REGIONS CONTAINING A FINITE SET OF POINTS

C.K. Li, D. Lutzer and Y.T. Poon

Problem Given a finite set of complex numbers, determine the smallest regions with special geometrical shape containing them.

1 Convex hull

Let S be a finite set of complex numbers. Here we use an idea by Nam-Kiu Tsing to determine the convex hull of S as follows.

First detemine the extrema of the set $\{(z + \overline{z})/2 : z \in S\}$ and $\{(z - \overline{z})/(2i) : z \in S\}$, we get a rectangle touching k vertices of conv S with k. Assume k > 2 so that not all points are collinear.

Let $\gamma = (v_1 + \cdots + v_k)/k$ be the mean of the k vertices v_1, \ldots, v_k . Replace S by $S - \gamma$. After this replacement, we may assume that conv S contains a k-side convex polygon which contains the origin.

Suppose the complex numbers v_1, \ldots, v_k are k vertices of conv S that have been identified such that

$$0 \le \arg(v_1) \le \dots \le \arg(v_k) \le 2\pi$$

Set $t_{k+1} = t_1$. For $j = 1, \ldots, k$, either

(a) the line segment joining v_i and v_{i+1} is on the boundary conv S, or

(b) the line joining v_j and v_{j+1} separates the origin and a vertex $v_{j'}$.

If (b) does not happen, then we are done. If (b) does happen, we can add $v_{j'}$ to the list of vertices, and do the classifiation of (a) and (b) again. If conv S has m vertices, this algorithm will stop after m - k steps.

Note: To check whether (a) or (b) holds, we may let $\theta \in [0, 2\pi)$ such that the line \mathcal{L} passing through $e^{i\theta}v_j$ and $e^{i\theta}v_{j+1}$ is a right supporting line of conv $\{e^{i\theta}v_r : 1 \leq r \leq k\}$. Suppose

$$e^{i\theta}z + e^{-i\theta}\bar{z} \le e^{i\theta}v_j + e^{-i\theta}\bar{v}_j$$

for all $z \in S$. Then condition (a) holds. Otherwise, condition (b) holds, and we can find $v_{j'}$ among those $z \in S$ such that $e^{i\theta}z$ has the maximum real part.

2 Smallest rectangle

Let S be a finite set of complex numbers. We want to determine the smallest rectangle containing S. Taking $P = \operatorname{conv} S$, we reduce the problem to the following.

Problem Determine the smallest rectangle containing a given n-side convex polygon P.

We can determine the rectangle in finite steps as shown by the following.

Theorem For each side of the polygon P, construct a support line L of the polygon. Then there is a unique smallest rectangle with one of the side lying on L. There are at most nrectangles constructed in this way. The one with the minimum area is the desired one.

Proof. We claim that if R is a rectangle containing P and none of the four sides of R contains an edge of P, then R is not optimal.

Note that if the hypothesis of the claim is true, then there are at most four vertices of P on the boundary of R. Moreover, none of these four vertices of P can be a vertex of R; otherwise, this vertex and one of the other vertices will be a boundary edge of P lying on the boundary of R.

Now, we may rotate **C** so that the sides of R are A, B, C, D so that A and C are horizontal with A above C, and that B and D are vertical with B on the right of D. Suppose the vertices a, b, c, d of P lies on the sides A, B, C, D or R. Let the line segment joining a and c be L, and let the line segment joining b and d be W. We may translate **C** so that the intersection of Land W is the origin. Let θ be the angle between L and the y axis, and ϕ be the angle between W and the x axis. Then the area of R is $lw \cos \theta \cos \phi$, where l and w are the lengths of Land W, respectively. If one can rotate **C** such that both θ and ϕ increase, then we can get a smaller rectangle containing P. Otherwise, both L and W must lie in (1) the first and third quadrants, or (2) the second and fourth quadrants. WOLOG, assume (1) holds. If we rotate **C** by an angle t in the clockwise direction, then the new angles between L and W to the vertical and horizontal axis will be $\cos(\theta+t)$ and $\cos(\phi-t)$, respectively. For sufficiently small t, we can find a new rectangle R(t) containing P with area $f(t) = lw \cos(\theta + t) \cos(\phi - t)$. Since

$$f'(t) = -lw(\sin(\theta + t)\cos(\phi - t)) - \cos(\theta + t)\sin(phi - t)) = -lw\sin(\theta + \phi) < 0,$$

we can rotate \mathbf{C} and obtain a new rectangle containing P with sides parallel to the axises and a smaller area. Thus, our claim is proved and the result follows. \Box

3 Further questions

- (a) Determine the smallest ellipse containing S. Every 5 vertices of conv S determine an ellipse. Can we do better?
- (b) How about extending the result to \mathbf{R}^3 or higher dimensions?
- (c) How about using a (regular) *n*-side polygon to contain a given convex polygon (convex set)?