4

√
1+ 16

e2
� 0�3052�

Thus, the largest vertical distance D2 is computed using the length formula for
A�Y�, B�Y�, or C�Y� depending on the value of the random variable Y = X�1�/�X�1� +
X�2��, i.e.,

D2 =


B�Y� 0 < Y ≤ y∗

C�Y� y∗ < Y ≤ y∗∗

A�Y� y∗∗ < Y ≤ 1/2�

1.2.1. Determining the Distribution of Y = X�1�/�X�1� + X�2��. Let X1� X2 be a
random sample drawn from a population having pdf

f�x� = 1
�
e−x/� x > 0�

for � > 0. In order to determine the distribution of D2, we must determine
the distribution of Y = X�1�/�X�1� + X�2��, where X�1� = min�X1� X2� and X�2� =
max�X1� X2�.

Using an order statistic result from Hogg et al. (2005, p. 193), the joint pdf of
X�1� and X�2� is:

g�x�1�� x�2�� = 2! · 1
�
e−x�1�/� · 1

�
e−x�2�/� =

(
2
�2

)
e−�x�1�+x�2��/� 0 < x�1� ≤ x�2��

In order to determine the pdf of Y = X�1�/�X�1� + X�2��, define the dummy
transformation Z = X�2�. The random variables Y and Z define a one-to-one
transformation that maps � = ��x�1�� x�2�� � 0 < x�1� ≤ x�2�� to � = ��y� z� � 0 < y ≤
1/2� z > 0�. Since x�1� = yz/�1− y�, x�2� = z, and the Jacobian of the inverse
transformation is z/�1− y�2, the joint pdf of Y and Z is:

h�y� z� = 2
�2

e−�z+yz/�1−y��/� ·
∣∣∣∣ z

�1− y�2

∣∣∣∣ = 2z
�2�1− y�2

e−z/�1−y�� 0 < y ≤ 1/2� z > 0�
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Integrating the joint pdf by parts yields the marginal pdf of Y :

fY �y� =
2

�2�1− y�2

∫ �

0
ze−z/�1−y�� dz = 2 0 < y ≤ 1/2�

i.e., Y ∼ U�0� 1/2�.
The final step in determining the distribution of D2 is to project max{A, B,

C} (displayed in Fig. 4) onto the vertical axis, weighting appropriately to account
for the distribution of Y . Since limy↓0 B�y� = 1/2, in order to determine the cdf for
D2, we must determine the functions F	, F
, and F� associated with the following
intervals for the cdf of D2:

FD2
�d� =



0 d ≤ C�y∗∗�

F	�d� C�y∗∗� < d ≤ C�y∗�

F
�d� C�y∗� < d ≤ 1
2

F��d�
1
2
< d ≤ 1− 1

e

1 d > 1− 1
e
�

1.2.2. Determining the Distribution of D2. In order to determine F	, F
, and F�,
it is necessary to find the point of intersection of a horizontal line of height d ∈
�C�y∗∗�� 1− 1/e� with A�y�, B�y�, and C�y�, displayed in Fig. 4. These points of
intersection will provide integration limits for determining the distribution of D2.

Figure 4. D2 = max�A� B�C� for n = 2 and 0 < y ≤ 1/2.
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Solving B�y� = d, where d satisfies B�y∗� ≤ d < 1/2 yields:

y = −1
2
ln
(
d + 1

2

)
�

Solving C�y� = d, where d satisfies C�y∗∗� ≤ d ≤ C�y∗�, yields:

y = 1+ 1
2
ln
(
1
2
− d

)
�

Finally, solving A�y� = d where d satisfies A�y∗∗� ≤ d ≤ 1− 1
e
, yields:

y = −1
2
ln�1− d��

The following three calculations yield the limits of integration associated with
the functions F	, F
, and F�. For C�y

∗∗� < d ≤ C�y∗�:

FD2
�d� = F	�d�

= Pr�D2 ≤ d�

=
∫ − 1

2 ln�1−d�

1+ 1
2 ln� 12−d�

fY �y� dy

= −2− ln��1/2− d��1− d���

For C�y∗� < d ≤ 1/2:

FD2
�d� = F
�d�

= Pr�D2 ≤ d�

=
∫ − 1

2 ln�1−d�

− 1
2 ln�d+ 1

2 �
fY �y�dy

= ln
(
d + 1/2
1− d

)
�

For 1/2 < d ≤ 1− 1/e:

FD2
�d� = F��d�

= Pr�D2 ≤ d�

=
∫ − 1

2 ln�1−d�

0
fY �y�dy

= − ln�1− d��
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Putting the pieces together, the cdf of D2 is:

FD2
�d� =



0 d ≤ C�y∗∗�

−2− ln�1/2− d�− ln�1− d� C�y∗∗� < d ≤ C�y∗�

ln�d + 1/2�− ln�1− d� C�y∗� < d ≤ 1
2

− ln�1− d�
1
2
< d ≤ 1− 1

e

1 d > 1− 1
e
�

Differentiating with respect to d, the pdf of D2 is:

fD2
�d� =



1
1− d

+ 1
1
2 + d

+ 2d(
1
2 + d

)(
1
2 − d

) C�y∗∗� < d ≤ C�y∗�

1
1− d

+ 1
1
2 + d

C�y∗� < d ≤ 1
2

1
1− d

1
2
< d ≤ 1− 1

e
�

which is plotted in Fig. 5. The percentiles of this distribution match the tabled values
from Durbin (1975).

The distribution of D2 can also be derived using A Probability Programming
Language (APPL) (Glen et al., 2001). The distribution’s exact mean, variance,
skewness (expected value of the standardized, centralized third moment), and
kurtosis (expected value of the standardized, centralized fourth moment) can be

Figure 5. The pdf of D2.



Test Statistics for Exponential Populations with Estimated Parameters 1405

determined in Maple with the following APPL statements:

Y = UniformRV�0� 1/2��

A = 1− exp�−2 ∗ y��
B = exp�−2 ∗ y�− 1/2�

C = 1/2− exp�−2 ∗ �1− y���

ys = solve�B = C� y��1��

yss = solve�A = C� y��1��

g = ��unapply�B� y�� unapply�C� y�� unapply�A� y��� �0� ys� yss� 1/2���

D2 = Transform�Y� g��

Mean�D2��

Variance�D2��

Skewness�D2��

Kurtosis�D2��

The Maple solve procedure is used to find y∗ and y∗∗ (the variables ys and yss) and
the APPL Transform procedure transforms the random variable Y to D2 using the
piecewise segments B, C, and A. The expressions for the mean, variance, skewness,
and kurtosis are given in terms of radicals, exponentials, and logarithms, e.g., the
expected value of D2 is:

2− r + 6e ln�2�− 2e+ 2e ln�e2 + er�+ e ln�er − e2�− e ln�e2 − es�− 2s+ e ln�e2 + es�

2e
�

where r = √
e2 + 16 and s = √

e2 − 4. The others are too lengthy to display here,
but the decimal approximations for the mean, variance, skewness, and kurtosis are,
respectively, E�D2� � 0�4430, V�D2� � 0�0100, �3 � 0�2877, and �4 � 1�7907. These
values were confirmed by Monte Carlo simulation.

Example 1.1. Suppose that two data values, x�1� = 95 and x�2� = 100, constitute a
random sample from an unknown population. The hypothesis test

H0  F�x� = F0�x�

H1  F�x� 
= F0�x��

where F0�x� = 1− e−x/�, is used to test the legitimacy of modeling the data set
with an exponential distribution. The mle is �̂ = �95+ 100�/2 = 97�5. The empirical
distribution function, fitted exponential distribution, and corresponding lengths A,
B, C, and D are displayed in Fig. 6.

The ratio y = x�1�/�x�1� + x�2�� = 95/195 corresponds to A being the maximum
of A, B, C, and D. This yields the test statistic

d2 = 1− e−2�95/195� � 0�6226�
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Figure 6. The empirical and fitted exponential distribution for two data values x�1� =
95 and x�2� = 100. In this example, y > ln�2�

2 , so the first riser of the empirical cdf is not
intersected by the fitted cdf.

which falls in the right-hand tail of the distribution of D2, as displayed in Fig 7.
(The two breakpoints in the cdf are also indicated in Fig. 7.) Hence, the test statistic
provides evidence to reject the null hypothesis for the goodness-of-fit test. Since
large values of the test statistic lead to rejecting H0, the p-value associated with this
particular data set is:

p = 1− FD2

(
1− e−2�95/195�

) = 1+ ln
(
1− [

1− e−2�95/195�
])

= 1− 190
195

= 1
39

� 0�02564�

Figure 7. The cdf of D2 and the test statistic D2 = 1− e−2�95/195�.
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Using the exact pdf of D2 to determine the p-value is superior to using tables
(e.g., Durbin, 1975) since the approximation associated with linear interpolation is
avoided. The exact pdf is also preferred to approximations (Law and Kelton, 2000;
Stephens, 1974), which often do not perform well for small values of n. Since the
distribution of D2 is not a function of �, the power of the hypothesis test as a
function of � is constant with a value of 1− 	. Since there appears to be a pattern to
the functional forms associated with the three segments of the pdf of D2, we derive
the distribution of D3 in the Appendix in an attempt to establish a pattern.

The focus of the article now shifts to investigating the distributions of other
goodness-of-fit statistics.

2. Other Measures of Fit

The K–S test statistic measures the distance between Fn�x� and F̂ �x� by using the
L� norm. The square of the L2 norm gives the test statistic:

L2
2 =

∫ �

−�

(
Fn�x�− F̂ �x�

)2
dx�

which, for exponential sampling and n = 1 data value, is:

L2
2 =

∫ x1

0

(
1− e−x/x1

)2
dx +

∫ �

x1

e−2x/x1 dx

=
(
4− e

2e

)
x1�

Since X1 ∼ exponential���, L2
2 ∼ exponential

(
4−e
2e �

)
. Unlike the K–S test

statistic, the square of the L2 norm is dependent on �. For exponential sampling
with n = 2, the square of the L2 norm is also dependent on �:

L2
2 =

∫ �

0

(
F2�x�− F̂ �x�

)2
dx

=
∫ x�1�

0
F̂ �x�2dx +

∫ x�2�

x�1�

(
F̂ �x�− 1

2

)2

dx +
∫ �

x�2�

(
1− F̂ �x�

)2
dx

=
∫ x�1�

0

(
1− e−2x/�x1+x2�

)2
dx +

∫ x�2�

x�1�

(
1
2
− e−2x/�x1+x2�

)2

dx +
∫ �

x�2�

(
e−2x/�x1+x2�

)2
dx

=
∫ x�1�

0

(
1− 2e−2x/�x1+x2�

)
dx +

∫ x�2�

x�1�

(
1
4
− e−2x/�x1+x2�

)
dx +

∫ �

0
e−4x/�x1+x2� dx

= −x�2�

2
+ x�1� + x�2�

2
· (e−2x�1�/�x�1�+x�2�� + e−2x�2�/�x�1�+x�2��

)
�

where X�1� ∼ exponential�2�� and X�2� has pdf fX�2�
�x� = 2�1− e−x/��

(
1
�
e−x/�

)
, x > 0.

Unlike the square of the L2 norm, the Cramer–von Mises and Anderson–
Darling test statistics (Lawless, 2003) are distribution-free. They can be defined as:

W 2
n = n

∫ �

−�

(
Fn�x�− F̂ �x�

)2
dF̂�x�
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and

A2
n = n

∫ �

−�

(
Fn�x�− F̂ �x�

)2
F̂ �x��1− F̂ �x��

dF̂ �x��

where n is the sample size. The computational formulas for these statistics are:

W 2
n =

n∑
i=1

(
F̂ �x�i��−

i− 0�5
n

)2

+ 1
12n

and

A2
n = −

n∑
i=1

2i− 1
n

(
ln�F̂ �x�i���+ ln�1− F̂ �x�n+1−i���

)
− n�

2.1. Distribution of W 2
1 and A2

1 for Exponential Sampling

When n = 1 and sampling is from an exponential population, the Cramer–von
Mises test statistic is:

W 2
1 =

(
1
2
− 1

e

)2

+ 1
12

= 1
3
− 1

e
+ 1

e2
�

Thus, the Cramer–von Mises test statistic is degenerate for n = 1 with cdf:

FW 2
1
�w� =


0 w ≤ 1

3
− 1

e
+ 1

e2

1 w >
1
3
− 1

e
+ 1

e2
�

When n = 1 and sampling is from an exponential population, the Anderson–
Darling test statistic is:

A2
1 = − ln�1− e−1�− ln�e−1�− 1 = 1− ln�e− 1��

It is also degenerate for n = 1 with cdf:

FA2
1
�a� =

0 a ≤ 1− ln�e− 1�

1 a > 1− ln�e− 1��

2.2. Distribution of W 2
2 and A2

2 for Exponential Sampling

When n = 2 and sampling is from an exponential population, the Cramer–von
Mises test statistic is:

W 2
2 =

(
e−x�1�/�̂ − 3

4

)2

+
(
e−x�2�/�̂ − 1

4

)2

+ 1
24

�
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where �̂ = �x1 + x2�/2. The Anderson–Darling test statistic is:

A2
2 = 2− 1

2
ln
(
ex�1�/�̂ − 1

)− 3
2
ln
(
ex�2�/�̂ − 1

)
�

If we let y = x�1�/�x�1� + x�2��, as we did when working with D2, we obtain the
following formulas for W 2

2 and A2
2 in terms of y:

W 2
2 =

(
e−2y − 3

4

)2

+
(
e−2�1−y� − 1

4

)2

+ 1
24

�

and

A2
2 = 2− 1

2
ln�e2y − 1�− 3

2
ln�e2�1−y� − 1��

for 0 < y ≤ 1/2. Graphs of D2, W
2
2 , and A2

2 are displayed in Fig. 8. Although the
ranges of the three functions are quite different, they all share similar shapes.

Each of the three functions plotted in Fig. 8 achieves a minimum between y =
0�15 and y = 0�2. The Cramer–von Mises test statistic W 2

2 achieves a minimum at
y∗∗∗ that satisfies

4e−4y − 3e−2y − 4e−4�1−y� + e−2�1−y� = 0

for 0 < y ≤ 1/2. This is equivalent to fourth-degree polynomial in e2y that can be
solved exactly using radicals. The minimum is achieved at y∗∗∗ � 0�1549. Likewise,
the Anderson–Darling test statistic A2

2 achieves a minimum at y∗∗∗∗ that satisfies

e2y + 2e2 − 3e2�1−y� = 0

Figure 8. Graphs of D2, W
2
2 , and A2

2 for n = 2 and 0 < y ≤ 1/2.
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for 0 < y ≤ 1/2, which yields

y∗∗∗∗ = 1
2
+ 1

2
ln
(√

e2 + 3− e
) � 0�1583�

These values and other pertinent values associated with D2, W 2
2 , and A2

2 are
summarized in Table 1.

Figure 8 can be helpful in determining which of the three goodness-of-
fit statistics is appropriate in a particular application. Consider, for instance, a
reliability engineer who is interested in detecting whether reliability growth or
reliability degradation is occurring for a repairable system. One would expect a
shorter failure time followed by a longer failure time if reliability growth were
occurring; one would expect a longer failure time followed by a shorter failure time
if reliability degradation were occurring. In either case, these correspond to a small
value of y, so Fig. 8 indicates that the Anderson–Darling test is preferred due to the
vertical asymptote at y = 0.

For notational convenience below, let D2�y�, W
2
2 �y�, and A2

2�y� denote the values
of D2, W

2
2 , and A2

2, respectively, corresponding to a specific value of y. For example,
W 2

2 �1/4� denotes the value of W 2
2 when y = 1/4.

Example 2.1. Consider again the data from Example 1.1: x�1� = 95 and x�2� = 100.
Since y = 95/195 = 19/39, the Cramer–von Mises test statistic is:

w2
2 =

(
e−38/39 − 3/4

)2 + (
e−40/39 − 1/4

)2 + 1/24 � 0�1923�

The p-value for this test statistic is the same as the p-value for the K–S test statistic,
namely: ∫ 1/2

19/39
fY �y�dy =

∫ 1/2

19/39
2dy = 1/39 � 0�0256�

More generally, for each value of y such that both D2�y� > D2�0� and W 2
2 �y� >

W 2
2 �0�:

FD2
�D2�y�� = FY �y� = FW 2

2

(
W 2

2 �y�
)
�

Table 1
Pertinent values associated with the test statistics D2, W

2
2 , and A2

2

Test Value when Minimized Global minimum Value when
statistic y = 0 at on �0� 1/2� y = 1/2

D2
1
2 y∗∗ � 0�1821 D2�y

∗∗� � 0�3052 1− 1
e
� 0�6321

W 2
2

1
6 + 1

e4
− 1

2e2 y∗∗∗ � 0�1549 W 2
2 �y

∗∗∗� � 0�04623 2
e2
− 2

e
+ 2

3 � 0�2016

� 0�1173
A2

2 +� y∗∗∗∗ � 0�1583 A2
2�y

∗∗∗∗� � 0�2769 2− 2 ln�e− 1�
� 0�9174
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The Anderson–Darling test statistic for x�1� = 95 and x�2� = 100 is:

a2
2 = 2− 1

2
ln�e38/39 − 1�− 3

2
ln�e40/39 − 1� � 0�8774�

Since the value of A2
2�y� exceeds the test statistic a2

2 � 0�8774 only for y < y′ =
0�02044 (where y′ is the first intersection point of A2

2�y� and the horizontal line
with height A2

2�19/39�) and for y > 19/39, the p-value for the Anderson–Darling
goodness-of-fit test is given by:

p =
∫ y′

0
2dy +

∫ 1/2

19/39
2dy

= 2y′ + �1− 38/39�

� 0�06654�

2.2.1. Determining the Distribution of W 2
2 and A2

2. As was the case with D2, we can
find exact expressions for the pdfs of W 2

2 and A2
2. Consider W

2
2 first. For w values in

the interval W 2
2 �y

∗∗∗� ≤ w < W 2
2 �0�, the cdf of W 2

2 is:

FW 2
2
�w� = P�W 2

2 ≤ w�

=
∫ y2

y1

fY �y�dy

= 2�y2 − y1��

where y1 and y2 are the ordered solutions to W 2
2 �y� = w. For w values in the interval

W 2
2 �0� ≤ w < W 2

2 �1/2�, the cdf of W 2
2 is:

FW 2
2
�w� = P�W 2

2 ≤ w�

=
∫ y1

0
fY �y�dy

= 2y1�

where y1 is the solution to W 2
2 �y� = w on 0 < y < 1/2. The following APPL code

can be used to find the pdf of W 2
2 :

Y = UniformRV�0� 1/2��

W = �exp�−2 ∗ y�− 3/4�2 + �exp�−2 ∗ �1− y��− 1/4�2 + 1/24�

ysss = solve�diff�W� y� = 0� y��1��

g = ��unapply�W� y�� unapply�W� y��� �0� ysss� 1/2���

W2 = Transform�Y� g��

The Transform procedure requires that the transformation g be input in piecewise
monotone segments. The resulting pdf for W 2

2 is too lengthy to display here.
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Now consider A2
2. For a value in the interval A2

2�y
∗∗∗∗� ≤ a < A2

2�1/2�, the cdf
of A2

2 is:

FA2
2
�a� = P�A2

2 ≤ a�

=
∫ y2

y1

fY �y�dy

= 2�y2 − y1��

where y1 and y2 are the ordered solutions to A2
2�y� = a on 0 < y ≤ 1/2. For a values

in the interval A2
2�1/2� ≤ a < �, the cdf of A2

2 is:

FA2
2
�a� = P�A2

2 ≤ a�

=
∫ 1/2

y1

fY �y�dy

= 1− 2y1�

where y1 is the solution to A2
2�y� = a on 0 < y < 1/2. The following APPL code can

be used to find the pdf of A2
2:

Y = UniformRV�0� 1/2��

A = 2− ln�exp�2 ∗ y�− 1�/2− 3 ∗ log�exp�2 ∗ �1− y��− 1�/2�

yssss = solve�diff�A� y� = 0� y��1��

g = ��unapply�A� y�� unapply�A� y��� �0� yssss� 1/2���

A2 = Transform�Y� g��

The resulting pdf for A2
2 is again too lengthy to display here.

3. Applications

Although statisticians prefer large sample sizes because of the associated desirable
statistical properties of estimators as the sample size n becomes large, there are
examples of real-world data sets with only n = 2 observations where the fit to an
exponential distribution is important. In this section, we focus on two applications:
U.S. Space Shuttle flights and the world-wide commercial nuclear power industry.
Both applications involve significant government expenditures associated with
decisions that must be made based on limited data. In both cases, “events” are
failures and the desire is to test whether a homogeneous Poisson process model
or other (e.g., a non homogeneous Poisson process) model is appropriate, i.e.,
determining whether failures occur randomly over time. Deciding which of the
models is appropriate is important to reliability engineers since a non homogeneous
Poisson process with a decreasing intensity function may be a sign of reliability
growth or improvement over time (Rigdon and Basu, 2000).
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Example 3.1. NASA’s Space Shuttle program has experienced n = 2 catastrophic
failures which have implications for the way in which the United States will pursue
future space exploration. On January 28, 1986, the Challenger exploded 72 seconds
after liftoff. Failure of an O-ring was determined as the most likely cause of the
accident. On February 1, 2003, Shuttle Columbia was lost during its return to
Earth. Investigators believed that tile damage during ascent caused the accident.
These two failures occurred on the 25th and 113th Shuttle flights. A goodness-
of-fit test is appropriate to determine whether the failures occurred randomly, or
equivalently, whether a Poisson process model is appropriate. The hope is that
the data will fail this test due to the fact that reliability growth has occurred due
to the many improvements that have been made to the Shuttle (particularly after
the Challenger accident), and perhaps a non homogeneous Poisson process with
a decreasing intensity function is a more appropriate stochastic model for failure
times. Certainly, large amounts of money have been spent and some judgments
about the safety and direction of the future of the Shuttle program should be made
on the basis of these two data values.

The appropriate manner to model time in this application is nontrivial. There
is almost certainly increased risk on liftoff and landing, but the time spent on the
mission should also be included since an increased mission time means an increased
exposure to internal and external failures while a Shuttle is in orbit. Because of this
inherent difficulty in quantifying time, we do our numerical analysis on an example
in an application area where time is more easily measured.

Example 3.2. The world-wide commercial nuclear power industry has experienced
n = 2 core meltdowns in its history. The first was at the Three Mile Island nuclear
facility on March 28, 1979. The second was at Chernobyl on April 26, 1986.
As in the case of the Space Shuttle accidents, it is again of interest to know
whether the meltdowns can be considered to be events from a Poisson process.
The hypothesis test of interest here is whether the two times to meltdown are
independent observations from an exponential population with a rate parameter
estimated from data. Measuring time in this case is not trivial because of the
commissioning and decommissioning of facilities over time. The first nuclear power
plant was the Calder Hall I facility in the United Kingdom, commissioned on
October 1, 1956. Figure 9 shows the evolution of the number of active commercial
reactors between that date and the Chernobyl accident on April 26, 1986. The
commissioning and decommissioning dates of all commercial nuclear reactors is
given in Cho and Spiegelberg-Planer (2002). Downtime for maintenance has been
ignored in determining the times of the two accidents.

Using the data illustrated in Fig. 9, the time of the two accidents measured
in cumulative commercial nuclear reactor years is found by integrating under the
curve. The calendar dates were converted to decimal values using Julian dates,
adjusting for leap years. The two accidents occurred at 1548.02 and 3372.27
cumulative operating years, respectively. This means that the hypothesis test
is to see whether the times between accidents, namely 1548.02 and 3372�27−
1548�02 = 1824�25 can be considered independent observations from an exponential
population. The maximum likelihood estimator for the mean time between core
meltdowns is �̂ = 1686�14 years. This results in a y-value of y = 1548�02/�1548�02+
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Figure 9. Number of operating commercial nuclear power plants world-wide between
October 1, 1956 and April 26, 1986.

1824�25� = 0�459 and a K–S test statistic of d2 = 0�601. This corresponds to
a p-value for the associated goodness-of-fit test of p = 1+ ln�1− d2� = 0�082.
There is not enough statistical evidence to conclude a nonhomogeneous model is
appropriate here, so it is reasonable to model nuclear power accidents as random
events. Figure 10 shows a plot of the fitted cumulative distribution function and
associated values of A, B, C, and D for this data set.

Figure 10. The empirical and fitted exponential distribution for the two times between
nuclear reactor meltdowns (in years), x�1� = 1548�02 and x�2� = 1824�25.
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Appendix: Distribution of D3 for Exponential Sampling

This Appendix contains a derivation of the distribution of the K–S test statistic
when n = 3 observations x1, x2, and x3 are drawn from an exponential population
with fixed, positive, unknown mean �. The maximum likelihood estimator is �̂ =
�x1 + x2 + x3�/3, which results in the fitted cdf:

F̂ �x� = 1− e−x/�̂ x > 0�

Analogous to the n = 2 case, define

y = x�1�

x�1� + x�2� + x�3�

and

z = x�2�

x�1� + x�2� + x�3�

so that

1− y − z = x�3�

x�1� + x�2� + x�3�
�

The domain of definition of y and z is:

� = ��y� z� � 0 < y < z < �1− y�/2��

The values of the fitted cdf at the three order statistics are:

F̂ �x�1�� = 1− e−x�1�/�̂ = 1− e−3y�

F̂ �x�2�� = 1− e−x�2�/�̂ = 1− e−3z�

and

F̂ �x�3�� = 1− e−x�3�/�̂ = 1− e−3�1−y−z��

The vertical distances A, B, C, D, E, and F (as functions of y and z) are defined in
a similar fashion to the n = 2 case (see Fig. 2):

A = 1− e−3y

B =
∣∣∣∣13 − (

1− e−3y
)∣∣∣∣ = ∣∣∣∣e−3y − 2

3

∣∣∣∣
C =

∣∣∣∣(1− e−3z
)− 1

3

∣∣∣∣ = ∣∣∣∣e−3z − 2
3

∣∣∣∣
D =

∣∣∣∣23 − (
1− e−3z

)∣∣∣∣ = ∣∣∣∣e−3z − 1
3

∣∣∣∣
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E =
∣∣∣∣(1− e−3�1−y−z�

)− 2
3

∣∣∣∣ = ∣∣∣∣e−3�1−y−z� − 1
3

∣∣∣∣
F = 1− (

1− e−3�1−y−z�
) = e−3�1−y−z�

for �y� z� ∈ �.
Figure 11 shows the regions associated with the maximum of A, B, C, D, E,

F for �y� z� ∈ �. In three dimensions, with D3 = max�A� B�C�D�E� F� as the third
axis, this figure appears to be a container with the region E at the bottom of the
container and with each of the other four sides rising as they move away from their
intersection with E. The absolute value signs that appear in the final formulas for B,
C, D, and E above can be easily removed since, over the region � associated with
D3, the expressions within the absolute value signs are always positive for B and
D, but always negative for C and E. The distance F is never the largest of the six
distances for any �y� z� ∈ �, so it can be excluded from consideration. Table 2 gives
the functional forms of the two-way intersections between the five regions shown in
Fig. 11. Note that the BC and AD curves, and the AC and BD curves, are identical.

In order to determine the breakpoints in the support for D3, it is necessary to
find the �y� z� coordinates of the three-way intersections of the five regions in Fig. 11
and the two-way intersections of the regions on the boundary of �. Table 3 gives
the values of y and z for these breakpoints on the boundary of �, along with the
value of D3 = max�A� B�C�D�E� F� at these values, beginning at �y� z� = �0� 1/2�
and proceeding in a counterclockwise direction. One point has been excluded from

Figure 11. Regions associated with max�A� B�C�D�E� F� over �y� z� ∈ �.
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Table 2
Intersections of regions A, B, C, D, and E in �

AD z = − 1
3 ln

(
4
3 − e−3y

)
BD z = − 1

3 ln
(
e−3y − 1

3

)
BC z = − 1

3 ln
(
4
3 − e−3y

)
AC z = − 1

3 ln
(
e−3y − 1

3

)
AE z = 1

3 ln
[
e3�1−y�

(
e−3y − 2

3

)]
DE z = 1

3 ln
[
1
3e

3�1−y�
(
1−√

1− 9e−3�1−y�
)]

BE z = 1
3 ln

[
e3�1−y�

(
1− e−3y

)]
CE z = 1

3 ln
[
1
6e

3�1−y�
(− 1+√

1+ 36e−3�1−y�
)]

Table 3 because of the intractability of the values �y� z�. The three-way intersection
between regions A, C, and the line z = �1− y�/2 can only be expressed in terms of
the solution to a cubic equation. After some algebra, the point of intersection is the
decimal approximation �y� z� � �0�1608� 0�4196� and the associated value of D3 is
2/3 minus the only real solution to the cubic equation

3d3 + d2 − 3e−3 = 0�

which yields

dAC = 7
9
− 1

18
�2916e−3 − 8+ c�1/3 − 2

9
�2916e−3 − 8+ c�−1/3 � 0�3827�

where c = 108
√
729e−6 − 4e−3.

The three-way intersection points in the interior of � are more difficult to
determine than those on the boundary. The value of D3 associated with each of these
four points is the single real root of a cubic equation on the support of D3. These
equations and approximate solution values, in ascending order, are given in Table 4.
For example, consider the value of the maximum at the intersection of regions A,

Table 3
Intersection points along the boundary of �

y z D3

0 1/2 2/3− e−3/2 � 0�4435
0 ln�3�/3 1/3 � 0�3333
0 ln�3/2�/3 1/3 � 0�3333
0 0 2/3 � 0�6667
ln�3/2�/3 ln�3/2�/3 1/3 � 0�3333
1/3 1/2 1− 1/e � 0�6321
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Table 4
Three-way interior intersection points of regions A, B, C, D, and E in �

Regions Cubic equation Approximate solution

ACE e3�1− d�
(
2
3 − d

)(
1
3 − d

) = 1 dACE � 0�2000

BCE e3
(
1
3 − d

)(
d + 2

3

)(
2
3 − d

) = 1 dBCE � 0�2091

ADE e3
(
1
3 − d

)(
d + 1

3

)
�1− d� = 1 dADE � 0�2178

BDE e3
(
d + 2

3

)(
d + 1

3

)(
1
3 − d

) = 1 dBDE � 0�2366

C, and E in Fig. 11. The value of D3 must satisfy the cubic equation:

e3�1− d�

(
2
3
− d

)(
1
3
− d

)
= 1�

which yields

dACE = �243+ c�2/3122/3c − 243�243+ c�2/3122/3 + 144e5 − 124/3e4�243+ c�1/3

216e5

� 0�19998�

where c = √
59049− 12e6.

The largest value of D3 = max�A� B�C�D�E� on � occurs at the origin (y = 0
and z = 0) and has value 2/3, which is the upper limit of the support of D3. The
smallest value of D3 on � occurs at the intersection ACE and is dACE � 0�19998,
which is the lower limit of the support of D3.

Determining the Joint Distribution of Y and Z

The next step is to determine the distribution of Y = X�1�/�X�1� + X�2� + X�3�� and
Z = X�2�/�X�1� + X�2� + X�3��. Using an order statistic result from Hogg et al. (2005,
p. 193), the joint pdf of X�1�, X�2�, and X�3� is:

g�x�1�� x�2�� x�3�� =
3!
�3

e−�x�1�+x�2�+x�3��/� 0 < x�1� ≤ x�2� ≤ x�3��

In order to determine the joint pdf of Y = X�1�/�X�1� + X�2� + X�3�� and Z =
X�2�/�X�1� + X�2� + X�3��, define the dummy transformation W = X�3�. The
random variables Y , Z, and W define a one-to-one transformation from
� = ��x�1�� x�2�� x�3�� � 0 < x�1� ≤ x�2� ≤ x�3��� to � = ��y� z� w� � 0 < y < z < �1−
y�/2� w > 0�. Since x�1� = yw/�1− y − z�, x�2� = zw/�1− y − z�, and x�3� = w, and
the Jacobian of the inverse transformation is w2/�1− y − z�3, the joint pdf of Y , Z,
and W on � is:

h�y� z� w� = 6
�3

e−�
yw+zw
1−y−z +w�/� ·

∣∣∣∣ w2

�1− y − z�3

∣∣∣∣
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= 6
�3

· w2

�1− y − z�3
· e− w

�1−y−z�� �y� z� w� ∈ ��

Integrating by parts, the joint density of Y and Z on � is:

fY�Z�y� z� =
6

�3�1− y − z�3

∫ �

0
w2e−

w
�1−y−z�� dw = 12 �y� z� w� ∈ ��

i.e., Y and Z are uniformly distributed on �.

Determining the Distribution of D3

The cdf of D3 will be defined in a piecewise manner, with breakpoints at the
following ordered quantities: dACE , dBCE , dADE , dBDE , 1/3, dAC ,

2
3 − e−3/2, 1− 1

e
, and

2/3. The cdf FD3
�d� = Pr�D3 ≤ d� is found by integrating the joint pdf of Y and Z

over the appropriate limits, yielding:

FD3
�d� =



0 d ≤ dACE

2
3

[
ln
(
e3�1− d�

[
2
3
− d

] [
1
3
− d

])]2

dACE < d ≤ dBCE

2
3
ln

[
e6�1− d�

(
2
3
− d

)2 (2
3
+ d

)(
1
3
− d

)2
]
ln
(

1− d

2/3+ d

)
dBCE < d ≤ dADE

4
3
ln
(
d + 1/3
2/3− d

)
ln
(
d + 2/3
1− d

)
− 2

3

[
ln
(
e3

[
d + 2

3

] [
d + 1

3

] [
1
3
− d

])]2

dADE < d ≤ dBDE

4
3
ln
(
d + 1/3
2/3− d

)
ln
(
d + 2/3
1− d

)
dBDE < d ≤ 1

3

4
3
ln
(
2/3− d

d + 1/3

)
ln�1− d�− 2

3

[
ln
(
d + 1/3
1− d

)]2 1
3
< d ≤ dAC

1− 2
3

[
ln
(
d + 1

3

)]2

− �1+ ln �1− d��2 − 3
[
1+ 2

3
ln
(
2
3
− d

)]2

dAC < d ≤ 2
3
− e−3/2

1− 2
3

[
ln
(
d + 1

3

)]2

− �1+ ln �1− d��2
2
3
− e−3/2 < d ≤ 1− e−1

1− 2
3

[
ln
(
d + 1

3

)]2

1− e−1 < d ≤ 2
3

1 d >
2
3
�

which is plotted in Fig. 12. Dots have been plotted at the breakpoints, with each
of the lower four tightly-clustered breakpoints from Table 4 corresponding to
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Figure 12. The cdf of D3.

a horizontal plane intersecting one of the four corners of region E in Fig. 11.
Percentiles of this distribution match the tabled values from Durbin (1975). We were
not able to establish a pattern between the cdf of D2 and the cdf of D3 that might
lead to a general expression for any n.

APPL was again used to calculate moments of D3. The decimal approximations
for the mean, variance, skewness, and kurtosis, are, respectively, E�D3� � 0�3727,
V�D3� � 0�008804, �3 � 0�4541, and �4 � 2�6538. These values were confirmed by
Monte Carlo simulation. Although the functional form of the eight-segment PDF of
D3 is too lengthy to display here, it is plotted in Fig. 13, with the only non obvious
breakpoint being on the initial nearly-vertical segment at �dBCE� fD3

�dBCE�� �
�0�2091� 1�5624�.

Figure 13. The pdf of D3.
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